ADDENDUM NUMBER ONE

DUPONT PUMP STATION AND BASIN IMPROVEMENTS – PHASE 2 (Contract B) W-12-026-203

CITY OF CHATTANOOGA, TENNESSEE

The Bid Date shall be extended to Friday, January 9, 2020 at 2:00 PM.

The following changes shall be made to the Contract Documents, Specifications, and Drawings:

I. CONTRACT DOCUMENT

- A copy of the Meeting Minutes and sign-in sheet from the Pre-Bid meeting on December 3, 2019 is attached.
- A copy of the Railroad Permit is attached.
- A Geotechnical Report prepared by CDM Smith is attached. Contractors may refer to the data presented in this report; however, reliance on any interpretations of such data are at the Contractor's sole risk.

II. Q&A/COMMENTS

- *Note:* Duplicate questions were provided by several potential bidders. While wording varied slightly, duplicates have been removed.
 - 1. We paid a fee and picked up a thumb drive with the specifications and the drawings for the Dupont Pump Station and Basin Improvements Phase 2 (Contract B). There were no geo reports on the thumb drive, and these are needed to properly bid this project. I am told that they were attached to Contract A, but we did not participate in that bidding. Can we please get a copy of the geo reports?

Response: A copy of the Geotechnical Report is attached.

- 2. a. Can the bid date for "Contract B" be extended to the first of the year?
 - b. Due to the erratic rock profiles along the TN River can an adequate Geotechnical Report be provided along the mainline of the piping?
 - c. Can a bid item be added for Railroad Flagging?
 - d. Can a copy of the Railroad Permit be provided to the bidders?

Response:

- a. The Bid Date shall be extended to Friday, January 9, 2020 at 2:00 PM.
- b. A copy of the Geotechnical Report is attached.
- c. An allowance for railroad flagging will be added to the bid form in Addendum No. 2.
- d. A copy of the railroad permit is attached.
- 3. Who is responsible for providing a flagman for work around the RR?

Response: The Contractor is responsible for the cost. An allowance will be added to the Bid Form in Addendum No. 2

- Can the Engineer provide the executed RR permit in Addendum No. 1?
 Response: A copy of the Railroad permit is attached to Addendum No. 1.
- 5. Can the Engineer provide the CADD files for the design plans?

Response: The CADD files will be provided to the successful bidder.

7. Are items on the bid form lump sum or itemized?

Response: There is a mixture of Unit Price and Lump Sum Bid Items. The Bid Form is going to be reissued in Addendum No. 2.

8. Due to time constraints and the upcoming holidays, we are requesting the bid date be pushed back until after the first of the year.

Response: The Bid Date shall be extended to Friday, January 9, 2020 at 2:00 PM.

December 12, 2019

Justin C Holland, Administrator City of Chattanooga

PRE-BID CONFERENCE MINUTES Dupont Pump Station and Basin Improvements – Phase 2 (Contract B) CONTRACT #W-12-026-203 December 3, 2019 Training Facility, Moccasin Bend Wastewater Treatment Plant

1. Introductions

- a. Owner City of Chattanooga
- b. Program Manager Jacobs
- c. Engineer CDM Smith
- 2. <u>Project Scope/Description</u>
 - a. The project location is between the Rivermont Park (Dixie Drive) and the existing Dupont Pump Station (Memphis and Elm Street). The Project generally consists of the installation of 6,200 LF of 48-inch diameter gravity sewer. Project also includes several other gravity sewer connections and the demolition of the existing Dupont Pump Station.
- 3. Pre-Bid Conference Agenda
- 4. Bid Documents
 - a. Refer to Section 00 21 13 Instructions to Bidders
 - Purchase Bids from 8:00 a.m. to 4:30 p.m., Monday through Friday, at the City of Chattanooga Purchasing Department, 101 East 11th Street, Suite G13, Chattanooga, TN 37402, phone (423) 643-7230, fax (423) 643-7244.
 - c. Cost of Contract Documents is \$100 per set. No part of the purchase will be refunded for any reason.
 - d. Bid Bond in the amount of 5% of Bid with Surety licensed to do business in TN and listed in U.S. Treasury Circular 570.
 - e. No Bid withdrawn within 120 calendar days of receipt of Bids.
- 5. Qualifications
 - a. Refer to Section 00 21 13 Instructions to Bidders, and Section 00 45 13 Statement of Bidder's Qualifications
 - i. Bidder shall maintain permanent place of business
 - ii. Must be licensed by State of Tennessee to perform work under contract
 - iii. Bidder shall demonstrate adequate construction experience and sufficient equipment resources to properly perform work.
 - iv. Owner reserves the right to reject any bid if bidder fails to satisfy qualifications.
- 6. <u>Bidding Requirements</u>
 - a. Bid Bond in the amount of 5% of Bid with Surety licensed to do business in TN and listed in U.S. Treasury Circular 570.
 - b. No Bid withdrawn within 120 calendar days of receipt of Bids.
 - c. Section 00 45 77 Contractor's Identification must be completed, with one copy attached to the bid package, and one copy inside the bid package.

- 7. Bidder Questions and Addenda
 - a. Use Section 00 21 14 Request for Bidder Information. Submit by fax, email or mail to City of Chattanooga Purchasing Department. <u>bidinfo@chattanooga.gov</u>.
 - Questions received after December 10th, 2019 may not be answered. All questions about the meaning or intent of the Bidding Documents are to be submitted to Owner in writing. Questions and other inquiries shall be submitted to the City of Chattanooga Purchasing Department.
 - c. Required to purchase set of plans and specifications to get on the plan holders list. Only bidders on plan holders list will receive addenda; which must be acknowledged in the Bid Form.
- 8. Bid Opening
 - a. Date/Time December 17th, 2019 at 2pm
 - Location City of Chattanooga Purchasing Department, 101 East 11th Street, Suite G13, Chattanooga, TN 37402
- 9. <u>Contract Completion Time</u>
 - a. Substantial Completion within 270 Calendar Days of Notice to Proceed (Section 00 52 00 will be corrected via addendum to match Bid Advertisement)
 - b. Final Completion within 300 calendar days of Notice to Proceed
- 10. Liquidated Damages
 - a. \$1,000 for each day after Substantial Completion if work is deemed to not be substantially complete, and \$1,000 for each day after Final Completion if Contractor has not completed the work.
- 11. Project Specific Requirements
 - a. Refer to Section 01 12 16 for Construction Constraints and Proposed Sequence of Construction.
 - b. Norfolk Southern Rail Road Crossing Permit has already been obtained.
- 12. Site Access
 - a. All work to be completed shall be on the City of Chattanooga's property or easements.
 - b. If needed, the Contractor is responsible for acquiring all required right of entry and temporary construction easements on private properties in order to access existing sewers and preform the required work.

13. <u>Safety</u>

a. Refer to Section 00 72 00 and 00 73 00 General Conditions

14. Work Hours

a. Work Hour Restrictions – Work hours shall be 7:00 a.m. to 6:00 p.m. Monday through Friday.

15. Allowances

- a. The Contractor shall include in the Bid Total all allowances stated in the Contract Documents. These allowances shall cover the net cost of the services provided.
- b. Allowance totals will be added to Bid Form in Addendum No. 1.

16. Other Items

- a. It is the Contractors responsibility to repair any existing utilities that are damaged during construction.
- b. The items discussed here today are not intended to be all-inclusive. It is the Contractor's responsibility to review the Contract Documents and comply with all provisions.

17. Questions

All Questions included in Contract B - Addendum No. 1

Since think. deliver.	Phone	265-338-0900	270-487-1784	615-838-2854	(143 603)	(423) 842-6233	\$5-306-2788	423-718-7508	423-271-9025	643 6179	423.332.634	404-821-1931			
	Email Address	denny. Prestle agross, con	estimating cleary const. com	Cein. manhad & Swabelt Fork 15. com	BHUMPONER CHATTANOOGA.GOV	MIKE @ TRCCTNC. NET	dword Osbar constructors. con	retay or Ochattanorga. sou	wolflf adnsmith, wak	Iransen 62 chattennego. 901	Floddo WOBCi. cm	Dkillenhill ecpipeline, com			
, 2019	Company	IA0055	cleary const	Sundelt Rung	DOBON COC	THOMAS REDTHURS	SBW Contractors	Chattanoosa	LOM Smith	v tij	WBCCT	Cross county			
Tuesday, December 03, 2019	Name	DENINY BRESTLE	Steve Stevent	Cais Maynerd	BONNIG MUMBING (DDBON)	MIKE MCBRANER	David word	CANDY TAYLON	RICK INDUF	KichirAmen	bod Japa	Sende Kiligh			

CDM

Pre-Bid Conference - DuPont Pump Station and Basin Improvements Phase 2 (Contract B) - Contract #W-12-026-203

AECOM 1700 Market Street Suite 1600 Philadelphia, PA 19103 www.aecom.com

215 735 0832 tel 215 735 0883 fax

September 16, 2019

William C. Payne City Manager City of Chattanooga 1250 Market Street, Department of Public Works Engineering Division, Suite 2100, Development Resource Center Chattanooga, TN 37351

Subject: Chattanooga, Hamilton County, Tennessee Milepost 1.57-CD, C&D Branch, Alabama Division

Norfolk Southern Activity No. 1274468

Proposed installation of one (1) 48-inch fiber glass water pipeline in a 60-inch steel casing pipe and the undocumented existing 36-inch concrete water pipeline and 30-inch ductile iron water pipeline to be abandoned

Dear Mr. Payne:

AECOM, as consultant for Norfolk Southern Railway Company, has reviewed the occupancy permit application for City of Chattanooga regarding the proposed installation of an underground pipe, submitted on August 13, 2019, your project number 129699-109746.

Enclosed are two original counterparts of the Standard Pipe License Agreement for signature on behalf of City of Chattanooga. Please return to <u>this AECOM office</u> the following:

- Two originals of the Standard Pipe License Agreement signed and witnessed (in BLUE ink). DO NOT date this
 agreement as it will not go into effect until it has been executed by Railway.
- A check in the amount of \$38,000.00 (payable to THE CINCINNATI, NEW ORLEANS AND TEXAS PACIFIC RAILWAY COMPANY) to cover the one-time license and Risk Management Fees. Payment of the Risk Management Fee will satisfy all requirements for Railroad Protective Liability Insurance for the installation of the facility.
- The Certificate of Commercial General Liability Insurance as required in Paragraph 11, a, ii. of the agreement.
 - In order to avoid delay to your project, please ensure the certificate is completed exactly as indicated on the attached sample. The description of operations <u>must</u> state "THE CINCINNATI, NEW ORLEANS AND TEXAS PACIFIC RAILWAY COMPANY is included as additional insured - Activity Number 1274468"
 - Certificate Holder <u>must</u> be in the name of: THE CINCINNATI, NEW ORLEANS AND TEXAS PACIFIC RAILWAY COMPANY Attn: Director Risk Management Three Commercial Place Norfolk, VA 23510

After receipt of <u>all</u> of the above items in <u>this office</u>, you should anticipate <u>approximately two weeks</u> for receipt of authorization to proceed with construction. **Please do not schedule your construction until you are in receipt of a fully executed agreement**. No work on Norfolk Southern property is authorized until you are in receipt of a fully executed agreement and instructions are obtained from Railway's designated construction representative. The contact information for Railway's construction representative(s) will be provided upon return of the fully executed counterpart.

The terms and conditions of this agreement shall be valid for 60 calendar days after the date of this letter. If you are unable to execute the agreement within this 60 calendar day time frame, please advise this office in writing of your intent. This activity will be automatically cancelled in 60 calendar days if the items requested above are not returned, or we do not receive your request for a time extension. Reactivation of cancelled activities may require a new application along with appropriate application fees, and license agreements will be re-drafted in accordance with the current Norfolk Southern terms and conditions.

Very truly yours, Disorem

Angeliha Discienzo () Contract Administrator 215-789-2168 angelina.discienzo@aecom.com

Sample CGL Certificate

l icensee/Lessee/Industry	ACORD, CERTIFICATE	FICATE OF INSURANCE ISSUEDUE
identified in the agreement	PRODUCER	This certification is struct as a matter of information only and confers to hyper- prior that Cartificious Model. This Cartificate Jones not entered or start the concept addressed by the profession become
		COMPANIES AFORCINO COVERAGE
traditions source also		Genpary
contactors CGL certificate	NERED	Company B
	4	Company
		Company
The amount in this "		Currenty .
Each Occurrence" box must be at least	These is to carefy that the potision of lenorance department for the first inter- tary requirement, term or condition of contract of contract with the potisions operations the subject to all the terms, conditions is	aurod named herolih far da s censilcata mey be issued policies, Landis shown me
\$1.000.000.00 or the	CO TYPE OF INSURANCE POLICY NUMBER	R BPFECTIVE LINGTS OF LIABRITY EXPRATION
amount in this box	A GRINERAL LUBRLITY Conversa Consort LEDN Conversa Consorts Conversa Reveaces	EACH OCCURRENCE 5 FIRE DAUXUE MEDICAL EVENCE 5 MEDICAL EVENCE 5
"Each Occurrence"	lement According to Choose of Choose	GENERAL ACCREANTE PRODUCTS AND COMP. DFER. AGG. R
coverage of any		COMBRED SINGLE LIMIT
Excess Liability must be at least	AY ment datasets Alternation Alternation Stretched datasets Advected	BODRY MILLER (PR. 2010) BODRY MILLER (PR. 2010) PROPERTY DAMAGE (Par. project)
\$1,000,000.00	A WORKERSE COMPENSATION	VOULSTOPPENSIVE DOLLISSON WE SWAMEN LIME X. Drive
	AND EMPLOYERS' LABILITY	alover)
This box should contain the Name of the Railroad included as an	B EKCESS LIABLITY Characteria Blaim Mas	EL DISEASE (Pency und): 5 EL DOCURRENCE 5 AUGREGATE 5
additional insured. This certificate		
applies to all contracts/acreaments hatween the		
named insured and Railway. Add	×	
Railway activity #		
	CERTIFICATE HOLDER	SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE
Name of Railway must be the exact name of Railway on		THE EXPAN GAIN HE HERLEN, THE KINANNE UNSURVENT AND
Agreement: Example, Central		Authorized Keptreathathe
of Georgia Railroad Company, Florida Railway Company ect.	Three Commercial Pisce Norticly VA 23510	Provide a set of a
	Use this address	
Diase do NOT	nurchase Dailroad Bratastin	stive Lichility Increases

Please do NOT purchase Railroad Protective Liability Insurance

THIS AGREEMENT, dated as of the _____ day of _____, 20____ is made and entered into by and between

THE CINCINNATI, NEW ORLEANS AND TEXAS PACIFIC RAILWAY COMPANY, an Ohio corporation, whose mailing address is Three Commercial Place, Norfolk, Virginia 23510 (hereinafter called "Railway"); and

CITY OF CHATTANOOGA, a political subdivision of the State of Tennessee, whose mailing address is 1250 Market Street, Suite 2100, Chattanooga, Tennessee 37402 (hereinafter called "Licensee").

WITNESSETH

WHEREAS, Licensee proposes to install, construct, maintain, operate and remove one (1) 48-inch fiber glass water pipeline in a 60-inch steel casing pipe (hereinafter called the "Facilities") which will replace an existing undocumented 36-inch concrete water pipeline and 30-inch ductile iron water pipeline (hereinafter called the "Original Facilities") located in, under and across the right-of-way or property and any tracks of Railway, at or near:

- Milepost 1.57-CD, C&D Branch
- Latitude N 35.103755, Longitude W 85.257035
- Chattanooga, Hamilton County, Tennessee
- Valuation Section 1, Map 66A, Stationing 77+78

the same to be located in accordance with and limited to the installation shown on print of drawings marked Exhibits A, B and C, received by Railway on September 3, 2019, and Pipe Data Sheet, attached hereto and made a part hereof; and

WHEREAS, Licensee desires a license to use such right-of-way or property of Railway for the installation, construction, maintenance, operation and removal of the Facilities.

NOW, THEREFORE, for and in consideration of the premises, the payment of a nonrefundable, non-assignable one-time fee in the amount of THIRTY-EIGHT THOUSAND AND 00/100 DOLLARS (\$38,000.00) to cover the Risk Financing Fee (as hereinafter defined) in the amount of \$1,000.00 and a one-time license fee in the amount of \$37,000.00, and the covenants hereinafter set forth, Railway hereby permits and grants to Licensee, insofar as Railway has the right to do so, without warranty and subject to all encumbrances, covenants and easements to which Railway's title may be subject, the right to use and occupy so much of Railway's right-ofway or property as may be necessary for the installation, construction, maintenance, operation and removal of the Facilities and as may be necessary for the maintenance and operation of the Original Facilities until installation of the Facilities followed immediately by abandonment of the Original Facilities by filling with cement grout, compacted sand, flowable fill or other methods as approved by the Railway (said right-of-way or property of Railway being hereinafter collectively called the "Premises"), upon the following terms and conditions: 1. <u>Use and Condition of the Premises</u>. The Premises shall be used by Licensee only for the installation, construction, maintenance, operation and removal of the Facilities and for no other purpose without the prior written consent of Railway, which consent may be withheld by Railway in its sole discretion. Licensee accepts the Premises in their current "as is" condition, as suited for the operation of the Facilities, and without the benefit of any improvements to be constructed by Railway.

2. <u>Installation of the Facilities; Railway Support</u>. Licensee shall, at its expense, install, construct, maintain and operate the Facilities on a lien-free basis and in such a manner as will not interfere with the operations of Railway, or endanger persons or property of Railway. Such installation, construction, maintenance and operation of the Facilities shall be in accordance with (a) the plans and specifications (if any) shown on the prints attached hereto and any other specifications prescribed by Railway, (b) applicable laws, regulations, ordinances and other requirements of federal, state and local governmental authorities, and (c) applicable specifications of the American Railway Engineering and Maintenance-of-Way Association, when not in conflict with the applicable plans, specifications, laws, regulations, ordinances or requirements mentioned in (a) and (b), above. All underground pipes must have secondary pipe containment if the material flowing through the pipeline poses a safety or environmental hazard. Any change to the character, capacity or use of the Facilities shall require execution of a new agreement.

3. <u>Railway Support</u>. Railway shall, at Railway's option, furnish, at the sole expense of Licensee, labor and materials necessary, in Railway's sole judgment, to support its tracks and to protect its traffic (including, without limitation, flagging) during the installation, construction, maintenance, repair, or removal of the Facilities.

4. <u>Electronic Interference</u>. Licensee will provide Railway with no less than sixty (60) days advance written notice prior to the installation and operation of cathodic protection in order that tests may be conducted on Railway's signal, communications and other electronic systems (hereinafter collectively called the "Electronic Systems") for possible interference. If the Facilities cause degradation of the Electronic Systems, Licensee, at its expense, will either relocate the cathodic protection or modify the Facilities to the satisfaction of Railway so as to eliminate such degradation. Such modifications may include, without limiting the generality of the foregoing, providing additional shielding, reactance or other corrective measures deemed necessary by Railway. The provisions of this paragraph 4 shall apply to the Electronic Systems existing as of the date of this Agreement and to any Electronic Systems that Railway may install in the future.

5. <u>Corrective Measures</u>. If Licensee fails to take any corrective measures requested by Railway in a timely manner, or if an emergency situation is presented which, in Railway's judgment, requires immediate repairs to the Facilities, Railway, at Licensee's expense, may undertake such corrective measures or repairs as it deems necessary or desirable.

6. <u>Railway Changes</u>. If Railway shall make any changes, alterations or additions to the line, grade, tracks, structures, roadbed, installations, right-of-way or works of Railway, or to the character, height or alignment of the Electronic Systems, at or near the Facilities, Licensee

shall, upon thirty (30) days prior written notice from Railway and at its sole expense, make such changes in the location and character of the Facilities as, in the opinion of the chief engineering officer of Railway, shall be necessary or appropriate to accommodate any construction, improvements, alterations, changes or additions of Railway.

7. <u>Assumption of Risk</u>. Unless caused solely by the negligence of Railway or caused solely by the willful misconduct of Railway, Licensee hereby assumes all risk of damage to the Facilities and Licensee's other property relating to its use and occupation of the Premises or business carried on the Premises and any defects to the Premises; and Licensee hereby indemnifies Railway, its officers, directors, agents and employees from and against any liability for such damage.

8. <u>Entry Upon Premises</u>. Prior to commencement of any work to be performed on or about the Premises, Licensee shall notify the appropriate Division Engineer for the scheduling of protection and inspection. Within seventy-two (72) hours after the Division Engineer's actual receipt of such notification, the Division Engineer shall review the necessity and availability of flagmen for the proposed work and advise Licensee of such matters and the estimated cost therefor. No work shall be permitted on or about the Premises without the presence of Railway's flagman or the Division Engineer's waiver of the requirement for flag protection. Entry on or about the Premises or any other Railway right-of-way without the Division Engineer's prior approval shall be deemed trespassing. Licensee agrees to pay Railway, within thirty (30) days after delivery of an invoice therefor, for any protection and inspection costs incurred by Railway, in Railway's sole judgment, during any such entry.

9. Liens; Taxes. Licensee will not permit any mechanic's liens or other liens to be placed upon the Premises, and nothing in this Agreement shall be construed as constituting the consent or request of Railway, express or implied, to any person for the performance of any labor or the furnishing of any materials to the Premises, nor as giving Licensee any right, power or authority to contract for or permit the rendering of any services or the furnishing of any materials that could give rise to any mechanic's liens or other liens against the Premises. In addition, Licensee shall be liable for all taxes levied or assessed against the Facilities and any other equipment or other property placed by Licensee within the Premises. In the event that any such lien shall attach to the Premises or Licensee shall fail to pay such taxes, then, in addition to any other right or remedy available to Railway, Railway may, but shall not be obligated to, discharge the same. Any amount paid by Railway for any of the aforesaid purposes, together with related court costs, attorneys' fees, fines and penalties, shall be paid by Licensee to Railway within ten (10) days after Railway's demand therefor.

10. <u>Indemnification</u>. Licensee hereby agrees to indemnify and save harmless Railway, its officers, directors, agents and employees, from and against any and all liabilities, claims, losses, damages, expenses (including attorneys' fees) or costs for personal injuries (including death) and property damage to whomsoever or whatsoever occurring (hereinafter collectively called "Losses") that arise in any manner from (a) the installation, construction, maintenance, operation, presence or removal of, or the failure to properly install, construct, maintain, operate or remove, the Facilities, or (b) any act, omission or neglect of Licensee, its

agents, servants, employees or contractors in connection therewith, unless caused solely by the negligence of Railway or caused solely by the willful misconduct of Railway.

11. <u>Insurance</u>.

(a) Without limiting in any manner the liability and obligations assumed by Licensee under any other provision of this Agreement, and as additional protection to Railway, Licensee shall, at its expense, pay the Risk Financing Fee set forth in subparagraph (i) below and shall procure and maintain with insurance companies satisfactory to Railway, the insurance policies described in subparagraphs (ii) and (iii).

(i) Upon execution of this Agreement, Licensee shall pay Railway a risk financing fee of \$1,000.00 per installation (herein called the "Risk Financing Fee") to provide Railroad Protective Liability Insurance or such supplemental insurance (which may be self-insurance) as Railway, in its sole discretion, deems to be necessary or appropriate.

(ii) Prior to commencement of installation or maintenance of the Facilities or entry on Railway's property, Licensee, and its contractor if it employs one, shall procure and maintain for the course of said installation and maintenance, a general liability insurance policy naming Railway as an additional insured, and containing products and completed operations and contractual liability coverage, with a combined single limit of not less than \$1,000,000 for each occurrence.

(iii) Prior to commencement of any subsequent maintenance of the Facility during the term of this Agreement, unless Railway elects to make available and Licensee pays the then current risk financing fee for each affected installation, Licensee, or its contractor if it employs one, shall furnish Railway with an original Railroad Protective Liability Insurance Policy naming Railway as the named insured and having a limit of not less than a combined single limit of \$2,000,000 each occurrence and \$6,000,000 aggregate. Such policy shall be written using Insurance Services Offices Form Numbers CG 00 35 01 10 01.

(b) All insurance required under preceding subsection (a) shall be underwritten by insurers and be of such form and content as may be acceptable to Railway. Prior to commencement of installation or maintenance of the Facilities or any entry on Railway's property, Licensee, or its contractor if it employs one, shall: furnish to Railway's Risk Manager, Three Commercial Place, Norfolk, Virginia 23510-2191 (or such other representative and/or address as subsequently given by Railway to Licensee in writing), for approval, the original policy described in subsection (a)(iii) and a certificate of insurance evidencing the existence of a policy with the coverage described in subsection (a)(ii).

12. <u>Environmental Matters</u>. Licensee assumes all responsibility for any environmental obligations imposed under applicable laws, regulations, ordinances or other requirements of federal, state and local governmental authorities relating to (a) the installation,

construction, maintenance, operation or removal of the Facilities, including notification and reporting of any releases, and (b) any contamination of any property, water, air or groundwater arising or resulting, in whole or in part, from Licensee's operation or use of the Premises pursuant to this Agreement. In addition, Licensee shall obtain any necessary permits to install, construct, maintain, operate or remove the Facilities. Licensee agrees to indemnify and hold harmless Railway from and against any and all fines, penalties, demands or other Losses (including attorneys' fees) incurred by Railway or claimed by any person, company or governmental entity relating to (a) any contamination of any property, water, air or groundwater due to the use or presence of the Facilities on the Premises, (b) Licensee's violation of any laws, regulations or other requirements of federal, state or local governmental authorities in connection with the use or presence of the Facilities on the Premises or (c) any violation of Licensee's obligations imposed under this paragraph. Without limitation, this indemnity provision shall extend to any cleanup and investigative costs relating to any contamination of the Premises arising or resulting from, in whole or in part, Licensee's use of the Facilities or any other activities by or on behalf of Licensee occurring on or about the Premises. Licensee further agrees not to dispose of any trash, debris or wastes, including hazardous waste, on the Premises and will not conduct any activities on the Premises which would require a hazardous waste treatment, storage or disposal permit.

13. Assignments and Other Transfers.

(a) Licensee shall not assign, transfer, sell, mortgage, encumber, sublease or otherwise convey (whether voluntarily, involuntarily or by operation of law) this Agreement or any interest therein, nor license, mortgage, encumber or otherwise grant to any other person or entity (whether voluntarily, involuntarily or by operation of law) any right or privilege in or to the Premises (or any interest therein), in whole or in part, without the prior written consent of Railway, which consent may be withheld by Railway in its sole discretion. Any such assignment or other transfer made without Railway's prior written consent shall be null and void and, at Railway's option, shall constitute an immediate default of this Agreement. Notwithstanding the foregoing, upon prior written notice to Railway, Licensee may assign this Agreement to a parent, a wholly-owned subsidiary of Licensee or a wholly-owned subsidiary of Licensee's parent without Railway's consent; provided, however, that no such assignment shall relieve Licensee of its obligations under this Agreement.

(b) Railway shall have the right to transfer and assign, in whole or in part, all its rights and obligations hereunder and in or to the Premises. From and after the effective date of any such assignment or transfer, Railway shall be released from any further obligations hereunder; and Licensee shall look solely to such successor-in-interest of Railway for the performance of the obligations of "Railway" hereunder.

14. <u>Meaning of "Railway"</u>. The word "Railway" as used herein shall include any other company whose property at the aforesaid location may be leased or operated by Railway. Said term also shall include Railway's officers, directors, agents and employees, and any parent company, subsidiary or affiliate of Railway and their respective officers, directors, agents and employees.

15. Default; Remedies.

(a) The following events shall be deemed to be events of default by Licensee under this Agreement:

(i) Licensee shall fail to pay the Fee or any other sum of money due hereunder and such failure shall continue for a period of ten (10) days after the due date thereof;

(ii) Licensee shall fail to comply with any provision of this Agreement not requiring the payment of money, all of which terms, provisions and covenants shall be deemed material, and such failure shall continue for a period of thirty (30) days after written notice of such default is delivered to Licensee;

(iii) Licensee shall become insolvent or unable to pay its debts as they become due, or Licensee notifies Railway that it anticipates either condition;

(iv) Licensee takes any action to, or notifies Railway that Licensee intends to file a petition under any section or chapter of the United States Bankruptcy Code, as amended from time to time, or under any similar law or statute of the United States or any State thereof; or a petition shall be filed against Licensee under any such statute; or

(v) A receiver or trustee shall be appointed for Licensee's license interest hereunder or for all or a substantial part of the assets of Licensee, and such receiver or trustee is not dismissed within sixty (60) days of the appointment.

(b) Upon the occurrence of any event or events of default by Licensee, whether enumerated in this paragraph 15 or not, Railway shall have the option to pursue any remedies available to it at law or in equity without any additional notices to Licensee. Railway's remedies shall include, but not be limited to, the following: (i) termination of this Agreement, in which event Licensee shall immediately surrender the Premises to Railway; (ii) entry into or upon the Premises to do whatever Licensee is obligated to do under the terms of this License, in which event Licensee shall reimburse Railway on demand for any expenses which Railway may incur in effecting compliance with Licensee's obligations under this License, but without rendering Railway liable for any damages resulting to Licensee or the Facilities from such action; and (iii) pursuit of all other remedies available to Railway at law or in equity, including, without limitation, injunctive relief of all varieties.

16. <u>Railway Termination Right</u>. Notwithstanding anything to the contrary in this Agreement, Railway shall have the right to terminate this Agreement and the rights granted hereunder, after delivering to Licensee written notice of such termination no less than sixty (60) days prior to the effective date thereof, upon the occurrence of any one or more of the following events:

(a) If Licensee shall discontinue the use or operations of the Facilities; or

(b) If Railway shall be required by any governmental authority having jurisdiction over the Premises to remove, relocate, reconstruct or discontinue operation of its railroad on or about the Premises; or

(c) If Railway, in the good faith judgment of its Superintendent, shall require a change in the location or elevation of its railroad on or about the location of the Facilities or the Premises that might effectively prohibit the use or operation of the Facilities; or

(d) If Railway, in the good faith judgment of its Superintendent, determines that the maintenance or use of the Facilities unduly interferes with the operation and maintenance of the facilities of Railway, or with the present or future use of such property by Railway, its lessees, affiliates, successors or assigns, for their respective purposes.

17. <u>Condemnation</u>. If the Premises or any portion thereof shall be taken or condemned in whole or in part for public purposes, or sold in lieu of condemnation, then this Agreement and the rights granted to Licensee hereunder shall, at the sole option of Railway, forthwith cease and terminate. All compensation awarded for any taking (or sale proceeds in lieu thereof) shall be the property of Railway, and Licensee shall have no claim thereto, the same being hereby expressly waived by Licensee.

Removal of Facilities; Survival. The Facilities are and shall remain the personal 18. property of Licensee. Upon the expiration or termination of this Agreement, Licensee shall remove the Facilities from the Premises within thirty (30) days after the effective date thereof. In performing such removal, unless otherwise directed by Railway, Licensee shall restore the Premises to the same condition as existed prior to the installation or placement of Facilities, reasonable wear and tear excepted. In the event Licensee shall fail to so remove the Facilities or restore the Premises, the Facilities shall be deemed to have been abandoned by Licensee, and the same shall become the property of Railway for Railway to use, remove, destroy or otherwise dispose of at its discretion and without responsibility for accounting to Licensee therefor; provided, however, in the event Railway elects to remove the Facilities, Railway, in addition to any other legal remedy it may have, shall have the right to recover from Licensee all costs incurred in connection with such removal and the restoration of the Premises. Notwithstanding anything to the contrary contained in this Agreement, the expiration or termination of this Agreement, whether by lapse of time or otherwise, shall not relieve Licensee from Licensee's obligations accruing prior to the expiration or termination date, and such obligations shall survive any such expiration or other termination of this Agreement.

19. <u>Entire Agreement</u>. This Agreement contains the entire agreement of Railway and Licensee and supersedes any prior understanding or agreement between Railway and Licensee respecting the subject matter hereof; and no representations, warranties, inducements, promises or agreements, oral or otherwise, between the parties not embodied in this Agreement shall be of any force or effect.

20. <u>Attorneys' Fees</u>. If Railway should bring any action under this Agreement, or consult or place the Agreement or any amount payable by Licensee hereunder, with an attorney concerning or for the enforcement of any of Railway's rights hereunder, then Licensee agrees in each and any such case to pay to Railway all costs, including but not limited to court costs and attorneys' fees, incurred in connection therewith.

21. <u>Severability</u>. If any clause or provision of this Agreement is illegal, invalid or unenforceable under present or future laws effective during the term of this Agreement, then and in that event, it is the intention of the parties hereto that the remainder of this Agreement shall not be affected thereby; and it is also the intention of the parties to this Agreement that in lieu of each clause or provision of this Agreement that is illegal, invalid or unenforceable, there be added as a part of this Agreement a clause or provision as similar in terms to such illegal, invalid or unenforceable clause or provision as may be possible and be legal, valid and enforceable.

22. <u>Modifications</u>; Waiver; Successors and Assigns. This Agreement may not be altered, changed or amended, except by instrument in writing signed by both parties hereto. No provision of this Agreement shall be deemed to have been waived by Railway unless such waiver shall be in a writing signed by Railway and addressed to Licensee, and no such waiver shall affect or alter this Agreement, but each and every covenant, condition, agreement and term of this Agreement shall continue in full force and effect. No nor shall any custom or practice that may evolve between the parties in the administration of the terms hereof shall be construed to waive or lessen the right of Railway to insist upon the performance by Licensee in strict accordance with the terms hereof. The terms and conditions contained in this Agreement shall apply to, inure to the benefit of, and be binding upon the parties hereto, and upon their respective successors in interest and legal representatives, except as otherwise herein expressly provided. If there shall be more than one Licensee, the obligations hereunder imposed upon Licensee shall be joint and several.

23. <u>Notice</u>. Any and all other notices, demands or requests by or from Railway to Licensee, or Licensee to Railway, shall be in writing and shall be sent by (a) postage paid, certified mail, return receipt requested, or (b) a reputable national overnight courier service with receipt therefor, or (c) personal delivery, and addressed in each case as follows:

<u>If to Railway</u>: c/o Norfolk Southern Corporation 1200 Peachtree Street, NE – 12th Floor Atlanta, Georgia 30309-3504 Attention: Director Real Estate

<u>If to Licensee</u>: City of Chattanooga 1250 Market Street, Suite 2100 Chattanooga, Tennessee 37402 Attention: City Manager Either party may, by notice in writing, direct that future notices or demands be sent to a different address. All notices hereunder shall be deemed given upon receipt (or, if rejected, upon rejection).

24. <u>Miscellaneous</u>. All exhibits, attachments, riders and addenda referred to in this License are incorporated into this Agreement and made a part hereof for all intents and purposes. Time is of the essence with regard to each provision of this Agreement. This Agreement shall be construed and interpreted in accordance with and governed by the laws of the State in which the Premises are located. Each covenant of Railway and Licensee under this Agreement is independent of each other covenant under this Agreement. No default in performance of any covenant by a party shall excuse the other party from the performance of any other covenant. The provisions of Paragraphs 7, 9, 10, 12 and 18 shall survive the expiration or earlier termination of this Agreement.

25. Limitations of Grant. Licensee acknowledges that the license granted hereunder is a quitclaim grant, made without covenants, representations or warranties with respect to Railway's (a) right to make the grant, (b) title in the Premises, or (c) right to use or make available to others the Premises for the purposes contemplated herein. Railway is the owner and/or holder of the Premises subject to the terms and limitations under which it is owned or held, including without limitation conditions, covenants, restrictions, easements (including any pre-existing fiber optic easements or licenses), encroachments, leases, licenses, permits, mortgages, indentures, reversionary interests, fee interests, zoning restrictions and other burdens and limitations, of record and not of record, and to rights of tenants and licensees in possession, and Licensee agrees that the rights licensed hereunder are subject and subordinate to each and all of the foregoing. Licensee accepts this grant knowing that others may claim that Railway has no right to make it, and Licensee agrees to release, hold harmless and indemnify (and, at Railway's election, defend, at Licensee's sole expense, with counsel approved by Railway) Railway, its affiliated companies, and its and their respective officers, directors, agents and employees, from and against any detriments to, or liabilities of, any type or nature arising from such claims, including punitive damages and any forfeitures declared or occurring as a result of this grant.

26. <u>Limitations Upon Damages</u>. Notwithstanding any other provision of this Agreement, Railway shall not be liable for breach of this Agreement or under this Agreement for any consequential, incidental, exemplary, punitive, special, business damages or lost profits, as well as any claims for death, personal injury, and property loss and damage which occurs by reason of, or arises out of, or is incidental to the interruption in or usage of the Facilities placed upon or about the Premises by Licensee, including without limitation any damages under such claims that might be considered consequential, incidental, exemplary, punitive, special, business damages or lost profits.

[Remainder of page intentionally left blank]

IN WITNESS WHEREOF, the parties hereto have executed this Agreement in duplicate, each part being an original, as of the date first above written.

Witness:

THE CINCINNATI, NEW ORLEANS AND TEXAS PACIFIC RAILWAY COMPANY

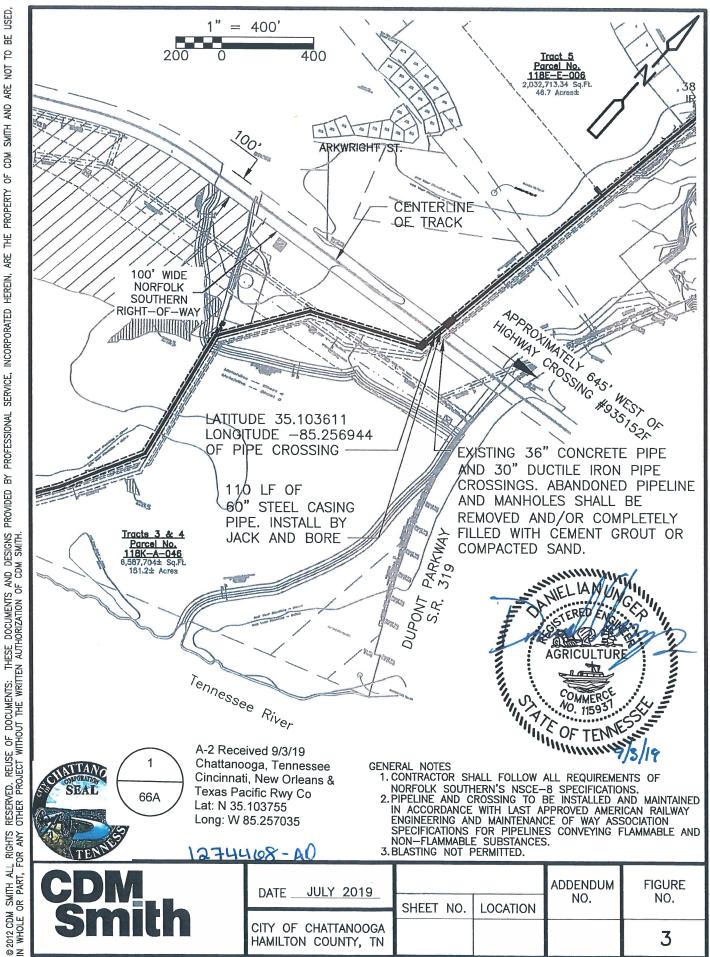
As to Railway	By: Real Estate Manager
Witness:	CITY OF CHATTANOOGA
As to Licensee	By: Title:

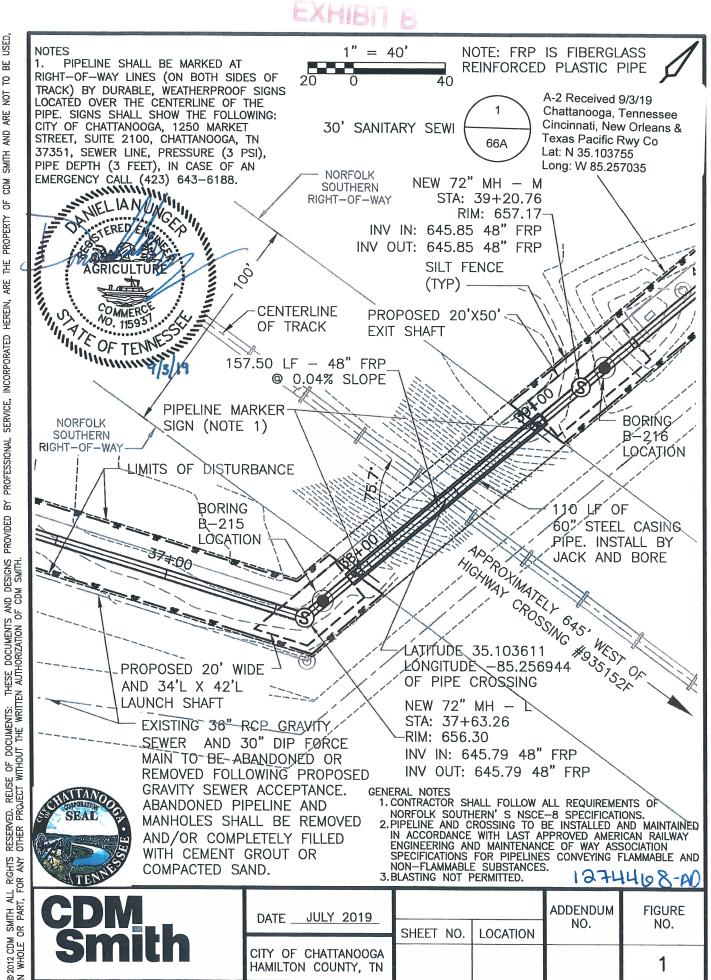
Activity Number 1274468 AD: September 16, 2019 File No. 1781794v1

PIPE DATA SHEET

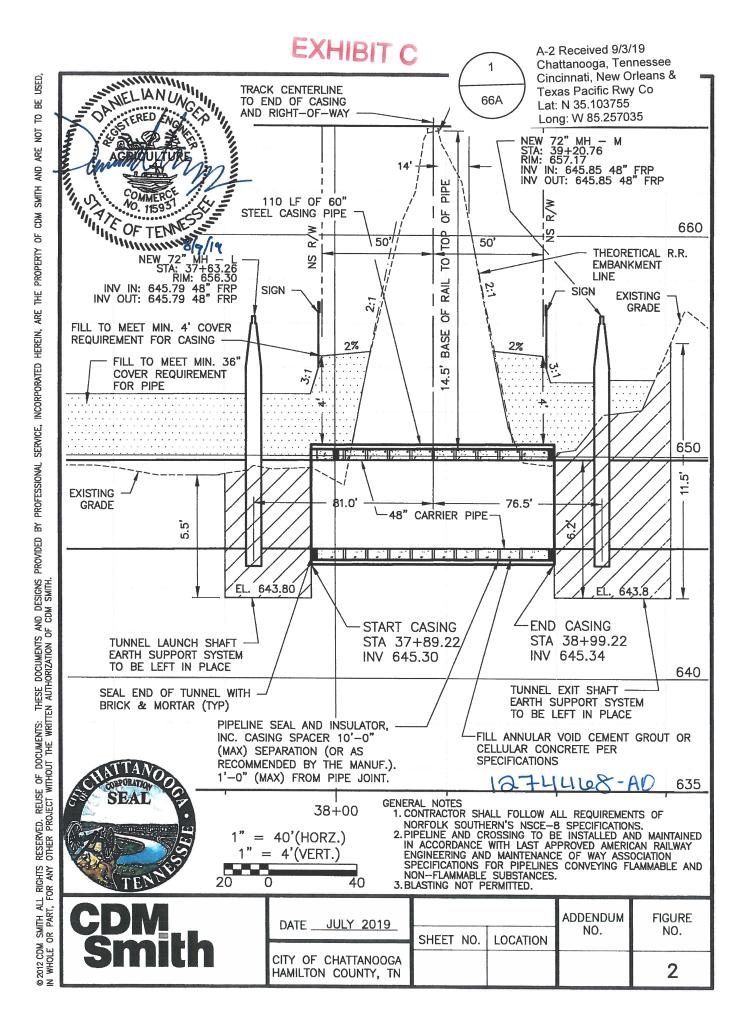
	CARRIER PIPE	CASING PIPE
CONTENTS TO BE HANDLED	sewer	Annular vold lilled with cement grout or cellular concrete
MAX. ALLOWABLE OPERATING PRESSURE	50 psi	N/A
NOMINAL SIZE OF PIPE	48"	60"
OUTSIDE DIAMETER	50.8"	60"
INSIDE DIAMETER	49.0"	58.3"
WALL THICKNESS	0.93"	0.844"
WEIGHT PER FOOT	133 lb/ft	533 lb/ft
MATERIAL	fiber glass reinforced polymer	steel
PROCESS OF MANUFACTURE	centrifugal casting process	rolled
SPECIFICATION	Section 33 23 19 (attached)	Section 33 05 25 (attached)
GRADE OR CLASS (Specified Minimum Yield Strength)	SN 46	35,000 psi
TEST PRESSURE	100 psi	N/A
TYPE OF JOINT	double bell coupling	welded
TYPE OF COATING	N/A	2 coats bitumastic enamel
DETAILS OF CATHODIC PROTECTION	N/A	N/A
DETAILS OF SEALS OR PROTECTION AT END OF CASING	brick and mortar	brick and mortar
CHARACTER OF SUBSURFACE MATERIAL	clayey sand/lean clay	clayey sand/lean clay
APPROXIMATE GROUND WATER LEVEL	609'	609'
SOURCE OF INFORMATION ON SUBSURFACE CONDITIONS	Geotechnical Investigation	Geotechnical Investigation

Proposed method of installation (refer to NSCE-8 Specification):


- Bore and jack
- Jacking
- Tunneling (with Tunnel Liner Plate)
- Directional Bore/Horizontal Direction Drilling Method A
- Directional Bore/Horizontal Direction Drilling Method B


Open Cut – All installations directly under any track must be designed as a bored installation. Open cut installations will be considered on a case-by-case basis by Norfolk Southern's Division Superintendent at the time of installation.

Other (Specify):



A-2 Received 9/3/19 Chattanooga, Tennessee Cincinnati, New Orleans & Texas Pacific Rwy Co Lat: N 35.103755 Long: W 85.257035 EXHIBIT A

В p NOT ARE AND HIIMS CDM Ч BY PROFESSIONAL SERVICE, INCORPORATED HEREIN, ARE THE PROPERTY RESERVED. REUSE OF DOCUMENTS: THESE DOCUMENTS AND DESIGNS PROVIDED OTHER PROJECT WITHOUT THE WRITTEN AUTHORIZATION OF CDM SMITH. ALL RIGHTS I

City of Chattanooga	STATUTOR CORPORATION SEAL FENINGS
Waste Resources Division DuPont Gravity Sewer and Pump Station	Geotechnical Interpretive Report
	Chattanooga, Tennessee September 2019

City of Chattanooga

Waste Resources Division DuPont Gravity Sewer and Pump Station

Geotechnical Interpretive Report

September 2019

Prepared by:

plegat

Kermit Applegate, P.É. Geotechnical Engineer

Prepared by:

Erdem O. Tastan, Ph.D, P.E. //////// Senior Geotechnical Engineer

Reviewed by:

Stephén L. Whiteside, PE Vice President, Geotechnical Engineer

Reviewed by:

neautr

Danielle K. Neamtu, PE Geotechnical Engineer

CDM Smith Project No. 129699-109746

Table of Contents

Section 1 Introduction	1-1
1.1 Project Description	
1.2 Elevation Datum	
1.3 Purpose and Scope	
1.4 Report Limitations	
Section 2 Site and Subsurface Conditions	
2.1 Site Conditions	
2.1 Site conditions	
2.1.1 General	
2.2 Regional Geology	
2.3 Subsurface investigation i rograms	
2.3.2 Preliminary Field Investigation	
2.3.2.1 Preliminary Geotechnical Investigation	
2.3.2.2 Preliminary Geophysical Field Investigation Results	
2.3.3 Secondary Field Investigation	
2.3.3.1 Secondary Geotechnical Investigation	
2.3.3.2 Secondary Geophysical Field Investigation	
2.3.4 Final Subsurface Investigation	
2.3.5 Geotechnical Laboratory Testing	
2.4 Subsurface Conditions	
2.4.1 Surficial Material	
2.4.2 Miscellaneous Fill	
2.4.3 Upper Soils	
2.4.3.1 Fat Clay	
2.4.3.2 Clayey Sand	2-19
2.4.3.3 Lean Clay	2-20
2.4.4 Lower Soils	2-20
2.4.5 Bedrock	2-20
2.4.6 Groundwater Conditions	2-23
2.5 Expected Variations in Subsurface Conditions	2-23
Section 3 Geotechnical Engineering Evaluation and Design Recommendations	
3.1 General	
3.2 Geotechnical Considerations	
3.2.1 Potential Karst Conditions within Bedrock	
3.2.2 Site Development	
3.3 Pump Station Site Design Recommendations	
3.3.1 Site Development	
3.3.2 Pump Station and Diversion Structures	
3.3.2.1 Micropile Spacing	
3.3.2.2 Micropile Cap	
3.3.2.3 Under-Slab Utilities	
3.3.3 Electrical Building and Generator Structures	

3.3.3.2 Foundation Preparation	
3.3.3.3 Foundation Bearing Capacity	
3.3.3.4 Foundation Settlement	
3.3.4 Design Groundwater	
3.3.5 Lateral Loads on Below-Grade Walls	
3.3.6 Resistance to Unbalanced Lateral Loads	
3.3.7 Resistance to Buoyancy	
3.3.8 Earthquake Considerations	
3.4 Gravity Sewer Pipeline Recommendations	
3.4.1 General	3-5
3.4.2 Pipe Subgrade	
3.4.3 Pipe Bedding	
3.4.4 Trench Backfill	
3.5 Trenchless Crossing Recommendations	
3.5.1 General	
3.5.2 Pipejacking	
3.5.2.1 General	
3.5.2.2 Temporary Ground Support	
3.5.2.3 Steel Casing Pipe	
3.5.2.4 Ground Conditions and Face Stability	
3.5.2.5 Entry and Exit Pits	
3.5.2.6 Settlements	
Section 4 Construction Considerations	
4.1 General	
4.1 General 4.2 Excavation and Excavation Support	
4.2 Excavation and Excavation Support	4-1
4.2 Excavation and Excavation Support	4-1 4-2
4.2 Excavation and Excavation Support	4-1 4-2 4-2
4.2 Excavation and Excavation Support4.3 Dewatering4.4 Protection and Preparation of Subgrade Soils	
 4.2 Excavation and Excavation Support 4.3 Dewatering 4.4 Protection and Preparation of Subgrade Soils 4.5 Protection of Adjacent Structures 	
 4.2 Excavation and Excavation Support	
 4.2 Excavation and Excavation Support 4.3 Dewatering 4.4 Protection and Preparation of Subgrade Soils 4.5 Protection of Adjacent Structures 4.5.1 General 4.5.2 Deformation Monitoring 	
 4.2 Excavation and Excavation Support 4.3 Dewatering 4.4 Protection and Preparation of Subgrade Soils 4.5 Protection of Adjacent Structures 4.5.1 General 4.5.2 Deformation Monitoring 4.5.3 Vibration Monitoring 	
 4.2 Excavation and Excavation Support	
 4.2 Excavation and Excavation Support 4.3 Dewatering. 4.4 Protection and Preparation of Subgrade Soils. 4.5 Protection of Adjacent Structures. 4.5.1 General. 4.5.2 Deformation Monitoring 4.5.3 Vibration Monitoring. 4.6 Backfill. 4.6.1 Structural Fill 	
 4.2 Excavation and Excavation Support 4.3 Dewatering. 4.4 Protection and Preparation of Subgrade Soils. 4.5 Protection of Adjacent Structures. 4.5.1 General 4.5.2 Deformation Monitoring 4.5.3 Vibration Monitoring 4.6 Backfill 4.6.1 Structural Fill 4.6.2 Common Fill. 	4-1 4-2 4-2 4-3 4-3 4-3 4-3 4-3 4-3 4-3 4-4 4-4 4-4
 4.2 Excavation and Excavation Support 4.3 Dewatering. 4.4 Protection and Preparation of Subgrade Soils. 4.5 Protection of Adjacent Structures. 4.5.1 General. 4.5.2 Deformation Monitoring 4.5.3 Vibration Monitoring. 4.6 Backfill. 4.6.1 Structural Fill 4.6.2 Common Fill. 4.6.3 Crushed Stone. 	4-1 4-2 4-2 4-3 4-3 4-3 4-3 4-3 4-3 4-3 4-3 4-3 4-4 4-4
 4.2 Excavation and Excavation Support 4.3 Dewatering. 4.4 Protection and Preparation of Subgrade Soils. 4.5 Protection of Adjacent Structures. 4.5.1 General 4.5.2 Deformation Monitoring 4.5.3 Vibration Monitoring 4.6 Backfill 4.6.1 Structural Fill 4.6.2 Common Fill 4.6.3 Crushed Stone 4.6.4 Trench Backfill 	
 4.2 Excavation and Excavation Support	$\begin{array}{c}$
 4.2 Excavation and Excavation Support 4.3 Dewatering. 4.4 Protection and Preparation of Subgrade Soils. 4.5 Protection of Adjacent Structures. 4.5.1 General. 4.5.2 Deformation Monitoring 4.5.3 Vibration Monitoring. 4.6 Backfill. 4.6.1 Structural Fill 4.6.2 Common Fill. 4.6.3 Crushed Stone 4.6.4 Trench Backfill. 4.7 Geotextile. 4.8 Micropile Installation 	$\begin{array}{c}$
 4.2 Excavation and Excavation Support	$\begin{array}{c}$
 4.2 Excavation and Excavation Support	$\begin{array}{c}$
 4.2 Excavation and Excavation Support	$\begin{array}{c}$

Section 5 References

List of Figures

Figure 1-1 Site Locus Plan	. 1-3
Figure 1-2 Site Plan	. 1-5
Figure 2-1 Original Site Location and Alternative Sites Considered	. 2-5
Figure 3-1 Trenchless Crossing	. 3-7

List of Tables

Table 2-1 Summary of Geotechnical Index Test Results	2-11
Table 2-2 Summary of One-Dimensional (1-D) Consolidation Test Results	2-15
Table 2-3 Summary of Triaxial Test Results	2-16
Table 2-4 Summary of Rock Core Test Results	2-17
Table 2-5 Summary of Subsurface Explorations	2-21

Appendices

Appendix A Geotechnical Data Report Appendix B Report for Geophysical Services Appendix C CDM Smith Test Boring Logs Appendix D S&ME Geotechnical Laboratory Testing Report Appendix E Rock Core Photos

This page intentionally left blank.

Section 1

Introduction

1.1 Project Description

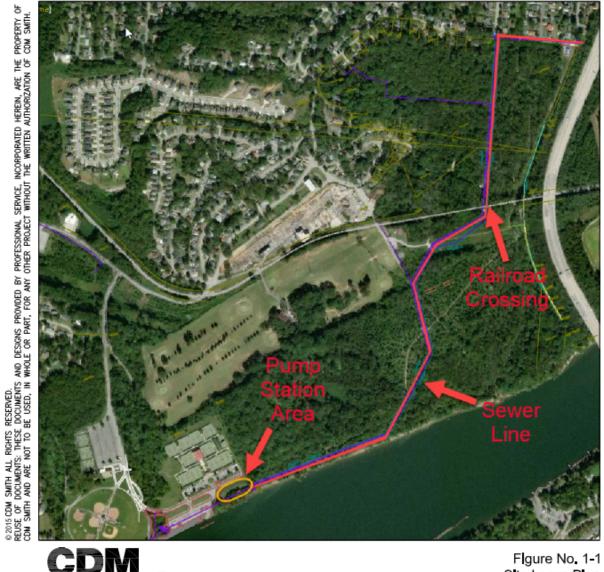
The DuPont Pump Station and Basin Improvements – Phase 2 project scope consists of the design and construction of approximately 7,000 LF of 48-inch-diameter gravity sewer line from the existing DuPont Pump Station to Rivermont Park. It also includes the design and construction of a new wet-weather diversion structure and pump station in Rivermont Park. The new pump station will discharge into the existing DuPont Pump Station force main and will maximize its capacity. The project also involves the demolition of the existing Dupont Pump Station and existing diversion structure. The primary objective of this project is to reduce sanitary sewer overflows (SSOs) in the DuPont Parkway Pump Station drainage area and the Lupton drainage area through the construction of new wet-weather flow management facilities.

The location of the proposed structures and the alignment of the gravity sewer are shown on **Figure 1-1.** Existing site elevation at the pump station site varies between El. 652 feet and El. 655 feet. The final site grade will be at El. 660 feet to protect against 100-yr flood level of El. 659 feet. The pump station and diversion structure will be founded on mat foundations at approximately 26- feet below ground surface (ft-bgs). The electrical building will be founded on a strip foundation at approximately 5 ft-bgs, while the generator slab will be founded at approximately 3 ft-bgs. All depths indicate bottom of foundation.

The new 48-inch-diameter finished gravity sewer will be ductile iron (DIP) and constructed using mainly open-cut and pipe jacking techniques. Pipe jacking will be used under the railroad crossing as indicated on Figure 1-1.

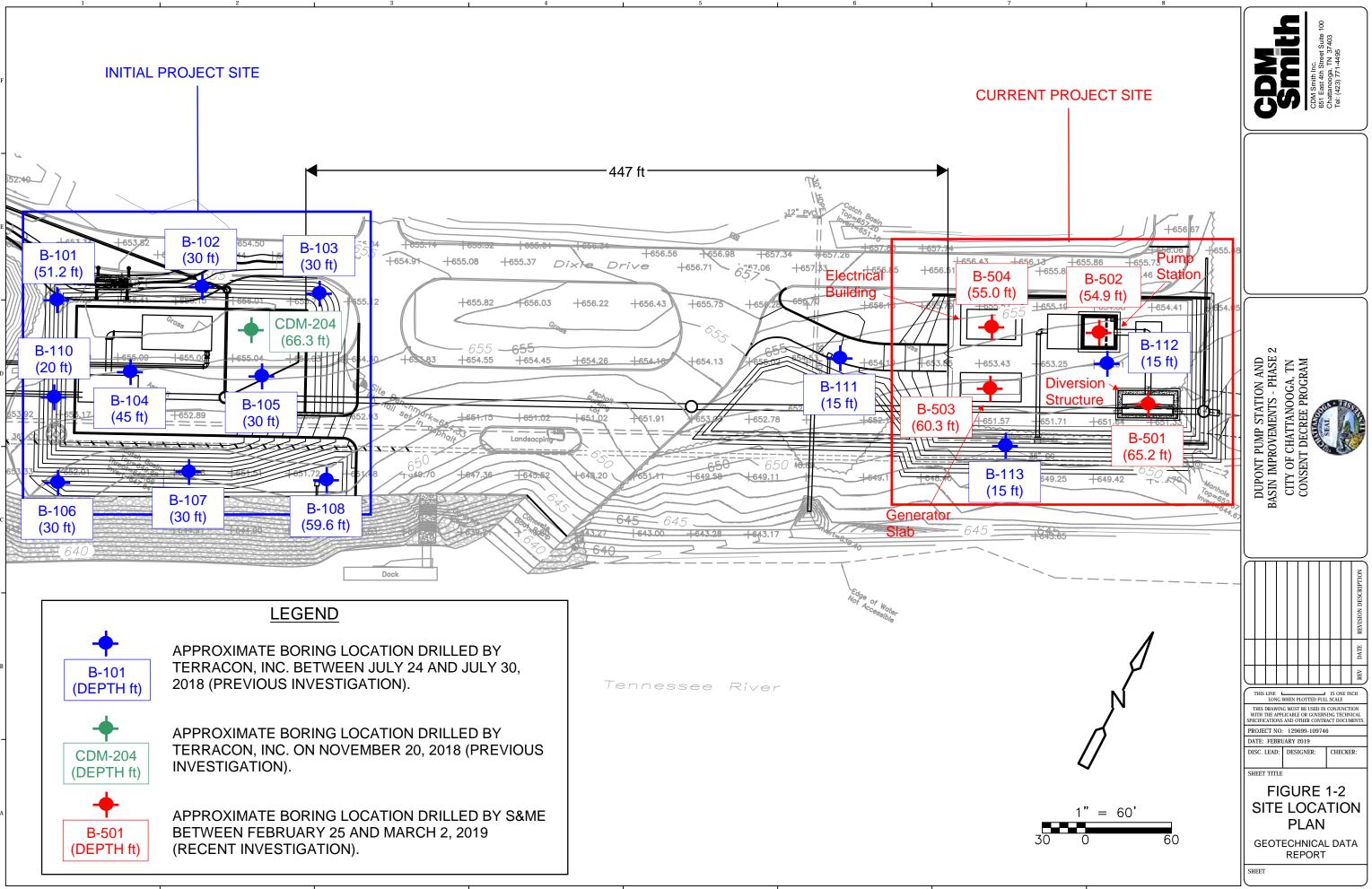
The location for the pump station and associated structures was initially intended to be at the location about 447 feet west of the current site (**Figure 1-2**). This initial site was found to be underlain by large karstic voids and cavities and therefore was abandoned.

This report summarizes previous field investigations, recent field investigation, and laboratory testing programs for design of the proposed new pump station, structures, and finished sewer line.


1.2 Elevation Datum

All elevations noted herein are reported in feet in reference to the North American Vertical Datum of 1988 (NAVD88).

This page intentionally left blank.



smith

Figure No. 1-1 Site Locus Plan JULY 2019 This page intentionally left blank.

THESE D PROJECT

ENTS: DTHER

OF D

RIGHTS RESERVED. REUSE USED, IN WHOLE OR PART,

© 2015 CDM SMITH ALL AND ARE NOT TO BE L

3/21/2019

PLOT DATE:

IAMD

CHERCH

BY:

/2019

3/21

SAVED:

LAST

2019

3/11/

EATED:

60% SUBMITTAL - NOT FOR CONSTRUCTION

This page intentionally left blank.

1.3 Purpose and Scope

The purpose of this report is to provide geotechnical engineering recommendations for design and construction. Specifically, the scope of work included the following:

- Review subsurface information within the vicinity of the project site as collected during the preliminary and secondary field investigations;
- Drill four (4) test borings for the proposed structures and pipeline gravity sewer pipeline;
- Conduct geotechnical laboratory testing on select soil and rock samples to assist with classification and estimate the engineering properties of the materials;
- Perform geotechnical analyses and develop geotechnical engineering recommendations for design and construction of the proposed structures and gravity sewer pipeline; and
- Prepare this report presenting CDM Smith's recommendations and the data collected as part of the field investigations.

1.4 Report Limitations

The recommendations in this report have been prepared for the design of the Dupont Pump Station and Basin Improvements – Phase 2 project located in Chattanooga, Tennessee as understood at this time and described in this report. This report has been prepared in accordance with generally accepted engineering practices. No other warranty, express or implied, is made. In the event that changes in design or location of the proposed improvements occur, the conclusions and recommendations contained herein should not be considered valid unless verified in writing by CDM Smith.

Section 2

Site and Subsurface Conditions

2.1 Site Conditions

2.1.1 General

The new 48-inch-diameter finished gravity sewer line will extend approximately 7,000 linear feet from DuPont Parkway to Dixie Drive in Chattanooga, Tennessee. The pump station will be just south of Dixie Drive, adjacent to the Champions Tennis Club. To the south of the site is the Tennessee River and to the west is Rivermont Park. A public easement runs through a heavily wooded area to the east, and bends to the north, crossing a railroad line and terminating at a residential neighborhood on the corner of Atlanta Drive and Elm Street. The plan view of the project extent is shown on Figure 1-1.

The existing site grades at the proposed pump station, electrical building, emergency generator building, and diversion structure range from about El. 652 to El. 655. Along the gravity sewer alignment, the existing grade ranges from El. 654 at the pump station site to El. 664 at Elm Street.

The finished gravity sewer alignment crosses under one (1) railroad as shown on Figure 1-1. The railroad crossing cannot be constructed using open-cut trenching, so trenchless construction techniques will be required.

2.2 Regional Geology

The project site is located within the Valley and Ridge Province. Subsurface conditions are characterized by parallel valleys and ridges oriented southwest-northeast consisting of Paleozoic sedimentary deposits. The bedrock in this region typically consists of sandstone underlain by limestone, dolomite, and shale. The limestone and dolomite are susceptible to dissolution along joints and bedding planes that results in weathering within the bedrock and near the overburdenbedrock interface. Cavities and large voids can develop as the weathering progresses. This geologic phenomenon is referred to as a Karstic condition. Soil or rock overlying voids can be stable due to arching; however, an unstable arch can develop as the void grows resulting in a sinkhole.

Based on the United States Geological Survey, the project site consists of the upper Knox Group, including Newala Formation, Mascot Dolomite, Kingsport Formation, Longview Dolomite, and Chepultepec Dolomite. Rocks are light gray, fine-grained dolomite with interbeds of blueish-gray limestone.

2.3 Subsurface Investigation Programs

2.3.1 General

Under subcontract to CDM Smith, Terracon, Inc., and S&ME, Inc. conducted subsurface investigation programs to provide site-specific information in the vicinity of the pump station and associated structures, and along the alignment of the gravity sewer. As shown on Figure 1-2, the

initial site location was about 450 feet east of the current site. The general sequence of the field investigation activities was as follows:

- 1) Preliminary field investigation at the initial site location for the pump station and associated structures as well as the test borings along the sewer main.
- 2) Geophysical survey at the initial site location, after finding voids during preliminary field investigation.
- 3) Changing the layout at the initial site and drilling another test boring at the initial site.
- 4) After finding voids again following the layout change at the initial site, a geophysical field investigation at three alternative sites (Alternative Sites A, B and D).
- 5) Establishing the location of the current site, and final field investigation with four test borings at the current site location (Alternative Site B). The site was selected based on the results of the secondary geophysical surveys.

The investigations discussed above consisted of the following:

- A preliminary field investigation including twenty-five (25) test borings drilled by Terracon, Inc. was performed between July 24 and August 8, 2018 at the initial project site and along the gravity sewer alignment. The test boring logs and laboratory data are in the Geotechnical Data Report prepared by Terracon Consultants, Inc. (provided in Appendix A);
- A geophysical field investigation including three (3) electrical resistivity tomography (ERT) survey lines was performed by S&ME, Inc. on October 3, 2018. The interpreted ERT profiles are in the Revised Report for Geophysical Services prepared by S&ME, Inc. (provided in Appendix B);
- A secondary field investigation including one (1) test boring drilled by Terracon, Inc., with oversight from a CDM Smith representative, was performed on November 20, 2018 at the initial project site. The test boring log is provided in **Appendix C**;
- A secondary geophysical field investigation including nine (9) electrical resistivity tomography (ERT) survey lines was performed by S&ME, Inc. on October January 17, 2019 through January 18. The interpreted ERT profiles are in the Revised Report for Geophysical Services prepared by S&ME, Inc. (provided in Appendix B); and
- A final field investigation including four (4) test borings drilled by S&ME with oversight from a CDM Smith representative was performed between February 25 and March 2, 2019. The test boring logs are provided in Appendix C, and the laboratory data are available in the S&ME Laboratory Report provided in Appendix D.

Subsurface information from each investigation was reviewed and utilized to provide information regarding soil, bedrock, and groundwater conditions at the site.

2.3.2 Preliminary Field Investigation

2.3.2.1 Preliminary Geotechnical Investigation

A preliminary geotechnical investigation was performed by Terracon, Inc. between July 24 and August 8, 2018 at the initial project site for the pump station facility and along the proposed gravity sewer alignment. The exploration consisted of twenty-five (25) test borings with depths ranging from 15 feet to 60 ft-bgs using a track or truck-mounted drill rig equipped with an automatic Standard Penetration Test (SPT) hammer system and continuous-flight hollow stem auger drilling techniques. Thirteen (13) of the test borings were drilled at the initial proposed site of the pump station and associated buildings (100-Series), and twelve (12) of the test borings were drilled along the gravity sewer alignment (200-Series). Two (2) test borings (B-215 and B-216) were drilled at the railroad crossing where pipe jacking is anticipated.

Split spoon sampling was conducted at the test borings, and the number of blows required to advance a standard 2-inch outer diameter (OD) split-barrel sampler the last 12-inches of a typical 18-inch penetration with a 140-pound hammer falling 30-inches was recorded to determine the standard penetration resistance value (SPT-N). Auger refusal was encountered at test borings B-101, B-104, and B-108. At these locations, rock coring was performed. Rock cores were generally obtained in 5-foot runs using an NQ2-size wireline diamond-bit core barrel system. The percent recovery and Rock Quality Designation (RQD) were recorded. The RQD is defined as the sum, in inches, of all pieces of sound core, four inches in length or longer, divided by the length in inches of the entire core run, expressed as a percentage. The final boring logs were prepared from field logs and represent interpretations by a geotechnical engineer.

Laboratory testing was performed based upon assignments made by CDM Smith and included: moisture contents (ASTM D2216), Atterberg limits (ASTM D4318), grain size analysis (ASTM D422), one-dimensional consolidation testing (ASTM D2435/D2435M), consolidated-undrained triaxial compression 3-point testing (ASTM D4767), unconfined compressive strength testing of rock (ASTM D7012 – Method C), and flexible wall permeameter hydraulic conductivity testing. A Geotechnical Data Report was provided by Terracon, Inc. and is included in Appendix A.

All test borings were backfilled with grout to the ground surface upon completion.

2.3.2.2 Preliminary Geophysical Field Investigation Results

A large void was observed in test boring B-108 near the Tennessee River between 44.1 ft-bgs and 53.7 ft-bgs. Voids were not encountered in the other test borings around the site, so a geophysical field investigation was conducted to evaluate the extent of the karst feature. The geophysical investigation consisted of three (3) ERT survey lines oriented parallel to the Tennessee River at the initial pump station site.

ERT is an active geophysical technique that introduces a known amount of electrical current into the ground and measures the response to map electrical potentials in the subsurface material. Typically, clayey and moist soils conduct electricity more efficiently than dry sands, gravels, chert, and competent limestone/dolomite, i.e. clayey and moist soils exhibit a lower resistivity. The electrical resistivity also depends on the material within the pore or void space. If a cavity is filled with air, a high resistivity anomaly within the limestone/dolomite layer is expected. If a cavity is

filled with water or clay, a low-resistivity anomaly within the limestone/dolomite layer is expected.

The results of the geophysical investigation indicated two (2) low-resistivity anomalies, as indicated in the geophysical report presented in **Appendix B**. The locations of the pump station and associated structures were adjusted to avoid the potential anomalies.

2.3.3 Secondary Field Investigation

2.3.3.1 Secondary Geotechnical Investigation

A secondary field investigation was conducted at the initial pump station facility to investigate the subsurface conditions beneath the relocated building footprints. The secondary field investigation consisted of one (1) test boring location (CDM-204) drilled by Terracon, Inc. on November 20, 2018. CDM-204 was drilled to a depth of 66.3 ft-bgs using an Acker drill rig equipped with an automatic SPT hammer system and continuous flight hollow stem auger drilling techniques.

Split-spoon sampling was conducted continuously from the ground surface to the depth of 15 feet and at 5-foot intervals thereafter to auger refusal. Representative soil samples from the test borings were collected and stored in glass jars for later review and laboratory testing. A CDM Smith representative visually classified the soil samples recovered in the field in general accordance ft-bgs, and rock coring was performed. Rock cores were generally obtained in 5-foot runs using an NQ2-size wireline diamond-bit core barrel system. The recovered rock cores were logged in the field by the CDM Smith representative and were stored in core boxes. The percent recovery and rock quality designation (RQD) were recorded.

The water level in the test boring was measured within the borehole and represents a 24-hour water level reading.

The test boring was backfilled with grout to the ground surface upon completion. The test boring log, prepared by CDM Smith, is included in Appendix C, and the rock core photographs are included in **Appendix E**.

Four (4) test borings were proposed for the secondary field investigation, but a large void from 45.1 feet bgs to 64.4 feet bgs was observed in the first test boring (CDM-204) conducted in this phase. Due to the void observed in the initial field investigation, the anomalies observed in the initial geophysical survey, and the void observed in test boring CDM-204, the secondary field investigation was terminated after completing test boring CDM-204.

2.3.3.2 Secondary Geophysical Field Investigation

A secondary geophysical field investigation was conducted to explore alternate pump station facility sites. The secondary geophysical investigation consisted of nine (9) ERT survey lines distributed throughout three (3) alternative sites: Alternative Site A, Alternative Site B, and Alternative Site D (**Figure 2-1**). Each alternative site had three (3) parallel ERT survey lines distributed throughout the site, as shown in the geophysical data report presented in Appendix B. Please note Alternative Site C was initially considered but was eliminated before the geophysical surveys. Thus, Alternative Site C is not shown on Figure 2-1.

Figure No. 2-1 Original (Initial) Site Location and Alternative Sites Considered JULY 2019

The results of the geophysical investigation indicated one (1) low-resistivity anomaly on the southwest portion of Alternative Site B, two (2) low-resistivity anomalies at Alternative Site D, and three (3) low-resistivity anomalies at Alternative Site A, as indicated in the geophysical report presented in Appendix B. Based on the results of the geophysical investigation, Alternative Site B was selected for further field investigation and potential relocation of the proposed pump station facility.

2.3.4 Final Subsurface Investigation

A final geotechnical field investigation was performed at Alternative Site B by S&ME, Inc. between February 25, 2019 and March 2, 2019. The exploration consisted of four (4) test borings with depths ranging from 54.9 to 65.2 ft-bgs using a truck-mounted CME-550X drill rig equipped with an automatic SPT hammer system and continuous flight hollow stem auger drilling techniques.

Split-spoon sampling was either conducted continuously from the ground surface to the depth of 20 feet and at 5-foot intervals thereafter to auger refusal or at 5-foot intervals from the ground surface to the depth of 20 feet and continuously thereafter to auger refusal. Representative soil samples from the test borings were collected and stored in plastic bags for later review and laboratory testing. A CDM Smith representative visually classified the soil samples recovered in the field in general accordance with the Burmister classification system. In addition to the split-spoon samples, four (4) Shelby tube samples were collected using 3-inch-outer-diameter, 16-gauge wall thickness, 24-inch-long samplers with a sharp cutting edge. Shelby tube samples produce a relatively undisturbed soil sample for laboratory testing.

Auger refusal was encountered in all four (4) test borings at depths ranging from 28.6 to 36.0 ftbgs, and rock coring was performed. Rock cores were generally obtained in 5-foot runs using an NQ2-size wireline diamond-bit core barrel system. The recovered rock cores were logged in the field by the CDM Smith representative and were stored in core boxes. The percent recovery and rock quality RQD were recorded. Select rock core samples were transported to the S&ME Inc for geotechnical laboratory testing.

Laboratory testing was performed based upon assignments made by CDM Smith and included Atterberg limits, grain size analysis, unconsolidated-undrained triaxial compression testing, unconfined compressive strength testing of rock, and soil corrosivity tests. A geotechnical laboratory testing was provided by S&ME, Inc. and is included in **Appendix D**.

Water levels in the test borings, where recorded, were measured within the boring and represent 24-hour water level readings.

All test borings were backfilled with grout to the ground surface upon completion. The test boring logs, prepared by CDM Smith, are included in Appendix C, and the rock core photographs are included in Appendix E.

2.3.5 Geotechnical Laboratory Testing

Geotechnical laboratory tests were performed on select soil samples and rock cores based on assignments made by CDM Smith. Laboratory testing conducted for the preliminary investigation was performed by Terracon, Inc., and laboratory testing conducted for the final investigation was performed by S&ME, Inc.

The laboratory test program for the preliminary investigation was conducted by Terracon, Inc. and consisted of the following:

- Eighteen (18) grain size analyses performed in accordance with ASTM D422,
- Twenty (20) grain size analyses with hydrometers performed in accordance with ASTM D422 and D1140,
- Thirty (30) Atterberg limits tests performed in accordance with ASTM D4318,
- Seventy-three (73) moisture content analyses performed in accordance with ASTM D2216.
- Twenty-eight (28) USCS classifications made in accordance with ASTM D2187.
- Three (3) unconfined compressive strength (UCS) Tests performed on rock core samples in accordance with ASTM D2166.
- Two (2) one-dimensional consolidation tests performed in accordance with ASTM D2435/D2435M, and
- Three (3) flexible wall permeameter hydraulic conductivity tests performed in accordance with ASTM D5084.

All test results for the preliminary investigation are included in Appendix A. Summaries of the geotechnical laboratory test results for soil and rock are included in **Table 2-1** through **Table 2-4**.

The geotechnical laboratory test program for the final investigation was conducted by S&ME, Inc. This program consisted of the following:

- Five (5) grain size analyses performed in accordance with ASTM D6913.
- Four (4) grain size analyses with hydrometers performed in accordance with ASTM D6913 and D7928
- Eight (8) Atterberg limits tests performed in accordance with ASTM D4318.
- Eighteen (18) Moisture content analyses performed in accordance with ASTM D2216.
- Seven (7) USCS classifications made in accordance with ASTM D2187.
- Five (5) UCS Tests performed on rock core samples in accordance with ASTM D7012 Method C.
- Two (2) Corrosivity suite analyses performed in accordance with AASHTO T 289, ASTM D 512, and AWWA 4500-S D.
- One (1) three-point Unconsolidated Undrained (UU) test performed in accordance with ASTM D2850.

All test results are included in Appendix D. Summaries of the geotechnical laboratory test results for soil and rock are included in **Table 2-1** through **Table 2-4**.

Table 2-1 Summary of Geotechnical Index Test Results

								City of Chatt	anooga							
						Dupon	nt Pi	ump Station	and Gravity Se	wer						
								Chattanoo	ga, TN							
								G	irain Size Analy		Atterberg Limits ⁽³⁾					
Exploration Number	Sample Number	Sample Depth (ft)	Strata	USCS Classification	Gra	avel (%)			Sand (%)		Fir	nes (%)	— LL (%)	PL (%)	PI (%)	Moisture Content (%)
					Coarse	Fine		Coarse	Medium	Fine	Silt	Clay	LL (<i>7</i> 0)	PL (70)	PI (70)	(4)
	-				Pr	eliminary Sub	sur	face Investiga	ation - Terraco	n - 100 Series		-				
B-101		1	Upper Soils	СН	0	.0			3.4		45.2	51.4	54	25	29	19.0
B-101		3.5	Upper Soils													20.0
B-101		8.5	Upper Soils													23.0
B-101		13.5	Upper Soils													25.0
B-101		23.5	Lower Soils													32.0
B-101		28.5	Lower Soils	ML	0	.0			42.7		37.2	20.1	NV	NP	NP	41.0
B-102		20	Upper Soils													27.0
B-102		25	Upper Soils	CL	0	.0			12.7		50.7	36.6	41	21	20	30.0
B-102		30	Upper Soils		0	.1			23.2		48.0	28.7				42.0
B-103		2.5	Upper Soils	СН	0	0.0			3.3		43.2	53.5	52	24	28	20.0
B-103		6.5	Upper Soils	CL		.0			4.2			5.8	47	23	24	24.0
B-103		10	Upper Soils													25.0
B-103		20	Lower Soils													28.0
B-103		25	Lower Soils													29.0
B-103		30	Lower Soils	ML	0	.2			38.7		40.7	20.3	NV	NP	NP	44.0
B-104		2.5	Upper Soils		1(5.4			30.5		5	3.2				18.0
B-104		20	Upper Soils	CL		.0			28.6		40.5	30.9	32	21	11	28.0
B-104		25	Lower Soils	ML		.0			36.8		42.2	21.1	30	25	5	33.0
B-105		1	Upper Soils			.0			13.6		0/	6.4				
B-105		5	Upper Soils										45	21	24	17.0
B-105 B-105		6.5	Upper Soils			7.5			29.0		22.0	21.4				26.0
B-105		15	Upper Soils													25.0
B-105		25	Upper Soils	CL		0.0			15.5		49.2	35.3	36	20	16	30.0
B-105		30	Upper Soils													44.0
									27.1							
B-106		2.5	Upper Soils			2.2			27.1			0.7				19.0
B-106		5	Upper Soils													18.0
B-106		6.5 10	Upper Soils	СН												27.0
B-106		10	Upper Soils													22.0

							City of	Chattan	nooga							
						Dupon	t Pump Sta	ation and	d Gravity Se	wer						
							Chat	tanooga,	, TN							
					Grain Size Analysis ⁽²⁾								Atterberg Limits ⁽³⁾			Moisture
Exploration Number	Sample Number	Sample Depth (ft)	Strata	USCS Classification	Gravel (%)			Sand (%)			Fines (%)			DI (9/)	DI (0/)	Content (%)
					Coarse	Fine	Coa	rse	Medium	Fine	Silt	Clay	– LL (%)	PL (%)	PI (%)	(4)
B-106		15	Upper Soils					-								23.0
B-106		20	Upper Soils	CL	0.	0			13.2		46.6	40.2	39	23	16	27.0
B-106		25	Lower Soils					-								27.0
B-106		30	Lower Soils	SM	35	.4			41.2		12.4	10.9	31	29	2	35.0
B-107		2.5	Upper Soils					-								16.0
B-107		5	Upper Soils	SC	21	.7			28.5		17.9	31.9	43	19	24	16.0
B-107		10	Upper Soils	СН	8.	7			12.3		38.6	40.4	50	24	26	36.0
B-107		20	Upper Soils					-								26.0
B-107		25	Lower Soils	ML	0.	1		•	29.1		46.6	24.2	30	28	2	35.0
B-107		30	Lower Soils		8.	6			78.5		1	2.9				15.0
B-108		3.5	Fill					-					49	20	29	17.0
B-108		6	Upper Soils	СН				-								27.0
B-108		8.5	Upper Soils	CL	0.	0			5.5		9	4.5	48	25	23	35.0
B-108		13.5	Upper Soils					-								26.0
B-108		18.5	Upper Soils					-					38	21	17	22.0
B-108		23.5	Upper Soils	CL	0.	1		•	15.9		49.6	34.4	37	24	13	38.0
B-108		28.5	Lower Soils		45	.5			48.4		6	5.1				10.0
B-110		2.5	Upper Soils					-								15.0
B-110		5	Upper Soils	CL	11	.7			24.2		27.0	37.2	40	21	19	19.0
B-110		6.5	Upper Soils					-								24.0
B-110		10	Upper Soils					-								25.0
B-110		15	Upper Soils	CL	0.	0		I	14.3		8	5.7	41	20	21	26.0
B-110		20	Upper Soils					-								28.0
B-112		2.5	Upper Soils	CL	2.	0			8.8		38.0	51.3	44	23	21	23.0
B-112		5	Upper Soils					-								24.0
B-112		10	Upper Soils	СН	0.				2.2			7.8	51	25	26	24.0
B-112		15	Upper Soils					-								25.0
B-113		5	Upper Soils	СН	0.	0			2.0		44.3	53.7	50	26	24	23.0
6113							surface Inv	vestigatio		n - 200 Series	44.5	55.7		20	24	23.0
B-203		2.5	Upper Soils													24.0

							City of Chat	tanooga								
						Dupont	Pump Station	and Gravity Se	wer							
							Chattanoo	ga, TN								
			Strata			Grain Size Analysis ⁽²⁾							Atterberg Limits ⁽³⁾			
Exploration Number	Sample Number	Sample Depth (ft)		USCS Classification	Gra	vel (%)		Sand (%)		Fir	nes (%)	– LL (%)	PL (%)	PI (%)	Moisture Content (%) (4)	
					Coarse	Fine	Coarse	Medium	Fine	Silt	Clay		FE (70)	F1 (70)	(4/	
B-203		5	Upper Soils								-				17.0	
B-203		7.5	Upper Soils								-				19.0	
B-203		10	Upper Soils												22.0	
B-203		15	Upper Soils	CL	0.	.0		10.9		89	9.1	39	21	18	24.0	
B-203		20	Upper Soils												24.0	
B-205		20	Upper Soils	CL	0	.0		15.8		49.2	35.0	33	22	11	25.0	
B-206		2.5	Fill		11	0		32.9		50	5.1				9.0	
B-206		5	Upper Soils												20.0	
B-206		7.5	Upper Soils	CL	11	3		21.9		66	5.8	32	20	12	21.0	
B-206		10	Upper Soils									36	21	15	23.0	
B-206		13.5	Upper Soils												21.0	
B-207		15	Upper Soils		19	0.3		40.0		4().7				14.0	
B-208		5	Fill		35	5.6		38.1		26	5.3				13.0	
B-208		6.5	Upper Soils		2	.9		24.9		72	2.2				28.0	
B-208		10	Upper Soils		41	5		41.6		16	5.9				11.0	
B-215		6.5	Upper Soils	CL	5.	.2		19.1		7!	5.6	40	22	18	19.0	
B-215		10	Upper Soils	SC	35	5.8		43.5		20).7	38	20	18	14.0	
		· ·			i	inal Subsurfac	e Investigation	- CDM Smith -	500 Series			<u>.</u>	·			
B-501	S-1	3.5-5	Upper Soils	СН	0.	.0	0.0	0.2	1.2	48.0	50.6	54	22	32	22.3	
B-501	S-3	13.5-15	Upper Soils	CL								43	19	24	19.2	
B-501	S-7	26-28	Upper Soils		0	.0	1.0	2.0	40.0	58	3.0					
B-502	S-2	8-9.5	Upper Soils	СН	0.	.0	0.0	0.0	2.0	98	3.0	51	21	30	21.4	
B-502	S-7	25.5-27.5	Upper Soils		0.		0.3	2.4	45.6	29.4	22.2	NP	NP	NP		
B-503	S-2	2-4	Upper Soils	CL	0.	.0	1.7	1.0	4.3	38.5	54.5	47	21	26	21.2	
B-503	ST-2	10-11	Upper Soils	CL	0		0.0	0.0	2.0		3.0	48	21	27	21.4	
B-504	S-5	8-10	Upper Soils	СН	0.	.0	0.0	0.0	1.0	98	3.0	51	21	30	21.4	
B-504	S-9	16-18	Upper Soils	CL		.0	0.0	0.1	3.7	47.7	48.5	45	22	23	22.3	

1

USCS classifications were performed in accordance with ASTM D-2487. Grain size analysis tests performed in accordance with ASTM D-422 and ASTM D-1140. 2

3

Atterberg Limits analysis performed in accordance with ASTM D-4318. Moisture content analysis performed in accordance with ASTM D-2216. 4

Abbreviations: CH: Fat Clay ML: Lean Silt SC: Clayey Sand

CL: Lean Clay NP: Non-Plastic SM: Silty Sand

.

Table 2-2 Summary of One-Dimensional (1-D) Consolidation Test Results

					Cit	ty of Chattai	nooga								
	Dupont Pump Station and Gravity Sewer														
	Chattanooga, TN														
Exploration Number	Sample Depth	Sample Elevation	Moisture Content (%)		Void Ratio	Dry Density	σ' ρ	σ' _{vo}	OCR	Cc	Cr	Cv (ft²/			
	(ft)	(=/	Wo		e₀	(pcf)	(tsf)	(tsf)				Min	Max		
B-104	21	631	26.2		0.784	95.9	2.0	1.05	1.90	0.23	0.04	0.076	7.162		
B-104	23	629	29.4		0.908	89.3	2	1.07	1.87	0.31	0.04	0.145	3.978		

¹ 1-D Consolidation testing conducted in accordance with ASTM D2435.

² Elevations are approximate and referenced to the National Geodetic Vertical Datum of 1929 (NGVD29).

Abbreviations

$$\begin{split} &w_o = \text{initial water content} \\ &e_o = \text{initial void ratio} \\ &\sigma'_p = \text{Pre-consolidation Pressure} \\ &\sigma'_{vo} = \text{Estimated Existing Effective Vertical Stress} \\ &\text{OCR} = \text{Overconsolidation Ratio} \\ &\text{Cc} = \text{Compression Index} \\ &\text{Cr} = \text{Recompression Index} \\ &\text{Cv=Coefficient of consolidation} \end{split}$$

Table 2-3 Summary of Triaxial Test Results

				City of Chat	tanooga									
	Dupont Pump Station and Gravity Sewer													
	Chattanooga, TN													
Exploration	Number Depth Elevation Void Ratio Density Failure Strength													
Number	mber (ft) (2) Void Ratio (pcf) (%) Strength (tsf)													
B-104	8-10	643	0.61	105	15.0	1.8								
B-104	10-12	641	0.91	88	4.6	0.85								
B-104	22-24	629	0.95	87	6.0	1.42								
B-502	19.5-21.5	633	0.74	98.7										
B-502	19.5-21.5	633	0.77	97.3			0.5							
B-502	19.5-21.5	633	0.75	98										

¹ B104 samples were tested in accordance with ASTM D2166. B502 samples were tested in accordance with ASTM D2850 (UU Test).

² Elevations are approximate and referenced to the National Geodetic Vertical Datum of 1929 (NGVD29).

Table 2-4 Summary of Rock Core Test Results

	City of Chattanooga												
		Dupont I	Pump Statior	and Gravity Sewer									
	Chattanooga, TN												
Exploration Number	Sample Number	Sample Depth	Wet Density	Unconfined Compressive Strength	Hydraulic Conductivity								
Number	Number	(ft)	(pcf)	(ksi)	(ft/day)								
B-101			145.0	18.2									
B-104			156.0	18.9									
B-104			160.7	18.1									
B-101		36.1-41.1	168.1		1.83E-05								
B-104		28.2-30.0	169.9		2.39E-05								
B-108		33.6-39.6	168.6		6.69E-06								
B-501	C-3	36.3-36.6	171.5	35.0									
B-501	C-5	47.0-47.4	174.9	34.3									
B-502	C-2	31.9-32.2	166.8	27.9									
B-502	C-3	38.8-39.2	170.1	28.6									
B-503	C-1	37.4-37.7	175.2	41.7									

¹ Hydraulic Conductivity test performed using a flexible wall permeameter, ASTM D5084.

2.4 Subsurface Conditions

The subsurface conditions encountered during the preliminary, secondary, and final field investigation phases, as interpreted from the test boring logs, are generally consistent with regional geologic data. The subsurface conditions at the proposed pump station facility and along the gravity sewer alignment consist of Surface Material, Miscellaneous Fill, Upper Soil, Lower Soil, and Bedrock. A summary of the subsurface conditions is included in **Table 2-5**.

2.4.1 Surficial Material

Surficial material consisting of topsoil or asphalt and aggregate base course was encountered in every test boring with thicknesses ranging from 0.3 feet to 0.8 feet.

2.4.2 Miscellaneous Fill

Fill was identified at four (4) test boring locations. All locations where Fill was encountered were part of the preliminary subsurface investigation (B-108, B-205 through B-206, and B-208). The Fill layer was encountered beneath surficial materials with thicknesses ranging from 2.7 feet to 5.7 feet. The Fill layer typically consisted of loose to medium dense, light brown and red or dark brown, lean CLAY, some fine to coarse gravel, some rock or chert fragments; or very loose, brown, fine to coarse SAND and fine to coarse GRAVEL, some clay. SPT N-Values range from 1 to 23 blows/foot (bl/ft) with an average value of 7.5 bl/ft at the test boring locations.

2.4.3 Upper Soils

Upper Soils were encountered beneath the surficial material or miscellaneous fill layers at all thirty (30) test boring locations. The upper soil layer consists of Fat Clay (CH), Lean Clay (CL), or Clayey Sand (SC/SC-SM). SPT N-Values in the Upper Soils at the preliminary investigation locations ranged from 0 to 42 bl/ft with an average of 11 bl/ft and at the final investigation locations ranged from 0 to greater than 50 bl/ft with an average of 11 bl/ft at the test boring locations. Clayey sand typically overlies the lean clay, but it sometimes is below the lean clay. As shown in **Table 2-5**, the low-blow count (<2) material can be observed immediately above the limestone. The sub-strata typically consisted of the following:

2.4.3.1 Fat Clay

Fat Clay ranged from 5.5 feet to 21.5 feet thick at the preliminary investigation borings (B-101 through B-103, B-107, B-112 through B-114, and CDM-204) and from 6.0 feet to 17.3 feet thick at the final investigation test borings (B-501 and B-503 through B-504). At the preliminary investigation locations, the Fat Clay typically consisted of medium stiff to stiff, dark brown, yellow and brown, or gray, high plasticity CLAY, trace mica. At the final investigation locations, the Fat Clay typically consisted of stiff, gray, dark gray, dark brown, or orange-brown, high plasticity CLAY, trace fine to coarse sand, trace mica.

2.4.3.2 Clayey Sand

Clayey Sand ranged from 5.7 feet to 14.5 feet thick at the preliminary investigation test borings (B-105, B-107, B-208, and B-215) and from 4.1 feet to 6.3 feet thick at the final investigation test borings (B-501 through B-502 and B-504). At the preliminary investigation locations, Clayey Sand typically consisted of loose to medium dense, brown or yellow to brown, fine to coarse SAND, some clay, little fine to coarse gravel, trace mica. At the final investigation locations, Clayey Sand

typically consisted of wet, very loose to loose, dark gray, fine to coarse SAND, some clay, trace to little wood, trace mica.

2.4.3.3 Lean Clay

Lean Clay ranged from 3.0 feet to 22.5 feet thick at the preliminary investigation test borings (B-102 through B-106, B-108 through B-112, B-201 through B-216, and CDM-204) and from 4.0 feet to 24.5 feet thick at the final investigation test borings (B-501 and B-501 through B-504). At the preliminary investigation locations, Lean Clay typically consisted of very soft to stiff, gray, brown, or dark gray, low plasticity CLAY, "none" to little fine to coarse sand, trace mica. At the final investigation locations, Lean Clay typically consisted of moist to wet, very soft to stiff, brown, gray, tan, or dark gray, low plasticity CLAY, "none" to trace fine to coarse sand, trace mica.

2.4.4 Lower Soils

Lower Soils were encountered beneath Upper Soils at nine (9) test boring locations including seven (7) preliminary investigation locations and two (2) final investigation locations. Where encountered, Lower Soils ranged from 3.0 feet to 14.2 feet thick at the preliminary investigation locations (B-101, B-103 through B-104, B-106 through B-108, and CDM-204) and from 1.4 feet to 6.7 feet thick at the final investigation locations (B-503 through B-504). At the preliminary investigation locations, Lower Soils typically consisted of soft to medium stiff, dark brown, brown, or gray and brown, SILT, some fine to coarse sand, trace mica or loose to dense, dark gray, gray, or brown and gray, fine to coarse SAND, some silt, "none" to little fine to coarse gravel. At the final investigation locations, Lower Soils typically consisted of wet, dense, gray, fine to medium SAND or fine to coarse GRAVEL. SPT N-Values in the Lower Soils at the preliminary investigation locations ranged from 2 to 31 bl/ft with an average of 18 bl/ft and at the final investigation locations ranged from 2 to 31 bl/ft with an average of 19 bl/ft at the test boring locations. As shown in **Table 2-5**, the low-blow count (<2) material can be observed immediately above the limestone.

2.4.5 Bedrock

Bedrock was cored where auger refusal was encountered at eight (8) test boring locations including four (4) preliminary investigation locations (B-101, B-104, B-108, and CDM-204) and four (4) the final investigation locations (B-501 through B-504). Bedrock consisted of regions of Voids and competent Limestone. Voids within the bedrock ranged from 0.1 ft to 15.7 ft thick and were often encountered as water-filled voids at various depths within a borehole. Competent rock encountered at the preliminary investigation locations typically consisted of gray or greenish gray, LIMESTONE, with shale parting and greenish gray dolomitic zones. Rock encountered at the final investigation locations typically consisted of moderately hard to very hard, slightly fractured to sound, fresh to slightly weathered, blue-gray or gray and white, LIMESTONE. Bedrock recovery values in the preliminary investigation locations ranged from 0 to 100 percent with an average of 72 percent, and the RQD values ranged from 0 to 88 percent with an average of 48 percent at the test boring locations. Bedrock recovery values in the final investigation locations ranged from 57 to 100 percent with an average of 93 percent, and the RQD values ranged from 21 to 100 percent with an average of 83 percent.

Table 2-5 Summary of Subsurface Explorations

					Dupor	nt Pump Station and	Gravity Sewer							
						Chattanooga,	TN							
				Strata Thickness (ft)										
Exploration	Approximate	Exploration				Upper Soils		Lower Soils	B	edrock	Depth to	Groundwater		
Number	Ground Surface El. ⁽¹⁾ (ft)	Depth (ft)	Surface	Fill	(СН)	(CL)	(SC/SC-SM)	(ML/SM/SP/GP)	Voids	Limestone	Groundwater (ft) ⁽²⁾	Elevation (ft) ⁽²⁾		
					Preliminar	। ry Subsurface Investi	gations - 100 Series							
B-101	654.0	51.2	0.5		21.5			14.2 (ML)		>15.0	31.0(NE)	623.0		
B-102	657.0	30	0.5		21.5	>8.0					NE			
B-103	657.0	30	0.5		5.5	11.0		>13.0 (ML)			NE			
B-104	652.0	45				22.0		6.2 (ML) ⁽³⁾		>16.8	NR			
B-105	655.0	30	0.8			>14.7	14.5				NE			
B-106	652.0	30	0.8			19.2		>10.0 (SM) ⁽³⁾			27.0(NE)	625.0		
B-107	652.0	30	0.8		15.5		5.7	>8.0 (ML) ⁽³⁾			27.0(NE)	625.0		
B-108	652.0	59.6	0.3	5.7		22.0 (3)		6.6 (SP)	9.6	>15.4	26.0(NE)	626.0		
B-109	660.0	20	0.3			>19.7					NE			
B-110	635.0	20	0.8			>19.2					NE			
B-110	655.0	15	0.3			>14.7					NE			
B-112	654.0	15	0.3		>7.0	7.7					NE			
B-113	650.0	15	0.3		>14.7						NE			
					Preliminar	ry Subsurface Investi	vations - 200 Series							
B-201	656.0	15	0.3			>14.7					NE			
B-202	657.0	15	0.3			>14.7					NE			
B-203	661.0	20	0.8			>19.2					NE			
B-204	661.0	15	0.8			>14.2					NE			
B-205	662.0	20	0.3	2.7		>17.0					NE			
B-206	655.0	15	0.5	2.5		>12.0					NE			
B-207	653.0	15	0.6			>14.4					NE			
B-208	654.0	15	0.6	4.9		3.0	>6.5				NE			
B-209	657.0	16	0.3			>15.7					NE			
B-210	661.0	20	0.3			>19.7					NE			
B-215	662.0	15	0.5			7.5	>7.0				NE			
B-216	654.0	15	0.5			>14.5					NE			
	I				Preliminary S	Subsurface Investigat	ions - CDM 200 Series							
CDM-204	655.5	66.3	0.5		9.0	31.0 ⁽³⁾		3.0	18.7	>4.2	24.0	631.5		

						City of Chattanc						
					Dupon	t Pump Station and	Gravity Sewer					
						Chattanooga,	TN					
	Strata Thickness (ft)											
Exploration	Ground Surface El. ⁽¹⁾ D	Exploration Depth (ft)				Upper Soils		Lower Soils	Bedrock		Depth to Groundwater	Groundwater Elevation
Number				Surface	Fill	(СН)	(CL)	(SC/SC-SM)	(ML/SM/SP/GP)	Voids	Limestone	(ft) ⁽²⁾
				1	Final St	ubsurface Investigati	ons - 500 Series	-				
B-501	651.9	65.2				22.5	6.3 ⁽³⁾		1.2	>35.1	0.0	651.9
B-502	653.7	54.9				24.5	4.1 ⁽³⁾			>26.3	0.2	653.5
B-503	652.8	60.3			17.3	12.0		6.7	0.3	>24.0	NR	
B-504	654.6	55.0			6.0	18.0	5.0	1.4	0.3	>23.7	3.0	651.6

¹ Elevations are approximate and referenced to the National Geodetic Vertical Datum of 1929 (NGVD29).

² Groundwater level readings were taken during and upon completion of the test boring. Parenthetical values represent value after drilling if recorded as different than measurement during drilling.

³ A soft layer is present with blow counts less than or equal to 2 immediately above the limestone with occasional presence of stiff sand in between

Abbreviations:

> Indicates strata not fully penetrated

NE indicates not encountered

-- Indicates no value

NR Indicates not recorded

2.4.6 Groundwater Conditions

24-hour groundwater level measurements were recorded where encountered at each test boring location. When encountered at the preliminary investigation locations, groundwater was observed between 26 feet and 31 ft-bgs (approximately El. 623 to 626). When encountered at the final investigation locations, groundwater was observed between 0 feet and 3 feet bgs (approximately El. 651.6 to El. 653.5). Due to the proximity of the Tennessee River to the site, ground water levels will likely correspond to the river stage elevation. Flood conditions were active at the time of drilling for the 500-Series boring locations, which likely influenced the shallow groundwater readings.

2.5 Expected Variations in Subsurface Conditions

The interpretation of general subsurface conditions presented herein is based on soil, rock, and groundwater conditions observed at the test boring locations. However, subsurface conditions may vary between test boring locations. If conditions are found to be different from those described herein, recommendations contained in this report should be re-evaluated by CDM Smith and confirmed in writing.

Water levels measured in the test borings should not necessarily be considered to represent stabilized groundwater levels. In addition, water levels are expected to fluctuate with river level, season, temperature, climate, construction in the area, and other factors. Actual conditions during construction may be different from those observed at the time of the test borings.

Section 3

Geotechnical Engineering Evaluation and Design Recommendations

3.1 General

Geotechnical engineering evaluations have been made as they relate to the Dupont Pump Station and Basin Improvements – Phase 2 project in Chattanooga, Tennessee. The locations of the structures are as shown on Figure 1-1 noted as current site. In general, these evaluations are based on the results of the subsurface investigations described in Section 2 of this report, published correlations with soil and rock properties and the minimum requirements of the International Building Code 2012 and Tennessee Building Code. In addition, recommended design criteria are based on performance tolerances, such as allowable settlement, as understood to relate to similar structures.

3.2 Geotechnical Considerations

A summary of the primary geotechnical considerations and evaluations related to the design of the proposed pump station, associated structures, and gravity sewer pipeline construction are described in the following sections.

3.2.1 Potential Karst Conditions within Bedrock

The site is considered susceptible to the typical carbonate dissolution hazards of karst topography, including sinkholes and caves. Several small and large voids have been documented in the area, as discussed in Section 2. Two (2) test borings encountered large voids in the bedrock including voids of 9.6 feet in test boring B-108, 15.7 feet in test boring CDM-204, and three test borings encountered minor voids of up to 0.8 feet in test boring B-501, 0.3 feet in test boring B-503, and up to 0.2 feet in test boring B-504. The large voids were encountered at the initial pump station facility site, approximately 447 feet west of the current project site. Much-smaller voids were encountered in the current project site. Pump station and diversion structures have below-grade foundations (approximately 26 feet below proposed grade), so any potential voids may threaten the structural integrity of these buildings. Given this, and the presence of soft soils immediately above the limestone, pump station and diversion structures are recommended to be founded on micropiles.

3.2.2 Site Development

As part of the site development, 4 to 9-feet of fill will be placed and compacted to elevate site grades above the 100-year flood level. Stability of the permanent slope adjacent to the diversion structure and settlement of the structures bearing on shallow foundations due to compression of the native soils under the new fill loads were considered in the design recommendations herein.

3.3 Pump Station Site Design Recommendations 3.3.1 Site Development

The global stability of the permanent embankment adjacent to the diversion structure was assessed for the end-of-construction condition and the 100-year flood stage condition. A river stage of El. 650 feet NAVD88 was used for the end-of-construction condition, and a river stage of El. 659 feet NAVD88 was used for the 100-year flood stage condition. A surcharge of 200 pounds per cubic foot was applied at the top of the slope in both analyses to account for maintenance vehicle traffic and potential equipment staging. An embankment with a 3H:1V slope, if constructed with good construction practices, is anticipated to have a factor of safety of approximately 2.4 at the end-of-construction and approximately 2.0 during a 100-year flood event. The factors of safety exceed the minimum criteria given in USACE EM1110-2-1902.

3.3.2 Pump Station and Diversion Structures

Based on the proposed project site layout, anticipated dimensions, depths and loadings of the proposed structures, subsurface soil conditions, and other design requirements, we recommend that the proposed pump station and diversion structures be supported on deep foundations consisting of micropiles bearing in the bedrock layer.

The micropiles are designed to derive their axial capacity through skin friction within the bedrock layer developed in accordance with procedures outlined in the Federal Highway Administration (FHWA) *Micropile Design and Construction Reference Manual* dated December 2005. The end bearing capacity of the drilled micropiles has not been considered in the socket design. Any skin friction within the Fill, Upper Soils, and Lower Soils layers has been neglected. All micropiles should be installed using a permanent casing above the bedrock layer to prevent loose, collapsible soils and weathered rock from caving in during installation and per Tennessee Building Code requirements.

The drilled micropiles are designed as Type A (gravity-grouted) micropiles with an allowable skin friction value of 21.6 kips per square foot (ksf) in the bedrock layer. For a 200-kip axial design capacity, a 7.5-inch-outside-diameter micropile requires about 9 feet of socket embedment length (i.e., bonded length) within the bedrock, and a 9.75-inch-outsidediameter micropile requires about 7 feet of socket embedment length. However, per Tennessee Building Code, 9.75-inch-oustide diameter is recommended. At least one (1) foot plunge depth into the limestone is required for the casing, where the permanent casing is embedded into the limestone by one foot. This depth should not be considered as part of the embedment length. To account for potential encounter of voids in the limestone, the following provisions should be followed during construction:

- 1. Less than 6-inch void, micropile bond zone length remains unchanged.
- 2. 6-inch void to 12-inch void, extend micropile bond zone length one foot.
- 3. Greater than 12-inch void, restart count of the micropile bond zone length from the bottom of the void.

A factor of safety of 2.0 was used to estimate the allowable axial capacity of the micropiles. The micropile axial capacity should be confirmed by static micropile load tests in accordance with

ASTM D1143 or tensile micropile load tests in accordance with ASTM D3689. A minimum of one micropile load test and one micropile proof test (i.e., micropile load test to 160% of the design load) should be conducted for the pump station and the diversion structure.

3.3.2.1 Micropile Spacing

Center-to-center spacing of the micropiles should be at least 3 micropile diameters to limit group interaction for the axial capacity. If a spacing of less than 3 diameters is used, micropile group effects should be considered for axial capacity.

3.3.2.2 Micropile Cap

Micropile caps that are exposed to freezing temperatures should extend at least 24 inches below any adjacent ground surface.

Micropiles should be embedded into the micropile cap or slab no less than 3 inches. Micropile connections into micropile caps or slab reinforcement shall be designed by the structural engineer in accordance with the Code.

3.3.2.3 Under-Slab Utilities

Under-slab utilities may be hung from the micropile-supported mat or grade beams. Connections should be designed to carry the weight of the soil over the utilities within a zone extending upward at 1H:2V from the springline of the utility. Flexible utility connections and oversized sleeves should be provided through foundation walls and grade beams where utilities transition from micropile-supported within the structure to soil supported outside the structure. These flexible connections and oversized sleeves should be designed to accommodate at least 0.5 inches of differential movement at the transition.

3.3.3 Electrical Building and Generator Structures

The electrical building will be supported on strip footings with a design width of 3 feet 4 inches, and the generator platform will be constructed on a slab-on-grade foundation with a thickened edge. The foundations may be designed for a maximum allowable bearing capacity of 3.2 ksf at the electrical building and 3.0 ksf at the generator building.

3.3.3.1 Foundation Depth

In accordance with the Code, all foundations supported on soil should bear below the frost depth. Unheated areas or areas adjacent to exterior ground surfaces should bear no less than 24 inches below any adjacent ground surface exposed to freezing.

3.3.3.2 Foundation Preparation

Foundation preparation shall consist of 12 inches of compacted structural fill or 12 inches of compacted crushed stone wrapped by non-woven geotextile, placed over fill. For any structure bearing upon structural fill or crushed stone, the extent of structural fill or crushed stone should be at a minimum of 2 feet horizontal distance from the edge of the foundation.

Foundation subgrade should be proof rolled by at least four passes of the appropriate compaction equipment prior to the placement of foundation preparation. If clay materials are encountered at subgrade, the final 6 inches of the excavation should be performed by a smooth-edge bucket.

3.3.3.3 Foundation Bearing Capacity

Based on our evaluation, allowable bearing capacity for the electrical building and generator platform is 3.2 ksf and 3.0 ksf, respectively. The allowable bearing capacities are sufficient to support the design structural pressures of 3.0 ksf and 1.5 ksf for the electrical building and generator platform, respectively.

3.3.3.4 Foundation Settlement

Based on our evaluation, settlement of the electrical building and generator platform, under the anticipated loads and designed as recommended above, are expected to be up to 2.0-inches of total settlement with an approximate differential settlement of 1-inch.

3.3.4 Design Groundwater

For the purpose of design, the groundwater level should be assumed to be at the 100-year flood level, which according to the FEMA Flood Map data is El. 659.

3.3.5 Lateral Loads on Below-Grade Walls

Below-grade portions of structures that are fixed against rotation at the top or will not sufficiently rotate enough should be designed for at-rest pressures from soil and groundwater based on equivalent fluid pressure of 60 pounds per cubic foot (pcf) above the design groundwater level and 90 pcf below the design groundwater level.

In addition to these pressures, a lateral pressure equal to 0.5 times surface vertical surcharge loads from building foundations, slabs, traffic or other loads should be applied over the full height of all walls. To eliminate the surcharge loading from adjacent building foundations on walls, the buildings should be separated such that a line extending at least 2.0 ft beyond the edge of the foundation, then outward and downward at a slope of 1H:1V does not intersect the adjacent structure. Walls to which vehicles can reasonably be expected to approach with in a distance equal to half the wall height should be designed for a minimum temporary uniform vertical surcharge of 300 psf. Earthquake-induced pressures developed in accordance with the Code should be included in the design of all below grade walls.

3.3.6 Resistance to Unbalanced Lateral Loads

Unbalanced lateral loads should be resisted by friction on the bottom of shallow foundations or micropile caps and grade beams. For purpose of design, a coefficient of 0.35 should be considered between the concrete and the underlying structural fill or crushed stone. However, should lateral loads exceed the friction available, the surplus loads may be resisted by passive pressures on the micropile caps and grade beams or mat foundations, provided the structure is appropriately designed for the pressure. Passive resistance up to a maximum equivalent fluid pressure of 150 pcf may be used provided the mat foundations, micropile caps and grade beams are backfilled with structural fill that is compacted to a density of at least 98 percent of the maximum dry density as determined by laboratory test ASTM D698. The resistance from the upper 2 feet of soil should be neglected due to the surface effects and the potential for settlement, disturbance, frost action and other factors. No frictional resistance may be assumed for micropile-supported structures.

3.3.7 Resistance to Buoyancy

Any structures that extend below the design groundwater level should be designed to resist hydrostatic pressures from the design groundwater level referenced above using the dead weight of the structure plus weight of fill placed directly over the structure and extension to the structure foundations. For purposes of design against uplift, the material used as backfill should be assumed to have a total unit weight, in place, of 120 pcf. In addition, for pile-supported structures, a tension capacity of up to 50 percent the design axial compression capacity of the piles may be used for design against uplift. A factor of safety of at least 1.25 should be used to evaluate uplift resistance under normal groundwater and 100-year flood conditions.

3.3.8 Earthquake Considerations

For purposes of determining design earthquake forces for the structures in accordance with the Code, the site should be considered as Site Class "D". Therefore, the spectral accelerations are modified for Site Class D when determining the design earthquake response accelerations and seismic design category for the seismic analysis at the site.

The sandy zone as part of lower soils layer immediately above the limestone bedrock could potentially liquefy under design accelerations. The resulting settlements are approximately 2 inches as obtained following the methodology proposed by Idriss and Boulanger (2008) under free field conditions. However, the pump station and diversion structures are founded on micropiles that are keyed into the bedrock, so these structures would not be subject to liquefaction settlement. The generator slab and electrical buildings will have at least 20 feet of clayey material in between the liquefiable zone and their foundations. This thick non-liquefiable zone is considered sufficient to reduce surface manifestation of liquefaction and reduce the impact on structural integrity based on the recommendations by Ishihara (1985).

3.4 Gravity Sewer Pipeline Recommendations

3.4.1 General

Cut-and-cover techniques are planned for the construction of the gravity sewer pipeline except where the alignment crosses a railroad, as shown in the Contract Drawings. Where the sewer crosses the railroad that cannot be open cut, trenchless construction technique, such as pipe jacking, should be used to mitigate disruption of the rail line.

3.4.2 Pipe Subgrade

The sewer pipeline will be installed by cut-and-cover methods in excavated trenches for most of the alignment. The existing soils, low plasticity clays, encountered along the pipeline are generally suitable for support of the proposed pipe.

If organic, loose, or otherwise unstable soils are encountered at subgrade level, these soils should be excavated to the top of the naturally deposited, suitable inorganic soils and replaced with compacted structural fill. Where compacted structural fill is placed for support of the sewer pipeline, the lateral limits of the fill should be defined as a line extending horizontally outward and downward at a 1H;1V slope from the springline of the pipe to a maximum depth of 4 feet.

3.4.3 Pipe Bedding

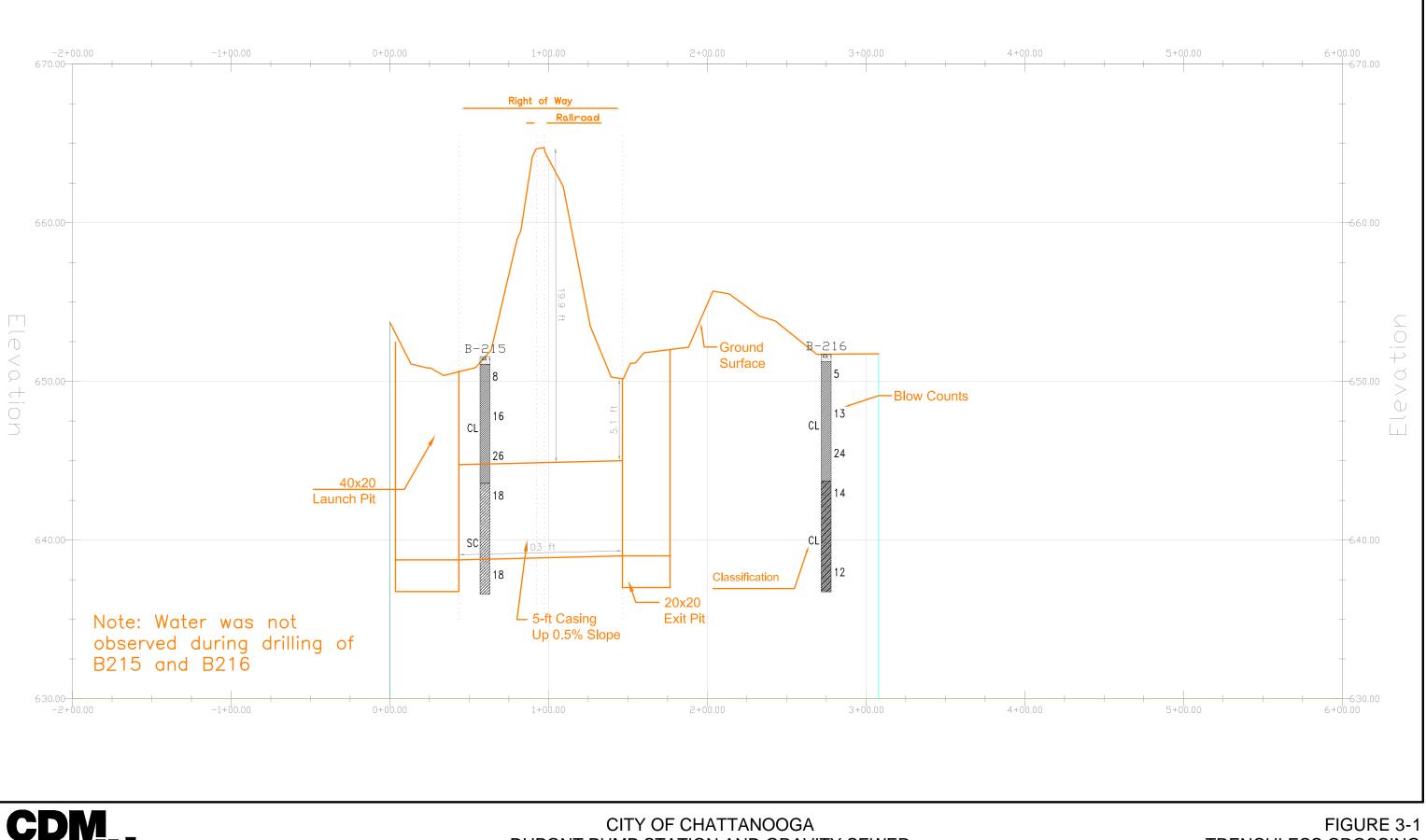
The pipe should be placed on a bedding of at least 6 inches of crushed stone, and the stone should wrap the pipe at least up to the elevation of the springline for effective material placement within the haunch area of the pipe. The stone will eliminate pipe contact with plastic clays that may be present in the subgrade at the bottom of the excavated trench.

If crushed stone is placed below the pre-construction groundwater level and over or against soils, a geotextile should be placed between the soils and the crushed stone to protect against the migration of fines into the pipe bedding.

3.4.4 Trench Backfill

Select common fill should be brought to one foot above the crown of the pipe. Material meeting the criteria for common fill should be used above the select common fill. The remainder of the trench should be backfilled with common fill or select common fill. Refer to **Section 4** for a description of common/select common fill and compaction requirements.

3.5 Trenchless Crossing Recommendations


3.5.1 General

The gravity sewer alignment crosses a rail road as shown on Figure 1-1 and **Figure 3-2**. The railroad crossing will be constructed using trenchless techniques. The length of the railroad crossing is approximately 103 feet, and the depth of cover over the top of the casing is approximately 20 ft.

We recommend pipe jacking with steel casing for construction of the trenchless crossing and installation of the carrier pipe. Pipe jacking should consist of the installation of a minimum 60-inch diameter steel casing for the 48-inch diameter ductile iron pipe (DIP) as shown on Figure 3-1. The invert elevation of the pipeline is proposed to be at approximately El. 644, which provides a minimum soil cover of approximately 5 feet below the existing ground surface near the entry/exit pits at the toe of the railroad embankment. Immediately below the rail road tracks, the thickness of soil cover is approximately 20 feet.

© 2015 CDM SMITH ALL RIGHTS RESERVED. REUSE OF DOCUMENTS: THESE DOCUMENTS AND DESIGNS PROVIDED BY PROFESSIONAL SERVICE, INCORPORATED HEREIN, ARE THE PROPERTY OF CDM SMITH AND ARE NOT TO BE USED, IN WHOLE OR PART, FOR ANY OTHER PROJECT WITHOUT THE WRITTEN AUTHORIZATION OF CDM SMITH.

CDM Smith

CITY OF CHATTANOOGA DUPONT PUMP STATION AND GRAVITY SEWER CHATTANOOGA, TN

FIGURE 3-1 TRENCHLESS CROSSING APRIL 2019

3.5.2 Pipejacking

3.5.2.1 General

Pipejacking consists of pushing a steel casing pipe into the ground using hydraulic jacks at the jacking pit. The material at the heading is excavated from within the steel casing using a continuous flight auger or hand mining. The casing is advanced along with simultaneous excavation of material from the face. This method is considered to be a suitable trenchless construction method for the proposed alignment.

The steel casing pipe will form a temporary liner into which the carrier pipe can be installed and grouted. Use of a casing pipe provides a means to jack through the anticipated earth without damaging the carrier pipe and to allow for proper alignment of the carrier pipe following jacking.

We recommend that pipe jacking be performed on a continuous basis, 24 hours per day, 7 days per week. Pipe jacking methods shall be in accordance with the contract drawings and project specifications. The joints shall be fully closed by welding or mechanical means to ensure tightness.

3.5.2.2 Temporary Ground Support

Temporary ground support of the trenchless crossing should be provided by a steel casing pipe.

Design of the temporary ground support is the responsibility of the Contractor and should be designed by a professional engineer, experienced in pipe jacking and should be registered in the State of Tennessee. The ground support system should be designed to resist the full earth, water, surcharge, and jacking loads acting on it. Surcharge loads from the railroad crossing must be considered. The design should meet the requirements of the contract drawings and project specifications.

Jacking operations should be conducted with an auger that has nearly the same outside diameter of the casing pipe with minimal overcut. Once installed, any voids between the casing pipe and the earth should be grouted using a cement-bentonite grout. Grout should completely fill any voids.

Grouting should be conducted as soon as jacking is completed. Grout pressure should not exceed one-half of the existing overburden pressure. Grout holes must be provided at 4.5-foot maximum intervals placed 120 degrees on center along the entire length of the casing pipe. Grout holes through the casing pipe can be used to insert lubricant which may be required if excessive jacking loads are encountered.

After completion of installation of the carrier pipe, the annulus between the casing pipe and carrier pipe should be filled with a cement grout.

3.5.2.3 Steel Casing Pipe

Based on the anticipated steel casing pipe diameter (60 inches), total crossing length (approximately 103 feet), design surcharge loads, soil overburden, and estimated jacking forces, we anticipate that casing pipe for pipe jacking will have minimum 0.875-inch-thick minimum side walls.

Casing segments, each assumed to be approximately 20 feet long, will be jacked from the entry pit and will need to be welded together or connected using a mechanical connection such as Permalok. The finished casing pipe should be relatively watertight.

3.5.2.4 Ground Conditions and Face Stability

Ground conditions along the trenchless alignment are expected to consist of the Upper Soil materials. These soils are expected to be excavatable in a pipe jacking operation.

Based on the groundwater conditions observed at the time of explorations and during monitoring well readings, groundwater is not expected at the pipeline invert at the trenchless crossing. Should groundwater conditions vary, in order to provide a stable excavation face, groundwater would need to be lowered to below the invert of the tunnel construction.

3.5.2.5 Entry and Exit Pits

A jacking (entry) pit and a receiving (exit) pit will be required at the trenchless crossing. The jacking (entry) pit is expected to be approximately 40 feet by 20 feet in plan area in order to accommodate the anticipated jacking equipment. The receiving (exit) pit is expected to be approximately 20 feet by 20 feet in plan area. All pits should extend to about 2 feet below the proposed pipe invert.

Based on the recommended minimum soil cover of casing pipe and the size of the casing, the depth of the jacking and receiving pits are expected to be about 15 feet below the existing ground surface.

The jacking and receiving pits should have a concrete mat poured at the bottom of the excavation to serve as a working mat. This mat is expected to be about 6 inches thick. The actual thickness of the mat will be determined by the Contractor and will be based on their construction equipment and procedures.

The bottom of the jacking and receiving pits may extend below the groundwater level based on the groundwater condition observed at time of excavation. If groundwater is encountered above the bottom of the pit, dewatering is required to lower the groundwater 2-feet below the bottom of excavation. A drainage layer should be provided under the concrete mat in order to provide a means by which to maintain a dry and stable excavation subgrade. At least 12 inches of compacted, crushed stone should be used as the drainage layer. The stone should be separated from the underlying soils by a geotextile to protect against the migration of fines into the stone.

Requirements for excavation support at the jacking and receiving pits are provided under Construction Considerations. The detailed design and construction of the jacking and receiving pits is the responsibility of the Contractor.

3.5.2.6 Settlements

Ground surface settlement along the tunnel alignment is anticipated to be less than 0.5 inch for the railroad crossing, provided the Contractor conducts all excavation from within the casing, employs proper dewatering/stabilization along the casing, and conducts pipe jacking operations in accordance with the standard of care for that industry.

We recommend that a system of monitoring points be installed along the tunnel alignments to monitor ground deformation.

This page intentionally left blank.

Section 4

Construction Considerations

4.1 General

The purpose of this section is to discuss issues related to geotechnical aspects of construction as required for development of the contract drawings and project specifications. Included are anticipated methods of construction required to achieve the recommendations presented herein and identification of potential construction-related problems. The proposed structures and pipeline are near existing facilities, and the impact of construction on those facilities has also been considered herein.

The Contractor will be required to base his/her construction methods and cost estimates on an independent interpretation of the subsurface conditions.

4.2 Excavation and Excavation Support

Excavations for the proposed pipelines are anticipated to generally encounter fill and clay and extend up to 15 feet below existing grade. Undermining of existing foundations must not occur. Excavation should not extend into the zone of influence of any existing structures or utilities without an approved excavation support system. The zone of influence is defined as extending 2 feet beyond the bottom exterior edge of the existing foundation then down and away at a 1 horizontal to 1 vertical (1H:1V) slope or at a 1H:1V slope from the springline of the utility. No excavations are anticipated for the proposed structures as the structures will be constructed within the existing intermediate basins.

The Contractor will be responsible for conducting the excavation work in accordance with the applicable federal and state laws and regulations, including OSHA. Where open excavations are feasible, the side slopes should be designed in accordance with OSHA regulations. The Contractor should be responsible for selection and the design of the means and methods for excavation and excavation support such as open-cut with stable side slopes, trench box, soldier pile and lagging, etc.

Use of excavation support may limit the amount of excavation spoils and serve to protect adjacent structures, utilities and roadways. Selection of the excavation support systems will likely be dependent upon subsurface strata, groundwater conditions, adjacent structures, surcharge loading, etc. Trench box systems should not be permitted within the zone of influence of existing structures, utilities or roadways or jacking or receiving pits. The Contractor should develop an excavation plan, including excavation support systems designed by a Professional Engineer licensed in the State of Tennessee. Additional design considerations may be required based on the Contractor's planned construction methods.

4.3 Dewatering

As necessary, the Contractor will be responsible to design and implement a dewatering and drainage system that maintains a stable, undisturbed subgrade that is free from groundwater and surface water during all construction operations. Dewatering will be needed for the excavation for pump station and diversion structure building foundations. Dewatering may be needed for certain sections of the pipeline trench construction depending on the seasonal fluctuations.

The design of the dewatering system should be performed by a Professional Engineer registered in the State of Tennessee. To avoid disturbance of the subgrade, the water level in all excavations should be maintained at least 2 feet below the subgrade level during the entire period of excavation and fill placement.

Where applicable, the dewatering system should be designed in conjunction with the excavation support system selected by the Contractor. Depending on the depth of excavation and excavation support system selected, wells, well points and/or pumping from open sumps within the excavation may be required. Wells, well points and sumps must be adequately filtered to avoid loss of fines. The site should be graded to direct surface runoff away from the excavations.

The Contractor must be prepared to operate the dewatering system continuously, as required to complete the work and avoid floatation or uplift prior to completion of the facility. During periods where failure of the system would adversely impact work completed, the Contractor should provide a back-up system to ensure continuous operation.

The Contractor must design the dewatering system to not adversely impact adjacent structures or site features. All dewatering, handling and disposal of pumped water and any special testing should be conducted in accordance with local regulations, permits and specified requirements.

4.4 Protection and Preparation of Subgrade Soils

Care should be taken to avoid excess traffic on the excavated subgrade prior to placement of the structural fill, crushed stone and screened gravel or concrete foundations. Final excavation should be made using a smooth-edged bucket where possible. The exposed subgrade should be protected against precipitation, and the subgrade should not be allowed to freeze. Under no circumstances should fill or foundation concrete be placed on a disturbed, wet, or frozen subgrade.

Granular soil subgrades should be proof rolled with a vibratory compactor for at least four passes for the structures and two passes prior to placement of fill or pipeline bedding. Any unsuitable material present at the subgrade level should be removed and replaced with compacted structural fill or crushed stone wrapped in geotextile as recommended herein. A working mat is required below all structures and it shall consist of structural fill (12-inch minimum) or crushed stone (12-inch minimum).

4.5 Protection of Adjacent Structures

4.5.1 General

Excavation for the proposed pipelines and jacking and receiving pits will be made within the zone of influence of existing structures, railroads and utilities. Protection of existing structures, roadways, railroads and utilities is the responsibility of the Contractor. The construction procedures undertaken must be performed in a manner that does not negatively affect the existing facilities.

4.5.2 Deformation Monitoring

We recommend that surface monitoring points (SMPs), deformation monitoring points (DMPs) and crack monitors be established on the existing structures and utilities within 50 feet of the excavations. The points should be monitored during support of excavation installation, trenchless installation, excavation, foundation pier installation, and backfilling work.

DMPs should be installed and formal initial readings taken prior to any support of excavation installation, excavation or dewatering activities within 50 feet of the instrument. Crack monitoring devices should be installed, and formal initial readings taken prior to any excavation, dewatering, or support of excavation installation within 50 feet of the instrument.

Survey of the monitoring points should be performed at a minimum weekly prior to installation of excavation support systems, trenchless installation, excavation, dewatering and/or demolition activities within a 50-foot radius of each instrument. During the active construction operations, the Contractor should monitor all instruments twice per week. The monitoring frequency should increase to daily if threshold values are exceeded. Monitoring should continue bi-weekly after these active construction operations (completion of backfilling and compaction) are completed within a 50-foot radius of each instrument.

The Contractor should be prepared to alter the construction and implement remedial actions if settlement reaches the threshold values. If settlements exceeding the limiting values are measured, the Contractor should suspense all construction operation at the location related to ground deformation, stabilize the excavation and revise the excavation and/or dewatering methods to prevent additional settlement. The threshold and limiting values as follows:

Monitoring Instrument	Threshold Values	Limiting Values
SMP	0.5 inch	1 inch
DMP	0.25 inch	0.5 inch

4.5.3 Vibration Monitoring

Ground vibrations due to demolition activities and excavation support installation can cause damage to adjacent structures, roadways, utilities and other facilities. To avoid or mitigate this potential damage, limits on ground vibrations in the form of ground displacement, velocity or acceleration at given frequencies are typically established. The Bureau of Mines has established criteria to limit ground vibrations using the peak particle velocity (PPV) and frequency

parameters. These limits have been established using the cracking of plaster walls in a residential house as a model.

The maximum peak particle velocities associated with demolition and vibratory or impact excavation support installation methods at the ground surface at existing adjacent structures and utilities should be as follows:

<u>Frequency (Hz)</u>	<u>Max. Peak Particle Velocity</u> <u>(in. per sec.)</u>
Over 40	2.0
30 to 40	1.5
20 to 30	1.0
Less than 20	0.5

In no case should the maximum peak particle velocities caused by pile driving exceed 2.0 inches per second at the closest facility (structure or utility) to the work.

A minimum of two seismographs should be located at adjacent/nearby structures and utilities during all demolition and excavation support installation activities to confirm compliance with the recommendations herein and record actual impact vibrations.

In addition, a preconstruction survey should be conducted on structures located within 150 feet of areas of demolition and vibratory or impact excavation support installation. The preconstruction survey should consist of visual inspection and documentation (written, photographic, and/or video) of the existing facility. If damage to adjacent facilities is reported, a similar survey should be conducted at the end of the work and the conditions recorded in the two surveys should be compared for indications of construction-related damage to the existing facilities.

4.6 Backfill

4.6.1 Structural Fill

Granular fill used as structural fill below foundations should consist of a mineral soil free of organic material, loam, debris, frozen soil or other deleterious material which may be compressible, or which cannot be properly compacted. Structural fill should conform to the following gradation requirements:

<u>U.S. Standard Sieve Size</u>	Percent Passing by Weight
1.5 inches	100
No. 4	20-90
No. 40	5-75
No. 200	0-50

Structural fill should have a maximum liquid limit of 50 percent, a maximum plasticity index of 25 percent, and a maximum dry density of at least 95 pounds per cubic foot (pcf) as determined by ASTM D698.

Structural fill should be placed in 8-inch-thick lifts, as placed, and compacted with suitable equipment to at least 98 percent of maximum dry density as determined by ASTM D698. Lift thickness should be reduced to 4 inches in confined areas accessible only to hand-guided compaction equipment. Structural fill should be placed within two percent of its optimum moisture content.

4.6.2 Common Fill

Common fill should consist of soil free of roots, vegetative matter, organic material, topsoil, loam, waste, debris, highly micaceous silt, frozen soil, or other objectionable material. It should not contain stone blocks, broken concrete, masonry rubble, or other similar materials. It should have physical properties such that it can be readily spread and compacted. It should contain stones no larger than six inches, have a maximum of 75 percent passing the No. 200 sieve, a maximum liquid limit of 60 percent, a maximum plasticity index of 30 percent, and exhibit a dry density of at least 90 pcf as determined by ASTM D698. Select common fill should meet the criteria of common fill except it should contain stones no larger than 2 inches.

Common fill and select common fill should be placed in maximum 12-inch-thick lifts, as placed, and compacted with suitable compaction equipment to at least 95 percent of the maximum dry density as determined by ASTM D698. Lift thickness should be reduced to 6 inches in confined areas accessible only to hand-guided compaction equipment. Common fill should be placed within three percent of its optimum moisture content.

4.6.3 Crushed Stone

Crushed stone should consist of hard, durable, angular or subangular particles of proper size and gradation, and should be free of sand, loam, clay, excess fines, and other deleterious materials. The material should conform to the requirements for TDOT No. 57 stone.

Crushed stone should be placed in maximum 6-inch-thick lifts, as placed, and compacted with suitable compaction equipment to at least 98 percent of the maximum dry density as determined by AASHTO T180. Lift thickness should be reduced to 4 inches in confined areas accessible only to hand-guided compaction equipment. Crushed stone should be placed within two percent of its optimum moisture content.

4.6.4 Trench Backfill

Trenches may be backfilled with select fill, common fill, and/or material excavated from the trench provided it meets the criteria of common fill. Criteria on backfill placement in the trench are described in Section 3.

4.7 Geotextile

Except where screened gravel and crushed stone are placed above the design groundwater level and/or against bedrock, a nonwoven geotextile should be used to separate it from the underlying

subgrade soils to protect against the migration of fines into the pipeline bedding. The geotextile fabric should be Mirafi 140N or equivalent.

4.8 Micropile Installation 4.8.1 General

A specialty geotechnical contractor (Micropile Contractor) will be required to install the drilled micropiles as recommended herein. The drilled micropile submittal should include the shop drawings showing the drilled micropile layout and a work plan that outlines the proposed installation equipment and proposed drilled micropile materials. The Micropile Contractor should provide equipment capable of constructing micropiles to a depth equal to the deepest anticipated micropile tip elevation plus 30 feet. The Micropile Contractor should provide special drilling equipment including, but not limited to, rock core barrels, rock tools, air tools, and other equipment as necessary to excavate the borehole to the size and depths required. Blasting shall not be used to advance the excavation.

Micropile drilling operations should be performed in a continuous manner using rotary drilling equipment, and drilling methods should employ sufficient fluid pressure to provide complete removal of the drill cuttings from the hole. Permanent steel casing is required to maintain wall stability of the drilled boreholes through the overburden soils and weathered rock fragments/gravel and socketed into 7 feet into bedrock (9.75-inch diameter micropile). Any inflow of groundwater through the pervious soil layers also should be controlled using permanent casing.

Competent bedrock (i.e., continuous and unweathered) should be confirmed by a qualified geotechnical engineer or representative under the direction of the Engineer at the time of construction. After achieving the embedment depth into bedrock, the bottom of the borehole should be cleaned to the extent practical and approved by the Engineer.

Reinforcing bar should be placed into the borehole immediately after grouting and while the grout is still fluid or prior to placing the grout. Reinforcing bar should be set in the borehole with appropriate spacers so the reinforcing will remain in the specified tolerances. Concrete centralizers or other approved non-corrosive centering devices should be used within two feet of the top and bottom of the micropile. Centralizers should also be used at intervals not exceeding ten feet along the length of one micropile.

Concrete should be poured using a tremie pipe starting from the bottom of the hole. Reinforcing bar should extend far enough above the concrete to ensure that a sound connection can be made between reinforcing steel and the structural element it supports. The reinforcing bar should meet the specifications shown on the drawings, and the elevation of the top of the reinforcing should be checked after concrete is placed.

No micropile shall be left partially completed overnight and must be completed, grouted, and protected at the termination of each day's operation. Micropiles should not be installed within six times the diameter of a newly constructed micropile until the grout of the micropile has set for a minimum of 24 hours.

4.8.2 Obstructions and Differing Bedrock Conditions

Obstructions may be present in the fill and overburden layers at the site. The nature of the obstructions may include, but is not limited to, debris, abandoned foundations, cobbles or boulders. If the obstruction is located within the top 15 feet of the micropile which prevents micropile installation, pre-excavation may be used to remove the obstruction. Micropiles that encounter obstructions that cannot be removed may require that the micropile be relocated. The Contractor should be prepared to address potential difficulties associated with shallow voids in the bedrock or thin pinnacles/ledges of bedrock (over soil) that may be penetrated before obtaining satisfactory bedrock to construct the rock socket.

4.8.3 Micropile Load and Proof Tests

One (1) micropile load test should be conducted in accordance with ASTM D1143 or ASTM D3689 prior to installation of the production micropiles. Three sets of telltales or three pairs of strain gauges should be installed to measure and evaluate the loading/movement transferred to the bearing materials for the load-test micropile. The load test micropile should be cast with a minimum of three (3) ³/₄-inch diameter PVC Schedule 40 pipes, set to various depths within the micropile to allow for the installation of telltales to be used during the load testing, if that method is selected by the Contractor. The micropiles should not be load tested until the concrete strength has achieved the 28-day compressive strength. The micropiles should be loaded to at least 1.6 times the highest design load. During installation of the production micropiles, the Contractor should perform one proof testing on a micropile selected by the Engineer. Proof testing should not occur until the concrete strength has achieved the 28-day compressive strength. The proof-test micropile should be loaded to at least 160 percent of the design load either in compression or tension.

4.9 Trenchless Construction

The railroad crossing will be installed by pipe jacking as recommended in **Section 3** and specified in the Contract Documents to limit the impact of construction.

Excavation at the face should be conducted within the casing/shield to reduce the potential for disturbance outside the casing. As stated previously, a continuous flight auger or open face shield is expected to be adequate as long as proper dewatering can be employed to maintain groundwater levels at least 1 foot below the casing invert at all times during pipe jacking operations. The Contractor should anticipate the potential for obstructions and/or bedrock within the casing horizon and be equipped to hand-mine and remove such obstructions from the face of the excavation.

4.10 Construction Monitoring

It is recommended that a qualified Geotechnical Engineer or experienced technician under the direction of the Geotechnical Engineer be present during construction to confirm that the Contractor complies with the intent of these recommendations. Specifically, the field representative would undertake the following responsibilities:

• Observe the installation of the geotechnical instrumentation and review site monitoring data collected;

- Monitor the excavation and installation and performance of excavation support systems and observe for potential karstic activity or deformations;
- Confirm that appropriate dewatering and surface water control methods are employed;
- Confirm the removal of unsuitable materials present at foundation subgrade level and replacement with proper backfill material;
- Confirm that the subgrades are prepared, and conditions encountered are suitable for support of the proposed structures;
- Monitor drilled micropile load and proof test(s) and production drilled micropile installation;
- Observe, test and document placement and compaction of backfill material, where appropriate; and
- Monitor the pipe jacking operations including ground conditions encountered, face stability, excavation methods and rates and grouting operations.

In addition, the field representative would be present to identify and provide response should conditions encountered differ from those assumed during preparation of this report.

4.11 Closing

These recommendations have been prepared for the City of Chattanooga Dupont Pump Station and Gravity Sewer Line project located in Chattanooga, Tennessee as understood at this time and described in this report. These recommendations have been prepared in accordance with generally accepted engineering practices. No other warranty, express or implied, is made. In the event that changes in the design or location of the alignment occur, the conclusions and recommendations contained herein should not be considered valid unless verified in writing by CDM Smith.

Section 5

References

- Ishihara, K. (1985) "Stability of natural deposits during earthquakes" Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering. Vol. I, A. A. Balkema, Rotterdam, The Netherlands, 321-376.
- 2. Thomson, J. (1993) "Pipejacking and Microtunneling" Springer Science + Business Media Dordrecht, 1993

This page intentionally left blank.

Appendix A

Geotechnical Data Report

This page intentionally left blank.

Geotechnical Data Report

DuPont Gravity Sewer and Pump Station Chattanooga, Tennessee October 26, 2018 Terracon Project No. E2175151

> Prepared for: CDM Smith

Knoxville, TN

Prepared by: Terracon Consultants, Inc. Chattanooga, Tennessee

October 26, 2018

CDM Smith 1100 Marion Street, Suite 300 Knoxville, TN 37921

- Attn: Mr. Daniel Unger, P.E. E: ungerdi@cdmsmith.com
- Re: Geotechnical Data Report DuPont Gravity Sewer and Pump Station DuPont Parkway to Dixie Drive Chattanooga, Tennessee Terracon Project No. E2175151

Dear Mr. Unger:

This Geotechnical Data Report documents the results of field and laboratory programs described in the contract documents. Attached find:

- Boring logs with field and laboratory data (Boring Nos.B-101 through B-113; B-201-B-210; B-215 and B-216);
- Stratification based on visual soil and rock classification is included on the logs;
- Groundwater levels observed during and at completion of drilling;
- Site Location Plans and Boring Location Plans;
- Subsurface exploration conditions;
- Description of subsurface conditions; and
- Tabulated laboratory results and appendices of laboratory reports.

We appreciate the opportunity to be of continued service to you on this project. Should you have any questions or if we may be of further assistance, please contact us.

Sincerely,

Erank Whitman, P.E. Senior Engineer

Terracon Consultants, Inc. 51 Lost Mound Drive, Suite 135 Chattanooga, TN 37406 P 423 499 6111 F 423 499 8099 terracon.com

REPORT TOPICS

NTRODUCTION	.1
SITE CONDITIONS	
PROJECT DESCRIPTION	. 2
GEOTECHNICAL CHARACTERIZATION	
GENERAL COMMENTS	

ATTACHMENTS

EXPLORATION AND TESTING PROCEDURES SITE LOCATION AND EXPLORATION PLANS EXPLORATION RESULTS (Boring Logs and Laboratory Data) SUPPORTING INFORMATION (General Notes, Unified Soil Classification System, and Description of Rock Properties)

Geotechnical Data Report

DuPont Gravity Sewer and Pump Station DuPont Parkway to Dixie Drive Chattanooga, Tennessee Terracon Project No. E2175151 October 26, 2018

INTRODUCTION

This data report presents the results of our subsurface exploration for the proposed Gravity sewer and Pump Station project to be located at DuPont Parkway to Dixie Drive in Chattanooga, Tennessee.

The geotechnical engineering scope of services for this project included the advancement of 25 test borings to depths ranging from approximately 15 to 60 feet below existing site grades.

Maps showing the site and boring locations are shown in the **Site Location** and **Exploration Plan** sections, respectively. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included on the boring logs and as separate graphs in the **Exploration Results** section of this report.

SITE CONDITIONS

The following description of site conditions is derived from our site visit in association with the field exploration and our review of publicly available geologic and topographic maps.

Item	Description
Parcel Information	The gravity sewer will extend from DuPont Parkway to Dixie Drive in Chattanooga, Tennessee. The pump station will be located at approximate GPS coordinates 35.0959, -85.2664.
Existing Improvements	The gravity sewer will follow an existing public easement. The planned alignment is mostly wooded. The pump station will be in an area that is currently partially asphalt-paved and partially grassed.
Existing Topography	The invert of the gravity sewer will start at approximate elevation 648.7 and end at 645.0.

PROJECT DESCRIPTION

Our initial understanding of the project was provided in our proposal and was discussed in the project planning stage and our final understanding of the project conditions is as follows:

Item	Description
Information Provided	Information was provided by Daniel Unger, P.E., with CDM Smith
Project Description	Gravity Sewer, about 7,000 LF, 48 inches in diameter, including 1 railroad crossing and 1 aerial creek crossing
	Pump station (20 to 22 feet deep) with an adjacent electrical building, emergency generator, and diversion structure
Estimated Start of Construction	2019

GEOTECHNICAL CHARACTERIZATION

Geology

The project site is in the Valley and Ridge, a geologic setting in which parallel valleys and ridges are oriented southwest–northeast. The area is characterized by ancient sedimentary rocks which have been subjected to thrust faulting, resulting in the formation of perpendicular joints – fractures along which there has been little if any movement – with one set oriented southwest-northeast and the other set southeast-northwest. The ridges tend to have a resistant cap of sandstone underlain by limestone, dolomite and shale sequences, similar to those found in the valleys. Limestone and dolomite are carbonate rocks which have an elevated potential to be impacted by weathering and solution activity, especially along joints and bedding planes. Solution activity can result in development of soft soil zones at the soil-rock interface, and weathering of bedrock along joints producing voids, slots (void or soil-filled) or caverns. Soil or rock overlying a void may remain stable due to arching, but when de-stabilized, can result in a surface breach, either a "drop out" or a sinkhole.

The rock formation underlying the site is the Chickamauga Group, a predominantly limestone sequence which may include greenish-gray calcareous shale, shaley limestone and dolomite.

Subsurface Profile

We have developed a general characterization of the subsurface soil and groundwater conditions based upon our review of the data and our understanding of the geologic setting. The following table provides our geotechnical characterization. As noted in **General Comments**, the characterization is based upon widely spaced exploration points across the site, and variations are likely.

Geotechnical Data Report

DuPont Gravity Sewer and Pump Station
Chattanooga, Tennessee
October 26, 2018
Terracon Project No. E2175151

Stratum	Approximate Depth to Bottom of Stratum (feet)	Material Description	Consistency/Density/Rock Strength
Surface	0.3 to 0.8	Topsoil or Asphalt pavement and aggregate base	N/A
Existing Fill ¹	3 to 6	Uncontrolled fill comprised of lean clay, gravelly lean clay, and sand and gravel.	Variable
Upper Soils	15 to 30 ²	Lean clay, fat clay, sandy lean	Cohesive: Typically, stiff to hard with some zones of very soft to medium stiff
50115		clay, clayey sand	Cohesionless: Lose to medium dense
Lower	45 45 00 0 ³	Sandy silt, silt, silty sand, sand,	Cohesive: Very soft to medium stiff
Soils	15 to 36.2 ³	sand and gravel	Cohesionless: Typically, medium dense to dense
Bedrock	All other test borings terminated in this stratum	Limestone with some shale.	Medium strong
1 0	nly encountered at test borings B-1	08 B-205 B-206 B-208	

1. Only encountered at test borings B-108, B-205, B-206, B-208.

2. Test borings B-102, B-105, B-109 to B-113, B-201 to B-207, B-209, B-210, B-215, and B-216 terminated in this stratum.

3. Test borings B-103, B-106, and B-208 terminated in this stratum.

Conditions encountered at each boring location are indicated on the individual boring logs shown in the **Exploration Results** section and are attached to this report. Stratification boundaries on the boring logs represent the approximate location of changes in native soil types; in situ, the transition between materials may be gradual.

Groundwater Conditions

The boreholes were observed while drilling and after completion for the presence and level of groundwater. The water levels observed in the boreholes can be found on the boring logs in **Exploration Results** and are summarized below.

Geotechnical Data Report

DuPont Gravity Sewer and Pump Station
Chattanooga, Tennessee
October 26, 2018 Terracon Project No. E2175151

Boring Number	Approximate Depth to Groundwater while Drilling (feet) ¹	Approximate Depth to Groundwater after Drilling (feet) ¹
B-101	31 (el. 623)	Not encountered
B-106	27 (el.625)	Not encountered
B-107	27 (el.625)	Not encountered
B-108	26 (el.626)	Not encountered
1. Below ground surface		

Groundwater was not observed in the remaining borings while drilling, or for the short duration the borings could remain open. However, this does not necessarily mean the borings terminated above groundwater, or the water levels summarized above are stable groundwater levels. A relatively long period may be necessary for a groundwater level to develop and stabilize in a borehole. Long term observations in piezometers or observation wells sealed from the influence of surface water are often required to define groundwater levels in materials of this type.

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the life of the structure may be higher or lower than the levels indicated on the boring logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project.

The project site is located just downstream of the Chickamauga Dam on the Tennessee River. The pool elevation of the Tennessee River at the project site is heavily dependent upon TVA's management of the Tennessee River at the upstream dam and downstream Nickajack Dam. However, the Tennessee River pool elevation is generally between 630 and 640 feet, MSL under normal circumstances. According to NOAA, flood stage is at Elevation 651 feet.

GENERAL COMMENTS

As the project progresses, we address assumptions by incorporating information provided by the design team, if any. Revised project information that reflects actual conditions important to our services is reflected in the final report. The design team should collaborate with Terracon to confirm these assumptions and to prepare the final design plans and specifications. This facilitates the incorporation of our opinions related to implementation of our geotechnical recommendations. Any information conveyed prior to the final report is for informational purposes only and should not be considered or used for decision-making purposes.

Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration point locations or due to the modifying effects of construction or weather.

The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in the final report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations.

Our scope of services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third party beneficiaries intended. Any third party access to services or correspondence is solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client, and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made.

Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing.

This page intentionally left blank.

ATTACHMENTS

EXPLORATION AND TESTING PROCEDURES

Field Exploration

CDM Smith prescribed the following boring locations:

Number of Borings	Planned Boring Depth (feet) ¹	Planned Location				
8 (P. 404 (s. P. 400)	30 to 60 feet	Pump Station, Diversion Structure, Electrical Building, and Generator				
(B-101 to B-108)		Electrical Building, and Generator				
2	20 feet	Manholes near Pump Station				
(B-109 and B-110)						
3	15 feet	Parking Aroa				
(B-111 to B-113)	13 1661	Parking Area				
14	15 to 20 feet	Gravity Sewer Alignment				
(B-201 to B-210)	13 to 20 leet	(approximate 500-foot spacing)				
2	15 feet	Deilroad grassing for gravity source				
(B-215 and B-216)	15 1661	Railroad crossing for gravity sewer				
1. Feet belo	w the ground surface					

Boring Layout and Elevations: Borings were staked and surveyed by CDM Smith.

Subsurface Exploration Procedures: We advanced soil borings with a track- or truck-mounted drill rig using continuous flight hollow stem augers. Four samples were obtained in the upper 10 feet of each boring and at intervals of 5 feet thereafter. Soil sampling was performed using splitbarrel or thin-walled sampling procedures. In the thin-walled tube sampling procedure, a thinwalled, seamless steel tube with a sharp cutting edge is pushed hydraulically into the soil to obtain a relatively undisturbed sample. A standard 2-inch outer diameter split barrel sampling spoon is driven into the ground by a 140-pound automatic hammer falling a distance of 30 inches. The number of blows required to advance the sampling spoon the last 12 inches of a normal 18-inch penetration is recorded as the Standard Penetration Test (SPT) resistance value. The SPT resistance values, also referred to as N-values, are indicated on the boring logs at the test depths. The samples were placed in appropriate containers, taken to our soil laboratory for testing, and classified by a geotechnical engineer.

Test borings B-101, B-104, and B-108 extended to auger refusal. Upon encountering bedrock or refusal-to-drilling conditions at these locations, rock coring (using NQ2 rock core barrel) was performed.

Our exploration team prepared field boring logs as part of standard drilling operations including sampling depths, penetration distances, and other relevant sampling information. Field logs include

visual classifications of materials encountered during drilling, and our interpretation of subsurface conditions between samples. Final boring logs, prepared from field logs, represent the geotechnical engineer's interpretation, and include modifications based on observations and laboratory tests.

Laboratory Testing

CDM Smith provided Terracon with the laboratory testing assignments for the sampled soil and rock strata. Procedural standards noted below are for reference to methodology in general. In some cases, local practices and professional judgement require method variations. Standards noted below include reference to other related standards. Such references are not necessarily applicable to describe the specific test performed.

- ASTM D2216 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
- ASTM D4318 Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
- ASTM D422 Standard Test Method for Particle-Size Analysis of Soils
- ASTM D2435/D2435M Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading
- ASTM D4767 Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils (3 point test)
- ASTM D7012 Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperature – Method C

SITE LOCATION AND EXPLORATION PLANS

EXPLORATION PLAN DuPont Additional Borings Chattanooga, TN October 19, 2018 Terracon Project No. E2175151

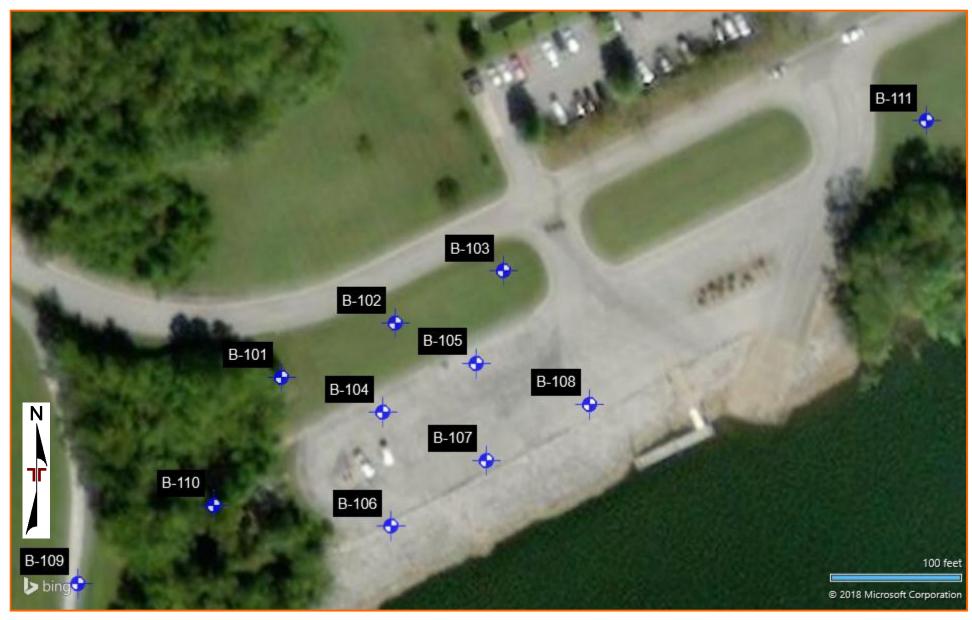


DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS

EXPLORATION PLAN

DuPont Additional Borings
Chattanooga, TN
October 19, 2018
Terracon Project No. E2175151

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES

AERIAL PHOTOGRAPHY PROVIDED BY MICROSOFT BING MAPS **EXPLORATION RESULTS**

BORING LOG NO. B-101

Page 1 of 2

PR	PROJECT: DuPont Additional Borings					: CDM Knox	l Smith Inc. kville, TN									
SI	TE: DuPont Parkway Chattanooga, Tennessee															
g	LOCATION See Exploration Plan		NS	ЪЕ	F	≻		2	STR	RENGTH	TEST	(%	ATTERBERG LIMITS	E S		
GRAPHIC LOG	Latitude: 35.096° Longitude: -85.2667° Approximate Surface Elev: 654 (Ft.) +/- DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES		
7777	0.3 ASPHALT 653.5+/-															
	AGGREGATE	-	-	X	6-7-9 N=16	78		4.5 (HP)				19	54-25-29	97		
		- 5-	-	X	6-9-12 N=21	78		4.5 (HP)				20				
	stiff	-	-		3-5-9 N=14	89		4.5 (HP)								
		- 10-	-	X	3-4-7 N=11	83	-	4.25 (HP)				23				
		-	-		3-4-5 N=9	83	-	2.25 (HP)				25				
		15- - -														
		- 20-	-	X	3-4-5 N=9											
	<u>SANDY SILT (ML)</u> , trace mica, dark brown, medium stiff	- - 25-	-	X	2-2-2 N=4	100	-	1.0 (HP)				32				
ONIGINAL REFORM	soft	- - - 30-		X	0-1-2 N=3	100	_	0.25 (HP)				41	NP	57		
	Stratification lines are approximate. In-situ, the transition	– – may be	gradua	l.			Hamm	er Type:	Auto	matic						
Advar 0'-3 36.2	ncement Method: 36.2' - Hollow Stem Auger 2'-51.2' - NQ2 Wireline Core	deso useo	ription and a	of field ddition	nd Testing Procedur d and laboratory prod al data (If any).	cedures	Notes:									
Abanc Bor	donment Method: ing backfilled with soil cuttings upon completion.	sym	bols ar	nd abbi	nformation for explan reviations. plated from Google E											
	WATER LEVEL OBSERVATIONS						Boring St	tarted: 0	7-27-2	2018	Borir	ng Com	oleted: 07-27-	2018		
	Water encountered at 31' while drilling No water observed after drilling	—			JJGJ		Drill Rig:	DR754			Drille	er: N. Do	otson			
2			:		t Mound Dr, Ste 135 nattanooga, TN		Project N	lo.: E217	75151							

	BORING LOG NO. B-101 Page 2 of 2												2			
	PR	OJECT: DuPont Additional Borings					CLIENT		Smith ville, T							
	SIT	E: DuPont Parkway Chattanooga, Tennessee						KIIO	ville, i	IN						
	90	LOCATION See Exploration Plan		NS NS	ΡE		⊢	~		۲۲	STR	RENGTH	TEST	(%	ATTERBERG LIMITS	ZE S
	GRAPHIC LOG	Latitude: 35.096° Longitude: -85.2667°	DEPTH (Ft.)	R LEV VATIO	−ЕТ		FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	RATOF (tsf)	YPE	SSIVE GTH	1 (%)	TER ENT (NTFIN
	GRAP	Approximate Surface Elev: 654 (Ft.) +/- DEPTH ELEVATION (Ft.)	DEP'	WATER LEVEL OBSERVATIONS	SAMPLE TYPE		FIELI	REC(<u>ж</u> с	LABORATORY HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
		SANDY SILT (ML), trace mica, dark brown, medium stiff	_													
		(continued)	-	-	\ge	0	-50/1"									
~		Auror Defined at 26.41	35–													
0/26/18		36.2 Auger Refusal at 36.1'618+/-Begin NQ2 Wireline Rock Core	_							-		-				
DT 10		SHALY LIMESTONE, gray with dark red and green limestone	_			<u>R</u>	UN 1:					18.2				
ATE.G		partings	-	-			th: 36.2' - 41.2' Length: 5'	88	54		UC	(ksi)				
TEMPL	- 1		40-	-		Run	Lengin. 5									
DATA			_													
CON			_													
FERR	 	-includes dark gray zones	-	-												
- LAĐ.			45–	-		Dept	t <mark>UN 1:</mark> th: 41.2' -									
ONAL			_				51.2' Length:	79	62							
ADDIT			_	-			10'									
ONT /			-	-												
51 DUF		51.2 603+/-	50-													
21751		Coring Terminated at 51.2 Feet	. –													
ELLE																
∧ on-																
T LOG																
SMAR																
GEO																
PORT.																
AL RE																
RIGIN																
SOM C																
TED FF		Stratification lines are approximate. In-situ, the transition	mayba	Iradua					Hamm	er Type	Auto	matic				
PARA		endanoation mos are approximate. Infottu, the traffoldUlf	nay be (or rype						
) IF SE	0'-3	cement Method: 6.2' - Hollow Stem Auger					sting Procedur aboratory proc		Notes:							
- VALIE	36.2	2'-51.2' - NQ2 Wireline Core	used	and a	dditic	onal data	i (If any). ion for explan									
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 10/26/18		onment Method: ing backfilled with soil cuttings upon completion.	sym	ools ar	nd abl	breviatio										
NG LO	$\overline{}$	WATER LEVEL OBSERVATIONS							Boring S	tarted: 0	7-27-2	2018	Borii	ng Com	pleted: 07-27-	·2018
BORI	<u> </u>	Water encountered at 31' while drilling No water observed after drilling	-				DCC	חנ	Drill Rig:	DR754			Drill	er: N. D	otson	
THIS		Ŭ		51 Lost Mound Dr, Ste 135 Chattanooga, TN						Project No.: E2175151						

BORING LOG NO. B-102

Page 1 of 1

PR	PROJECT: DuPont Additional Borings				CLIENT	CDM Knox	l Smith Inc. xville, TN								
SI	TE: DuPont Parkway Chattanooga, Tennessee														
90-	LOCATION See Exploration Plan	t.)	VEL ONS	ΥΡΕ	s a	۲۲		лγ	STF	RENGTH	TEST	(%)	ATTERBERG LIMITS	INES	
GRAPHIC LOG	Latitude: 35.0961° Longitude: -85.2664° Approximate Surface Elev: 657 (Ft.) +/- DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES	
<u>st 19:5</u> 5	0.5 <u>TOPSOIL</u> 656.5+/-														
	FAT CLAY (CH), with silt, with mica, brown, stiff	-	-	X	3-5-6 N=11	56		4.5 (HP)	-						
		- 5 -	-	X	3-4-6 N=10	67		4.5 (HP)							
		-	-	X	4-5-7 N=12	89		4.25 (HP)	-						
		- 10- -	-	X	3-3-6 N=9	78	-	3.5 (HP)							
		- - - 15-	-	X	2-3-5 N=8	94	_	2.5 (HP)							
Advar Hol		- - - 20-	-	X	4-5-18 N=23	100	_	1.5 (HP)				27			
	22.0635+/- LEAN CLAY (CL), gray, medium stiff	-	-		2-2-2			0.25	-						
		25	-	\wedge	N=4	100	-	(HP)				30	41-21-20	87	
	30.0 627+/-	-	-		2-2-3 N=5	67		1.0 (HP)	-			42		77	
	Boring Terminated at 30 Feet	30-													
	Stratification lines are approximate. In-situ, the transition	may be	gradua	al.			Hamm	I er Type:	Auto	matic	I	1	1	I	
Advar Hol	ncement Method: Iow Stem Auger	deso useo	ription and a	of fiel additior	and Testing Procedur d and laboratory proc nal data (If any). nformation for explan	edures	Notes:								
Abano Bor	donment Method: ing backfilled with grout upon completion.	sym	bols ar	nd abb	reviations.						_				
	WATER LEVEL OBSERVATIONS No free water observed	_ •					Boring S	tarted: 0	7-25-2	2018	Borii	ng Com	pleted: 07-25-	2018	
							Drill Rig:	DR754			Drill	er: N. D	otson		
					t Mound Dr, Ste 135 hattanooga, TN		Project N	lo.: E21	75151						

BORING LOG NO. B-103

Page 1 of 1

PROJECT: DuPont Additional Borings							CLIENT: CDM Smith Inc. Knoxville, TN																										
SITE: DuPont Parkway Chattanooga, Tennessee																																	
g	LOCATION See Exploration Plan			Ц С С	ш				~	STRENGTH TEST			ATTERBERO		S																		
GRAPHIC LOG	Latitude: 35.0962° Longitude: -85.2661° Approximate Surface Elev: 657 (Ft.)	+/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES																		
	DEPTH ELEVATION (F			≥⊟	s/	_	_		L L	TE	CON S1	ST	O		Ы																		
	0.5 <u>TOPSOIL</u> 656.	5+/-																															
	FAT CLAY (CH), with mica, yellow and brown, stiff		5-		\mid	2-4-5 N=9	61		4.5 (HP)				20	52-24-28	97																		
	6.0 651+/ LEAN CLAY (CL), with mica, yellow and brown, stiff				\boxtimes	3-4-7 N=11	61	-	4.5 (HP)																								
		1+/-		-	X	3-5-6 N=11	100	_	3.75 (HP)				24	47-23-24	96																		
			- - 10-		\boxtimes	3-4-5 N=9	89		3.0 (HP)				25																				
			-		-	-	•					-		-																			
			- 15		X	2-3-5 N=8	89	-	2.75 (HP)																								
	<u>SANDY SILT (ML)</u> , with mica, gray and brown, medium stiff				_	-			-	-	-	-	-	-	-	-	-						\times	2-3-4 N=7	100	_	1.5 (HP)				28		
										X	1-2-2 N=4	100	100	0.75 (HP)				29															
			_		\bigtriangledown	2-2-3	100	_	0.5				44	NP	61																		
	30.0 62 Boring Terminated at 30 Feet	7+/-	30–			N=5	100		(HP)						01																		
Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic																																	
Advan	cement Method:	800	See Exploration and Testing Procedures for a					Notes:																									
Hollow Stem Auger Abandonment Method:			desc used See	description of field and laboratory procedures to a description of field and laboratory procedures used and additional data (If any). See Supporting Information for explanation of symbols and abbreviations.																													
Boring backfilled with grout upon completion.				Elevations interpolated from Google Earth Pro																													
WATER LEVEL OBSERVATIONS No free water observed								Boring Started: 07-25-2018					Boring Completed: 07-25-2018																				
				llerracon				Drill Rig: DR754				Drille	Driller: N. Dotson																				
				51 Lost Mound Dr, Ste 135 Chattanooga, TN				Project No.: E2175151				1																					

Page 1 of 2

		LUG NO.	D-I	V 4					F	Page 1 of	2			
PR	OJECT: DuPont Additional Borings				CLIENT	CDM Knox	Smith ville, T	Inc. N						
SI	IE: DuPont Parkway Chattanooga, Tennessee													
OG	LOCATION See Exploration Plan	(EL NS	PE	F	×		۲۲	STR	ENGTH	TEST	(%	ATTERBERG LIMITS	NES -
GRAPHIC LOG	Latitude: 35.096° Longitude: -85.2664°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
GR	Approximate Surface Elev: 652 (Ft.) +/- DEPTH ELEVATION (Ft.)	ā	WA. OBS	SAN	ĒĽ	R		LAE	TES	COMP	STR	S		PER
	LEAN CLAY (CL), with sand, yellow to red, medium stiff	-	-		2-3-4	44	_	3.0				18	-	53
	3.0649+/-			\vdash	N=7			(HP)	-				-	
	LEAN CLAY (CL), dark gray, medium stiff to stiff	- 5 -	-		6-4-5 N=9	28	_	2.5 (HP)						
	-Shelby tubes pushed from 6'-8', 8'-10', and 10'-12' at nearby offset _{8.0} location 644+/-	-	-		2-3-4 N=7	67	_	2.25 (HP)						
	LEAN CLAY (CL), with sand, micaceous, brown, medium stiff to stiff	-			2-2-4 N=6	56	_	1.75 (HP)						
		10-	_						UC	1.81	15	25	-	
		-											-	
		- 15-			2-3-4 N=7	100		1.0 (HP)	-					
		-	-											
	very soft	-	-		W.O.H.	50	_	0.25 (HP)				27	33-22-11	71
	-Shelby tubes pushed from 20'-22' and 22'-24' at nearby offset 22.0 location 630+/-	20-						()	сυ					
	22.0 location 630+/- SANDY SILT (ML), brown, soft to medium stiff	-							UC	0.85	4.6	31	-	
		- 25-	-	X	0-0-3 N=3	100	_	0.25 (HP)	-			33	30-25-5	63
		-	-											
	28.2 Auger Refusal at 28.2' 624+/- Begin NQ2 Wireline Rock Core DOLOMITIC LIMESTONE WITH	-			<u>RUN 1:</u> Depth: 28.2' -	100	88	-	UC	18.9 (ksi)				
	SHALE PARTINGS	30-	-		30' Run Length: 1.8'					(KSI)				
	Stratification lines are approximate. In-situ, the transition	may be	gradua	al.			Hamm	er Type	Auto	matic				
Advor	ncement Method:						Notes:							
0'-2	8.2' - Hollow Stem Auger 2'-45.0' - NQ2 Wireline Core	deso useo	criptior d and a	n of fie additio	and Testing Procedur eld and laboratory proc onal data (If any).	edures		tube sa	mples	obtained	from of	ffset bor	ing.	
Abano	ionment Method:	sym	bols a	nd ab	Information for explan- breviations. polated from Google E									
	WATER LEVEL OBSERVATIONS						Boring S	tarted: 0	7-27-2	018	Bori	ng Com	pleted: 07-27-	-2018
				2	racc		Drill Rig:		2			er: N. D		
			_ = `		st Mound Dr, Ste 135 Chattanooga, TN		Project N		75151					
		1					I		2.51		1			

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL E2175151 DUPONT ADDITIONAL.GPJ TERRACON DATATEMPLATE. GDT 10/26/18

Page 2 of 2

	PR	OJECT: DuPont Additional Borings				CLIENT		Smith ville, T							
	SIT	E: DuPont Parkway Chattanooga, Tennessee					_	- ,							
	g	LOCATION See Exploration Plan	-	NS	Щ	L			×	STR	ENGTH	TEST	(9	ATTERBERG LIMITS	ES
	GRAPHIC LOG	Latitude: 35.096° Longitude: -85.2664°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	тезт түре	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
	Ъ	Approximate Surface Elev: 652 (Ft.) +/- DEPTH ELEVATION (Ft.)	Δ	VA OBS	SAN	교백	R		LAE	TES	STR	STR	S		PER
	/	DOLOMITIC LIMESTONE WITH									0				
		SHALE PARTINGS (continued) -includes calcite infilling	_												
		ÿ				<u>RUN 2:</u> Depth: 30' - 40'									
			35–			Run Length:	58	28							
/26/1	/		_			10'									
T 10			_												
Ë.G			_												
PLAT			40-	1											
ATEN			40_												
DAT	/		_			<u>RUN 3:</u>									
Son		-includes red and green calcareous shale partings	_			Depth: 40' - 45' Run Length: 5'	58	30							
RRA		ondio partingo	_	-		Run Lengin. 5									
ШЦ		45.0 607+/-	45-												
AL.GF		Coring Terminated at 45 Feet													
TION															
ADDI															
ONT,															
DUP															
5151															
E217															
Ē															
N ON															
-90															
RTL															
SM/															
GEO															
ORT															
REP															
BINAL															
ORIG															
ROM															
EDF		Stratification lines are approximate to other the trac. "	nov- 4 -							A	motia				
ARA		Stratification lines are approximate. In-situ, the transition r	пау ре (yrauua	1.			namm	er Type:	AULO	matic				
SEP		cement Method:	See	Explor	ation	and Testing Procedur	es for a	Notes:							
Ш		8.2' - Hollow Stem Auger ''-45.0' - NQ2 Wireline Core	desc	ription	of fie	eld and laboratory proc onal data (If any).									
T VA	AL		See	Suppo	rting	Information for explan	ation of								
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 10/26/18	Aband	onment Method:	1 ·			breviations. polated from Google E	arth Pro								
LOG		WATER LEVEL OBSERVATIONS				Selator nom Obogie E						_	_		
SING						rracc	חנ	Boring St	arted: 0	7-27-2	018	Borir	ng Com	pleted: 07-27-	2018
S BOF								Drill Rig:	DR754			Drille	er: N. Do	otson	
ΞĦ				5		st Mound Dr, Ste 135 Chattanooga, TN		Project N	lo.: E217	75151					

	I	BOF	RIN	١G	LOG NO.	B-1	05					F	Page 1 of	1
PR	OJECT: DuPont Additional Borings				CLIENT		Smith ville, T							
SIT	E: DuPont Parkway Chattanooga, Tennessee					NIIUX	vine, i	IN						
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 35.0961° Longitude: -85.2662° Approximate Surface Elev: 655 (Ft.) +/- DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	STR TEST TYPE	COMPRESSIVE D STRENGTH D (tsf) H	STRAIN (%)	WATER CONTENT (%)	Atterberg Limits	PERCENT FINES
00	ASPHALT 0.8 ASPHALT 0.8 AGGREGATE 654+/	_												
	<u>AGGREGATE</u> <u>LEAN CLAY (CL)</u> , trace sand, yellow to red, medium stiff to stiff	-	-	X	2-4-3 N=7							26		86
	5.5 649.5+/-	- 5 -	-	X	4-5-8 N=13	72		3.0 (HP)				17	45-21-24	
Po (<u>CLAYEY SAND (SC)</u> , with gravel, trace mica, brown, loose	-	-		2-2-3 N=5	67		1.25 (HP)				26		43
		- - 10-	-		2-3-4 N=7	33	-	1.75 (HP)						
Polo Polo Polo		-	-		2-2-2		_	1.5						
		15 -	-		N=4	78	_	(HP)				25		
No.	20.0	- - 20-	-	X	2-3-3 N=6	100	-	0.75 (HP)						
	gray, son	-	-		0-1-2 N=3	100	_	0 (HP)				30	36-20-16	84
		25- - -												
	30.0 625+/-	-	-		1-5-13 N=18	100	_	0.25 (HP)				44		
	Boring Terminated at 30 Feet	30-												
	Stratification lines are approximate. In-situ, the transition	may be	gradua	al.			Hamm	er Type:	Autor	matic				
	cement Method: ow Stem Auger	See desc usec	Explo criptior d and a	ration a n of fiel additior	and Testing Procedur d and laboratory proc nal data (If any).	res for a cedures	Notes:							
	onment Method: ng backfilled with grout upon completion.	— See sym	Suppo bols a	orting Ir nd abb	nformation for explan reviations. blated from Google E									
	WATER LEVEL OBSERVATIONS No free water observed						Boring S	tarted: 0	7-30-2	018	Borir	ng Com	pleted: 07-30-	2018
							Drill Rig:	DR754			Drille	er: N. D	otson	
					t Mound Dr, Ste 135 hattanooga, TN		Project N	lo.: E217	75151					

	I	BOF	RIN	IG	LOG NO.	B-1	06					F	Page 1 of	1
PR	OJECT: DuPont Additional Borings				CLIENT:									
SIT	E: DuPont Parkway Chattanooga, Tennessee					KNOX	ville, T	N						
g	LOCATION See Exploration Plan	_	NS	Щ				×	STR	RENGTH	TEST	()	ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 35.0957° Longitude: -85.2664°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)		LABORATORY HP (tsf)	Ц	COMPRESSIVE STRENGTH (tsf)	(%	WATER CONTENT (%)		PERCENT FINES
АРН	Ŭ	Η	TER ERV	1PLE	ESU	<u>%</u>	RQD (%)	HP (TEST TYPE	ENG ⁻	STRAIN (%)	WAT	LL-PL-PI	GEN
GR	Approximate Surface Elev: 652 (Ft.) +/-	B	WA ⁻	SAN	Ξĸ	RE		LAB	TES.	STRI ()	STR	CO CO		DER(
	DEPTH ELEVATION (Ft.) 0.3 \[\Lambda] ASPHALT \beta 51.5+\/-									0				
	0.8 AGGREGATE	-		\mathbf{k}	3-3-3		_	3.0						
	GRAVELLY LEAN CLAY (CL), yellow to red, medium stiff to stiff	_		Д	N=6	61		(HP)				19		51
	, , , , , , , , , , , , , , , , , , ,	-					_							
28		-		X	2-3-3 N=6	67		2.0 (HP)				18		
25		5 –			-		_	/ /						
	6.5 645.5+/-	-		\square	2-2-3	78		1.0				27		
	LEAN CLAY (CL), gray, medium stiff to stiff	-		Д	N=5	10	_	(HP)						
		-					_							
		-	1	X	2-4-6 N=10	83		3.75 (HP)				22		
		10-												
		-												
		_												
	brown	-			0.0.5		_							
	brown			X	2-3-5 N=8	89		3.0 (HP)				23		
		15-	1											
		_												
		-												
		-	1				_							
	micaceous 20.0 632+/-	-	1	X	2-3-4 N=7	100		0.75 (HP)				27	39-23-16	87
	SILTY SAND (SM), dark gray,	20-	1											
	very loose	-												
		_												
		-	1				_	0.05						
		-		X	W.O.H.	100		0.25 (HP)				27		
		25–	1											
		_												
		_												
0	28.5 623.5+/- <u>SILTY SAND (SM)</u> , with gravel,	_			9-15-15		_	0.5						
<u></u> ($_{30.0}$ dark gray, dense $_{622+/-}$	20]	\mathbb{N}	N=30	83		(HP)				35	31-29-2	23
	Boring Terminated at 30 Feet	30–												
	Stratification lines are approximate. In-situ, the transition	may be o	aradua	4			Hamm	er Type:	Auto	matic				
		, 20 (.,,,,,						
	cement Method:	See	Exploi	ration a	and Testing Procedure d and laboratory proc	es for a	Notes:							
	ow Stem Auger	desc used	ription and a	n of fiel additior	d and laboratory proc nal data (If any).	edures								
A1		See	Suppo	orting li	nformation for explana	ation of								
	onment Method: ng backfilled with grout upon completion.				reviations.	orth Dr-								
		Liev	auons	merpo	blated from Google Ea	ai (i i 1710					-			
∇	WATER LEVEL OBSERVATIONS Water encountered at 27' while drilling	- ■					Boring S	tarted: 0	7-25-2	2018	Borir	ng Com	oleted: 07-25-	2018
<u>v</u>	No water observed after drilling	-			IJLU		Drill Rig:	DR754			Drille	er: N. D	otson	
					t Mound Dr, Ste 135 hattanooga, TN		Project N	lo.: E217	75151					

PR	OJECT: DuPont Additional Borings				CLIENT		Smith ville, T							
SIT	E: DuPont Parkway Chattanooga, Tennessee													
g	LOCATION See Exploration Plan		^S S	щ				~	STR	ENGTH	TEST	(9	ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 35.0958° Longitude: -85.2662°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
GR	Approximate Surface Elev: 652 (Ft.) +/- DEPTH ELEVATION (Ft.)	ä	WA OBS	SAN	ĒĽ	R		LAE	TES	STR	STR	CO		PER
, - (0.3 ASPHALT 651.5+/-													
0000	AGGREGATE 651±/ CLAYEY SAND (SC), with gravel, yellow to brown, loose, (probable fill)	-	-	X	3-2-3 N=5	61	_	2.0 (HP)				16		
0	,	- 5 -		X	2-3-3 N=6	61	_	2.25 (HP)				16	43-19-24	50
	6.5 645.5+/- <u>FAT CLAY (CH)</u> , with sand, trace mica, gray, soft to medium stiff	_	-	X	1-2-3 N=5	78	_	1.0 (HP)						
		- - 10-			0-1-2 N=3	94		0.5 (HP)				36	50-24-26	79
		-	-											
	brown	- 15-	-	X	2-3-4 N=7	100	-	1.5 (HP)						
		-	-		2-3-4 N=7	21	_	1.25 (HP)				26		
	22.0630+/-	20						()						
	<u>SILT (ML)</u> , with sand, brown, very soft	-	-		1-1-1 N=2	20	_	0.25 (HP)				35	30-28-2	71
	27.0 625+/-	25– -			N=2		_							
	<u>SAND (SP)</u> , brown and gray, dense	_												
	30.0 622+/-	- 30-		X	16-23-15 N=38	89						15		13
	Boring Terminated at 30 Feet													
	Stratification lines are approximate. In-situ, the transition n	nay be g	gradua	al.			Hamm	er Type:	Auto	matic				
	cement Method: ow Stem Auger	desc used	ription I and a	of fiel dditior	and Testing Procedu d and laboratory pro nal data (If any). nformation for explar	cedures	Notes:							
	onment Method: ing backfilled with grout upon completion.	sym	bols ar	nd abb	reviations.									
	WATER LEVEL OBSERVATIONS						Boring S	tarted: 0	7-25-2	018	Borin	ig Com	oleted: 07-25-2	2018
\square	Water encountered at 27' while drilling No water observed after drilling	-		4	raco	חכ	Drill Rig:	DR754			Drille	er: N. De	otson	
			4		t Mound Dr, Ste 135 hattanooga, TN		Project N	lo.: E217	75151					

F	ROJECT: DuPont Additional Borings				CLIENT:		Smith ville, T							
S	ITE: DuPont Parkway Chattanooga, Tennessee													
Ľ	LOCATION See Exploration Plan		EL NS	Ē				X	STF	RENGTH	TEST	()	ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 35.096° Longitude: -85.2659° Approximate Surface Elev: 652 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
Ċ	DEPTH ELEVATION (Ft.)		NO N	S/	_	_		<u>د</u>	TE	Sol	ی ا	0		Ш
320	0.3 ASPHALT 651.5+/-													
	FILL - LEAN CLAY (CL), with rock fragments, light brown and red	-		X	3-2-3 N=5	11	-	1.75 (HP)						
DT 10/26/18		- 5-		X	2-3-3 N=6	22		2.0 (HP)				17	49-20-29	
PLATE.GD1	6.0 646+/- LEAN CLAY (CL), dark gray, medium stiff to stiff	-			1-2-3 N=5	56		2.75 (HP)				27		
N_DATATEN		_ 10—			0-1-2 N=3	56	_	1.25 (HP)	UC	1.42	6	35 35	48-25-23	94
SACO		_												
	12.0	_												
	with gray mottles, medium stiff	_												
ADDITIONAL.G		- 15 -		X	2-3-4 N=7	83		2.0 (HP)				26		
	with mica, brown, stiff	 20—		X	2-3-4 N=7	83	-	2.5 (HP)				22	38-21-17	
MART LOG-NO WELI	22.0 630+/- LEAN CLAY (CL), with sand, micaceous, dark gray, soft	- - - 25-		X	1-1-1 N=2	24		0.25 (HP)				38	37-24-13	84
EPORT. GEO S	27.0 625+/- SAND WITH GRAVEL (SP), gray, dense	-	\bigtriangledown											
INAL R		_			16-23-15 N=38	78	-					10		6
) FROM ORIG		30— 			11-50									
ARATEL	Stratification lines are approximate. In-situ, the transition n	nay be g	Iradua	∟ I.			Hamm	er Type:	Auto	ı matic		I	l	I
	rancement Method: '-33.6' - Hollow Stem Auger 3.6'-59.6' - NQ2 Wireline Core	desc used	ription and a	of field ddition	nd Testing Procedure d and laboratory proc al data (If any).	edures	Notes: Shelby	tubes of	otaineo	d from off	set bori	ing.		
LON SI DO	Indonment Method:	symb	ols ar	id abbr	formation for explana eviations. lated from Google E									
	WATER LEVEL OBSERVATIONS						Boring St	tarted: 0	7-24-2	2018	Borir	ng Com	oleted: 07-24-	2018
	Water encountered at 26' while drilling	-		4	19CC		Drill Rig:	DR754			Drille	er: N. D	otson	
THISE	No water observed after drilling		Ę		t Mound Dr, Ste 135 nattanooga, TN	_	Project N	lo.: E217	75151					

		BOF	RIN	IG	LO	G NO.	B-1	08					F	Page 2 of 2	2
PR	OJECT: DuPont Additional Borings					CLIENT								0	
SIT	E: DuPont Parkway Chattanooga, Tennessee					-	Knox	ville, T	N						
g	LOCATION See Exploration Plan		NS	ΡE		т	~		37	STR	RENGTH	TEST	(%	ATTERBERG LIMITS	IES
GRAPHIC LOG	Latitude: 35.096° Longitude: -85.2659° Approximate Surface Elev: 652 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE		FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
G	DEPTH ELEVATION (Ft.)		ЗB	S⊿		ш	ш			Ë	CON ST	ST	Ō		ШЦ
0	SAND WITH GRAVEL (SP), gray, dense (continued)	_													
	Auger Refusal at 33.6'	- 1	_			50/1"	0]			-				
	Begin NQ2 Wireline Rock Core 617+/- 35.0 LIMESTONE, gray 616+/- 36.0 CLAY, red 616+/-	ാാ	-		Ē	RUN 1:									
	LIMESTONE WITH SHALE PARTINGS, gray	-	-			th: 33.6' - 39.6' Length: 6'	82	57		UC	18.1 (ksi)				
	40.0 612+/-	-													
	LIMESTONE, gray, with greenish gray dolomitic zones	40	-		Dep	RUN 2: ith: 39.6' - 44.1' n Length: 4.5'	82	69							
	44.1608+/-	_				4.5									
	<u>VOID</u> 53.7 <u>598.5+/-</u> LIMESTONE WITH SHALE	45			Dep	RUN 3: th: 44.1' - 53.7' 1 Length: 9.6'	0	0	-						
	PARTINGS, gray, greenish gray dolomite zones	55- - - -			Dep	RUN 4: th: 53.7' - 59.6' n Length: 5.9'	100	44							
	Coring Terminated at 59.6 Feet Stratification lines are approximate. In-situ, the transition	may be	gradua	al.				Hamm	er Type	: Auto	matic				
Advor	cement Method:	1.						Notos							
0'-3 33.6	3.6' - Hollow Stem Auger S'-59.6' - NQ2 Wireline Core	useo See	and a d Suppo	additic orting	onal data Informa	sting Procedur laboratory proc a (If any). tion for explan		Notes:							
Aband	onment Method:	1 ·			breviation bolated	ons. from Google E	arth Pro								
	WATER LEVEL OBSERVATIONS							Boring S	tarted: 0	7-24-2	2018	Bori	ng Com	pleted: 07-24-	2018
\square	Water encountered at 26' while drilling			2	רר	900		Drill Rig:					er: N. D	-	
	No water observed after drilling					nd Dr, Ste 135 ooga, TN		Project N		75151		+			

	PR	OJECT: DuPont Additional Borings				CLIENT	: CDM Knox	Smith ville, T	Inc. N						
	SIT	E: DuPont Parkway Chattanooga, Tennessee						·							
	g	LOCATION See Exploration Plan		NS II	Ш				≿	STR	RENGTH	TEST	(9)	ATTERBERG LIMITS	ES
	GRAPHIC LOG	Latitude: 35.0956° Longitude: -85.2672°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	тезт түре	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
		Approximate Surface Elev: 660 (Ft.) +/- DEPTH ELEVATION (Ft.)	DEF	WATI OBSE	SAMF	FIEI RE	REC		LABC	TEST	COMPR STRE (ts	STRA	CON		PERC
,		0.3 \ <u>TOPSOIL</u> 659.5+/-	_												
		LEAN CLAY (CL), with silt, trace mica, dark brown, stiff	_	-	\mid	4-5-7 N=12	44	_	4.5 (HP)						
10/26/18			- - 5-	-	\boxtimes	4-5-7 N=12	61	_	4.5 (HP)						
LATE.GDT			-	-	\times	3-5-6 N=11	78	_	4.5 (HP)						
E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 10/26/18			- - 10-	-	\times	3-4-5 N=9	67	_	3.5 (HP)						
TERRACON			-	-											
DNAL.GPJ		medium stiff	- - 45	-	\times	2-3-4 N=7	83	_	1.75 (HP)						
NT ADDITIO			15- - -												
5151 DUPC			_	-	\bigtriangledown	2-3-4	100	_	1.25						
E217		20.0 640+/- Boring Terminated at 20 Feet	20-		\bowtie	N=7			(HP)						
T VALID IF	Holl	Stratification lines are approximate. In-situ, the transition incoment Method: ow Stem Auger	See desc used See	Explor ription and a	ation of fie dditio	and Testing Procedu Id and laboratory pro nal data (If any). Information for explar previations.	cedures	Hamm Notes:	er Type:	Auto	matic				
e LOG IS	BOL	ing backfilled with soil cuttings upon completion. WATER LEVEL OBSERVATIONS	Elev	ations	interp	oolated from Google E	Earth Pro	Boring S	tarted: 0	7-25-2	2018	Bori	na Com	leted: 07-25	2018
SRING		No free water observed				racc	חו			1-20-2	.010	_		oleted: 07-25-	2010
HIS BC					51 Lo	st Mound Dr, Ste 135		Drill Rig:				Drille	er: N. Do	DISON	
는					0	Chattanooga, TN		Project N	lo.: E21	75151					

		BOF	RIN	IG	LOG NO.	B-1	10					F	Page 1 of	1
PR	OJECT: DuPont Additional Borings				CLIENT:									
SIT	E: DuPont Parkway Chattanooga, Tennessee					KNOX	ville, T	N						
ő	LOCATION See Exploration Plan		NS NS	ΡE	F	~		7	STR	RENGTH	TEST	(%	ATTERBERG LIMITS	LES
HICL	Latitude: 35.0958° Longitude: -85.2669°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	ΥPE	COMPRESSIVE STRENGTH (tsf)	(%)	WATER CONTENT (%)		PERCENT FINES
GRAP	Approximate Surface Elev: 635 (Ft.) +/-	DEPI	VATEI	AMPI	FIELD	REC(8	ABOF	TEST TYPE	MPRE (tsf)	STRAIN (%)	MA NOC	LL-PL-PI	ERCE
	DEPTH ELEVATION (Ft.)		> ö	Ś					F	ο Ο Ο	ίΩ.			ä
	AGGREGATE	-	-		3-5-7		_	3.5						
	SANDY LEAN CLAY (CL), yellow to red, stiff	-		Å	N=12	33	_	(HP)				15		
		-	-	\square	3-4-5 N=9	78	_	3.25 (HP)				19	40-21-19	64
		5-	-				_							
	stiff	-		Д	2-3-4 N=7	78	_	3.0 (HP)				24		
		-		\mathbf{X}	2-3-4 N=7	100	_	1.5 (HP)				25		
		10-												
		-	-											
		-	-		1-3-3	100	_	0.75				26	41-20-21	86
		15-	-	\square	N=6	100	_	(HP)				20	41-20-21	00
		-	-											
		-												
	20.0 615+/-	-			2-3-3 N=6	100		1.25 (HP)				28		
	Boring Terminated at 20 Feet	20-												
	SITE: DuPont Parkway Chattanooga, Tennessee													
	DEPTH ELEVATION (F 0.3 ASPHALT 634.5 0.8 AGGREGATE SanDy LEAN CLAY (CL), yellow 0.0 6.0 629 6.0 620 629 LEAN CLAY (CL), brown, medium stiff 20.0 619 Boring Terminated at 20 Feet 619 Boring Terminated at 20 Feet 619													
	Stratification lines are approximate. In-situ, the transition	may be	gradua	al.			Hamm	er Type:	Auto	l matic		I	<u> </u>	1
		See	Explo	ration	and Testing Procedure Id and laboratory proc	es for a	Notes:							
	ow Stelli Augel	used	and a	additio	nal data (If any).									
					Information for explana previations.	ation of								
BOLI		Elev	ations	interp	olated from Google Ea	arth Pro					_			
		_	1				Boring S	tarted: 0	7-25-2	2018	Borir	ng Com	pleted: 07-25-	2018
				2			Drill Rig:	DR754			Drille	er: N. D	otson	
					st Mound Dr, Ste 135 Chattanooga, TN		Project N	lo.: E217	75151					

PR	OJECT: DuPont Additional Borings				CLIENT	CDM Knox	Smith ville, T	Inc. N						
SIT	E: DuPont Parkway Chattanooga, Tennessee													
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 35.0966° Longitude: -85.265° Approximate Surface Elev: 655 (Ft.) +/- DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	STR STLTYPE	COMPRESSIVE D STRENGTH D (tsf) H	STRAIN (%)	WATER CONTENT (%)	Atterberg Limits LL-PL-PI	PERCENT FINES
	0.3 <u>TOPSOIL</u> 654.5+/- LEAN CLAY (CL), brown, medium stiff	-	-	\times	2-3-3 N=6	44		4.5 (HP)						
	stiff	- - 5		X	4-5-8 N=13	56	-	4.5 (HP)						
	Sun	-	-	X	3-4-6 N=10	67	-	3.75 (HP)						
		- 10-	-	X	3-4-6 N=10	17	-	3.5 (HP)						
		-	-											
	15.0 640+/- Boring Terminated at 15 Feet	- 15-		X	2-3-5 N=8									
	Stratification lines are approximate. In-situ, the transition	may be g	gradua				Hamm	er Type	Auto	matic				
Advan	cement Method:				and Tooting Drace the	on for c	Notes:	, po.						
Holl Aband	onment Method: ng backfilled with soil cuttings upon completion.	used — See symt	and a <mark>Suppo</mark> ools ar	ddition Ind abb	and Testing Procedur Id and laboratory proc nal data (If any). nformation for explan reviations. olated from Google E	ation of	140165.							
	WATER LEVEL OBSERVATIONS No free water observed						Boring S	arted: 0	7-30-2	018	Borir	ng Com	pleted: 07-30-	2018
	NO HEE WALE ODSEIVED				racc		Drill Rig:	DR754			Drille	er: N. D	otson	
			!		st Mound Dr, Ste 135 Chattanooga, TN		Project N	lo.: E217	75151					

	PR	OJECT: DuPont Additional Borings					CDM : T Knox	Smith ville, T	Inc. N						
	SIT	E: DuPont Parkway Chattanooga, Tennessee						, -							
	OG	LOCATION See Exploration Plan	(-	'EL	ΡE	۲.	×		۲۲	STF	RENGTH	TEST	(%	ATTERBERG LIMITS	NES
	GRAPHIC LOG	Latitude: 35.0968° Longitude: -85.2645°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
	GR	Approximate Surface Elev: 654 (Ft.) +/- DEPTH ELEVATION (Ft.)	ä	WA ⁻	SAN	ΗR	RE		LAB	TES'	STRI ()	STR	CO		PER(
	<u>A I X</u>	0.3_\ <u>TOPSOIL</u> 653.5+/-									0				
		LEAN CLAY (CL), trace mica, dark brown, stiff	-	-	\boxtimes	3-6-4 N=10	56		4.0 (HP)				23	44-23-21	89
/26/18			_	-	\mathbf{X}	4-5-7 N=12	22		3.5 (HP)				24		
DT 10			5 -					-							
PLATE.GI		8.0 646+/-	_		\mid	2-3-5 N=8	_								
DATATEM		FAT CLAY (CH), trace mica, dark brown, stiff	-		\mathbf{X}	3-6-7 N=13	44		4.25 (HP)				24	51-25-26	98
RACON			10- -												
GPJ TER			_												
DNAL.		15.0 639+/-	45		Х	3-7-9 N=16	44		4.25 (HP)				25		
DITIOC		Boring Terminated at 15 Feet	15–												
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 22175151 DUPONT ADDITIONAL GPJ TERRACON_DATATEMPLATE GDT 10/26/18										A.10					
PARAT		Stratification lines are approximate. In-situ, the transition r	nay be	gradua	11.			Hamm	er Type:	Auto	matic				
ALID IF SEI		cement Method: ow Stem Auger	desc usec	ription and a	of fie dditio	and Testing Procedu Id and laboratory pro nal data (If any).	ocedures	Notes:							
IG IS NOT /		onment Method: ng backfilled with soil cuttings upon completion.	syml	bols ar	nd abb	Information for expla previations. polated from Google									
NG LC		WATER LEVEL OBSERVATIONS						Boring S	tarted: 0	7-30-2	2018	Borir	ng Com	oleted: 07-30-2	2018
BOR		No free water observed			4	naco		Drill Rig:	DR754			Drille	er: N. De	otson	
THIS				:		st Mound Dr, Ste 13 Chattanooga, TN	5	Project N	lo.: E217	75151					

	PR	OJECT: DuPont Additional Borings				CLIENT:	CDM Knox	Smith ville, T	Inc. N						
	SIT	E: DuPont Parkway Chattanooga, Tennessee					-	-,							
	g	LOCATION See Exploration Plan		ZS S	Ē				7	STF	RENGTH	TEST	(9	ATTERBERG LIMITS	ES
	GRAPHIC LOG	Latitude: 35.0966° Longitude: -85.2646° Approximate Surface Elev: 650 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
		DEPTH ELEVATION (Ft.)	_	≥₿	S/	E .	-		<u>د</u>	Ξ	CON ST	ST	U U		ШЦ
		0.3 <u>TOPSOIL</u> 649.5+1-													
		FAT CLAY (CH), trace silt, brown, medium stiff to stiff	-		X	2-2-3 N=5	44	_	4.5 (HP)						
10/26/18			- 5 -	_	\square	3-4-6 N=10	78	_	3.25 (HP)				23	50-26-24	98
LATE.GDT			-	-	\boxtimes	2-3-5 N=8	89	_	3.5 (HP)						
TEMP			-	1		0.4.5		_	0.05						
CON_DATA			- 10-	-	X	2-4-5 N=9	33	_	3.25 (HP)						
J TERRAC			-	-											
IAL.GF			_	-	\bigtriangledown	3-9-6	100	-	2.5						
ITION		15.0 635+/- Boring Terminated at 15 Feet	15-	-	\vdash	N=15			(HP)						
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL 22175151 DUPONT ADDITIONAL GPJ TERRACON_DATATEMPLATE.GDT 10/26/18		Stratification lines are approximate. In-situ, the transition	may be					Hamm	er Type	Auto	matic				
PAKA		Guaundauon mes are approximate. Ill-situ, ule transition i	nay De	graduz	er.				сттуре:		mallo				
NOT VALID IF SEI	Holle Abande	cement Method: ow Stem Auger onment Method: ng backfilled with soil cuttings upon completion.	deso useo — See	cription d and a Suppo	of fie dditio	and Testing Procedur Id and laboratory proc nal data (If any). Information for explan- previations.	edures	Notes:							
SG IS			Elev	ations	interp	olated from Google E	arth Pro								
		WATER LEVEL OBSERVATIONS						Boring S	tarted: 0	7-30-2	2018	Borir	ng Com	pleted: 07-30-	2018
30RI		No free water observed			2	nacc		Drill Rig:	DR754			Drille	er: N. D	otson	
HISE				_	51 Lo	st Mound Dr, Ste 135 Chattanooga, TN		Project N		75151					
⊢ [znattanooya, TN		1. 10joor N	· · · · · · · · · · · · · · · · · · ·						

PR	OJECT: DuPont Additional Borings		CLIENT	CDM Knox	Smith ville, T	Inc. N								
SIT	E: DuPont Parkway Chattanooga, Tennessee													
ŋ	LOCATION See Exploration Plan		2°F	ш				~	STR	ENGTH	TEST		ATTERBERG LIMITS	S
GRAPHIC LOG	Latitude: 35.0971° Longitude: -85.2632°	DEPTH (Ft.)	NUC I	ТҮР	FIELD TEST RESULTS	RECOVERY (%)		ror.		≚⊥		また 後日 1000	2	IN I
JHA	Latitude. 55.0971 Longitude65.2052	РТН	ERL	PLE	ESUL	∧o ⊗	RQD (%)	DRA IP (ts	ТҮР	RESS NGT sf)	%) NI	ATE TEN	LL-PL-PI	ENT
	Approximate Surface Elev: 656 (Ft.) +/- DEPTH ELEVATION (Ft.)	B	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	E E E E E E E E E E E E E E E E E E E	RE		LABORATORY HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)		PERCENT FINES
<u>, 17, - 1</u>	0.3_\ <u>TOPSOIL</u> 655.5+/-													
	LEAN CLAY (CL), brown, medium stiff to stiff	-	-	\boxtimes	2-4-3 N=7	56								
		-	-											
		- 5 -		\boxtimes	2-5-8 N=13	56								
	deals bassing	_					_							
	dark brown	-	-	Х	2-5-7 N=12	44								
		- 10-	-	\mathbf{X}	3-6-6 N=12	56								
		-												
		-					_							
	15.0 641+/-	-		X	4-7-8 N=15	56								
//////	Boring Terminated at 15 Feet	15-												
			L_	Ļ										
	Stratification lines are approximate. In-situ, the transition			Hamm	er Type:	Auto	matic							
	cement Method:	and Testing Procedur	es for a	Notes:										
Holl	ow Stem Auger	of fie dditio	and Testing Procedur Id and laboratory proc nal data (If any).	edures										
		See	Suppo	rting	Information for explan	ation of								
	onment Method: ng backfilled with soil cuttings upon completion.	ools ar	nd abb	previations. polated from Google E										
	WATER LEVEL OBSERVATIONS				<u> </u>		0 0		- ·			0045		
	No free water observed		racc		Boring St		8-07-2	018	Borir	ng Com	oleted: 08-07-	2018		
							Drill Rig:	DR890			Drille	er: N. D	otson	
			;		st Mound Dr, Ste 135 Chattanooga, TN		Project N	lo.: E217	75151					

PR	OJECT: DuPont Additional Borings				CLIENT	CDM Knox	Smith ville, T	lnc. N						
SIT	E: DuPont Parkway Chattanooga, Tennessee													
U	LOCATION See Exploration Plan		- S	ш				~	STR	ENGTH	TEST		ATTERBERG LIMITS	S
GRAPHIC LOG	Latitude: 35.0976° Longitude: -85.2617°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)		LABORATORY HP (tsf)	ш	COMPRESSIVE STRENGTH (tsf)	()	WATER CONTENT (%)	Livito	PERCENT FINES
ΠΗΔ		РТН	ERL	РГЕ	ESUI	20 (%)	RQD (%)	HP (t	тезт түре	RESS ENGT sf)	STRAIN (%)	VATE	LL-PL-PI	ENT
GR/	Approximate Surface Elev: 657 (Ft.) +/-	B	WAT	SAM	E E E E E E E E E E E E E E E E E E E	RE		LAB	TEST	STRE (t	STR₽	20 CO		ERC
ار <i>: بر1</i> ار	DEPTH ELEVATION (Ft.) 0.3_1 0.556.5±/-		- 0	0,					'	8				<u>L</u>
	LEAN CLAY (CL), brown, medium	-			2-3-4		_							
	stiff to stiff	-		Ж	2-3-4 N=7	67								
		_												
		-	-	\bigtriangledown	3-5-8	67								
		5 –	-	ightarrow	N=13	01	-							
		-					_							
		_		X	3-5-7 N=12	56								
		_												
		_		\bigtriangledown	3-6-7	78								
		10-		\square	N=13	10	_							
		-												
		_												
		_												
		_		\bigtriangledown	3-6-7	72	-							
	15.0 642+/-	15-		\square	N=13	12								
	Boring Terminated at 15 Feet													
	Stratification lines are approximate. In-situ, the transition	may be o	aradua				Hamm	er Type:	Autor	matic				
		,					, po.							
	cement Method:	See	Explor	ation	and Testing Procedur	es for a	Notes:							
Holl	ow Stem Auger	desc used	ription and a	of fie dditic	ld and laboratory proo nal data (If any).	edures								
•		See	Suppo	rting	Information for explan	ation of								
	onment Method: ng backfilled with soil cuttings upon completion.	1			previations.									
		Elev	ations	interp	oolated from Google E	arth Pro					-			
	WATER LEVEL OBSERVATIONS No free water observed						Boring St	arted: 0	8-07-2	018	Borin	ng Com	oleted: 08-07-2	2018
				4	nacc		Drill Rig:	DR890			Drille	er: N. De	otson	
			!		st Mound Dr, Ste 135 Chattanooga, TN		Project N	o.: E217	75151					

	BORING LOG NO. B-203 PROJECT: DuPont Additional Borings CLIENT: CDM Smith Inc.												F	Page 1 of	1
	PR	OJECT: DuPont Additional Borings				CLIENT:		Smith ville, T							
	SIT	E: DuPont Parkway Chattanooga, Tennessee					RIIUX	vine, i	IN						
Γ	90	LOCATION See Exploration Plan	(·	DNS NS	ΡE	t.	×		RY	STF	RENGTH	TEST	(%	ATTERBERG LIMITS	VES
	GRAPHIC LOG	Latitude: 35.0981° Longitude: -85.2601°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	ЧРЕ	COMPRESSIVE STRENGTH (tsf)	(%)	WATER CONTENT (%)		PERCENT FINES
	GRAP	Approximate Surface Elev: 661 (Ft.) +/-	DEPI	VATE	AMPI	RES	REC(2	ABOF	TEST TYPE	MPRE (tsf)	STRAIN (%)	ND SONT	LL-PL-PI	ERCE
		DEPTH ELEVATION (Ft.)		> 8	Ś					F	<u>S</u> o	ο Ο			L L
þ		0.3 <u>ASPHALT</u> 660.5+/- 0.8 <u>AGGREGATE</u> 660+/-	_			0.4.0		_							
		LEAN CLAY (CL), with gravel, yellow to red, medium stiff to stiff	_	-	Д	2-4-2 N=6	67	-					24		
10/26/18	10		- 5 -		\boxtimes	3-4-5 N=9	44						17		
TE.GDT 1	1 0	6.0 655+/- LEAN CLAY (CL), brown, stiff	-	-	\bigtriangledown	1-5-6	44						19		
MPLAT			_		\square	N=11		-							
DATATE			- 10-	-	\boxtimes	3-4-6 N=10	67						22		
RACON			-												
.GPJ TEF			_	-		0.4.0									
DITIONAL			- 15-		Д	3-4-6 N=10	56	-					24	39-21-18	89
ONT ADI			_	-											
E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT			_	-	\bigtriangledown	3-5-7 N=12	100	-					24		
- E217		20.0 641+/- Boring Terminated at 20 Feet	20-		\square	IN-12									
WELL															
OR-NC															
RTLO															
d SMA															
Ц СЩ															
EPOR															
VAL R															
ORIGI															
SOMO															
		Stratification lines on annustrate to the the traction	nov t -							A					
PARA		Stratification lines are approximate. In-situ, the transition r	nay be (yradua	u.			Hamm	er Type:	Auto	JIIATIC				
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO		cement Method: ow Stem Auger	desc	ription	of fie	and Testing Procedure Id and laboratory proce nal data (If any).		Notes:							
JT VA	hand	onment Method:	See	Suppo	rting l	nformation for explana	tion of								
SIS NC		onment Method: ng backfilled with soil cuttings upon completion.	1			oreviations. olated from Google Ea	arth Pro								
0 LOG		WATER LEVEL OBSERVATIONS						Boring S	tarted: 0	8-07-2	2018	Bori	ng Com	pleted: 08-07-	2018
ORIN(_	No free water observed			2			Drill Rig:		5 51-1		_	er: N. D		_0.0
THIS E					51 Lo:	st Mound Dr, Ste 135 Chattanooga, TN		Project N		75151		+			

		BOF	RIN	IG	LOG NO.	B-2	04					F	Page 1 of ²	1
PR	OJECT: DuPont Additional Borings				CLIENT									
SIT	E: DuPont Parkway Chattanooga, Tennessee					KNOX	ville, T	N						
g	LOCATION See Exploration Plan		R S L	щ				~	STR	ENGTH	TEST	()	ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 35.0992° Longitude: -85.2592°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
GR	Approximate Surface Elev: 661 (Ft.) +/-	ä	WA:	SAN	Ēĸ	R		LAE	TES	STR	STR	CO C		PER
$\mathbf{O}($	DEPTH ELEVATION (Ft.) 0.3 ASPHALT 660.5+1/									0				
1 0	<u>0.8</u> ∖ <u>AGGREGATE</u> / ^{660+/} / LEAN CLAY (CL), with gravel,	-	-		9-10-10 N=20	78	_							
0 .0	yellow to red, very stiff to stiff	-			3-5-7	78								
		5-		\square	N=12	70	_							
	LEAN CLAY (CL), brown, stiff	-		Д	4-5-9 N=14	78								
		-			4-5-7 N=12	89	_							
		10- -												
		_												
	15.0 646.1	-	-	\mathbb{X}	3-5-6 N=11	56								
	15.0 646+/- Boring Terminated at 15 Feet	15-												
	Stratification lines are approximate. In-situ, the transition	may be					Hamm	er Type	Auto	matic				
Holl Aband	cement Method: ow Stem Auger onment Method:	desc usec — See	ription I and a Suppo	of fie additio orting I	and Testing Procedur Id and laboratory proc nal data (If any). nformation for explana reviations.	edures	Notes:							
DOL	ng backfilled with soil cuttings upon completion.	Elev	ations	interp	olated from Google E	arth Pro								
	WATER LEVEL OBSERVATIONS						Boring St	arted: 0	8-07-2	018	Borir	ng Com	oleted: 08-07-2	2018
	No free water observed			2	racc		Drill Rig:					er: N. De		
					st Mound Dr, Ste 135 Chattanooga, TN		Project N		75151					

		BOI	RIN	١G	LOG NO	. B-2	05					F	Page 1 of	1
PR	OJECT: DuPont Additional Borings				CLIENT									
SIT	TE: DuPont Parkway Chattanooga, Tennessee					Knox	ville, T	N						
g	LOCATION See Exploration Plan		NS NS	РЕ				2	STR	RENGTH	TEST	(%)	ATTERBERG LIMITS	IES I
GRAPHIC LOG	Latitude: 35.1006° Longitude: -85.2587° Approximate Surface Elev: 662 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
Ū	DEPTH ELEVATION (Ft.)		N N N	SA	Ľ	Ľ.		ΓA	TE	COM	STI	ö		PEF
	0.3 <u>ASPHALT</u> 661.5±/ FILL - LEAN CLAY (CL), with chert fragments 3.0 659+/	-	_	\mathbf{X}	14-11-12 N=23	89	_	4.5 (HP)						
	LEAN CLAY (CL), brown, stiff	5-		\square	3-4-4 N=8	33	_	4.5 (HP)						
		-	-	\square	4-5-6 N=11	56	_	4.5 (HP)						
	medium stiff	- 10-	-	\square	4-4-3 N=7	56	_	4.25 (HP)						
	13.5 648.5+/	-	-											
	LEAN CLAY (CL), with sand, trace mica, gray, soft to medium stiff	15-	-	$\left \right\rangle$	1-1-2 N=3	22								
	20.0 642+,	-	-	\mathbf{X}	2-2-3 N=5	78	_	0.75 (HP)				25	33-22-11	84
///////	Boring Terminated at 20 Feet	20-						()						
	Stratification lines are approximate. In-situ, the transition	may be	araduu				Hamm	er Type:	Auto	matic				
	Casanoadon mos are approximate. In situ, une d'al Situoi	may be	grauu	ы. 				ion rype.						
Hol Aband	acement Method: low Stem Auger donment Method: ing backfilled with soil cuttings upon completion.	dese usee See sym	cription d and a Suppo bols a	n of fie additio orting I nd abb	and Testing Procedu Id and laboratory pro nal data (If any). Information for explar reviations. olated from Google I	cedures	Notes:					_		
	WATER LEVEL OBSERVATIONS	1	11				Boring S	tarted: 0	8-07-2	2018	Borii	ng Com	pleted: 08-07-	2018
	No free water observed			2	naco		Drill Rig:				_	er: N. D		
					st Mound Dr, Ste 135 Chattanooga, TN		Project N		75151					

Page 1 of 1

PR	OJECT: DuPont Additional Borings				CLIENT		Smith ville, T							
SIT	E: DuPont Parkway Chattanooga, Tennessee						- ,							
U	LOCATION See Exploration Plan		្ល	ш				~	STR	ENGTH	TEST		ATTERBERG LIMITS	ŝ
GRAPHIC LOG		DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)		LABORATORY HP (tsf)		COMPRESSIVE STRENGTH (tsf)		WATER CONTENT (%)	LIWITS	PERCENT FINES
PHIC	Latitude: 35.1019° Longitude: -85.2591°	ТН	RVA	ĽE	D T D T SUL	NO(%)	Rad (%)	P (ts	TEST TYPE	ESSI NGTI 1	STRAIN (%)	TEN	LL-PL-PI	ENT
GRA	Approximate Surface Elev: 655 (Ft.) +/-	DEF	VATE	AMF	RE	REC		ABC H	EST	MPR TREI (ts	TRAI	×.vo	LL-PL-PI	ERCI
	DEPTH ELEVATION (Ft.)		>ō	S					μ	0° N	S	0		ä
5.4	0.5 TOPSOIL 654.5+/- FILL - GRAVELLY LEAN CLAY	_												
500	FILL - GRAVELLY LEAN CLAY (CL), dark brown	_		\mathbb{N}	6-6-3	33		4.5				9		56
	3.0 652+/-			\sim	N=9		-	(HP)						
	<u>SANDY LEAN CLAY (CL)</u> , gray, medium stiff				1-3-5		-	1.75						
		_		Х	N=8	56		(HP)				20		
	5.5 649.5+/- SANDY LEAN CLAY (CL), gray,	5 –												
	soft to very soft	-		\bigtriangledown	0-1-2	44		1.25				21	32-20-12	67
		_	1	\bigtriangleup	N=3		_	(HP)				21	02 20 12	
		_			0.0.4		_	0.05						
		-		Х	0-0-1 N=1	22		0.25 (HP)				23	36-21-15	
		10-						<u> </u>						
	12.0 643+/-	_												
	SANDY LEAN CLAY (CL), gray,	-												
	stiff	_					_							
	15.0 640+/-	-		X	4-7-8 N=15	78		4.5 (HP)				21		
	Boring Terminated at 15 Feet	15-						()						
	-													
	Stratification lines are approximate. In-situ, the transition r	may be g	l gradua	l.			Hamm	er Type:	Auto	matic				
	zement Method: ow Stem Auger	See	Explor	ation	and Testing Procedur	es for a	Notes:							
100					ld and laboratory proc nal data (If any).	eaures								
Aberd	nmont Mothod	See	Suppo	rting	Information for explan	ation of								
	onment Method: ng backfilled with soil cuttings upon completion.	1			previations.	orth Dr								
		Elev	ations	interp	oolated from Google E	artn Pro								
	WATER LEVEL OBSERVATIONS No free water observed				rar		Boring St	arted: 0	8-06-2	018	Borin	ng Com	oleted: 08-06-2	2018
				9	IC		Drill Rig:				Drille	er: N. Do	otson	
			ł		st Mound Dr, Ste 135 Chattanooga, TN		Project N	lo.: E217	75151					

PR	OJECT: DuPont Additional Borings				CLIENT	: CDM Knox	Smith ville, T	Inc. N						
SIT	E: DuPont Parkway Chattanooga, Tennessee						,							
GRAPHIC LOG	LOCATION See Exploration Plan Latitude: 35.103° Longitude: -85.2582° Approximate Surface Elev: 653 (Ft.) +/- DEPTH ELEVATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	STR TYPE	COMPRESSIVE D STRENGTH D (tsf)	STRAIN (%)	WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	PERCENT FINES
<u>x 1/2</u> · . <u>x</u>	0.6 TOPSOIL 652.5+/- LEAN CLAY (CL), brown, stiff	-	-	X	3-4-5 N=9	89	_	3.0 (HP)						
		-	-		3-6-6 N=12	100		4.5 (HP)						
		5 -	-	\sim	3-4-5 N=9	100	_	2.25 (HP)						
		-	-	\sim	4-5-6	78	_	3.25						
		10- -	-		N=11			(HP)						
	13.0 640+/- SANDY LEAN CLAY (CL), brown, very stiff	-	-	\searrow	8-17-11	67		3.25				14		41
	15.0 638+/- Boring Terminated at 15 Feet	15-		\square	N=28	07		(HP)				14		
	Stratification lines are approximate. In-situ, the transition	may be e	praduz				Hamm	er Type	Auto	matic				
		nay be	gradua	ı.				е туре:		mailC				
Holl	cement Method: ow Stem Auger onment Method: ing backfilled with soil cuttings upon completion.	usec — See syml	l and a <mark>Suppo</mark> pols ar	dditio <mark>rting</mark> I nd abb	and Testing Procedur Id and laboratory pro- nal data (If any). Information for explan previations.	ation of	Notes:							
	WATER LEVEL OBSERVATIONS						Boring S	tarted: 0	8-06-2	018	Borir	ng Com	oleted: 08-06-	2018
	No free water observed			2	nacc	חכ	Drill Rig:				_	er: N. D		
					st Mound Dr, Ste 135 Chattanooga, TN		Project N		75151					

Page 1 of 1

PR	OJECT: DuPont Additional Borings				CLIENT		Smith ville, T						-	
SIT	E: DuPont Parkway Chattanooga, Tennessee													
g	LOCATION See Exploration Plan		R R	ш				~	STR	RENGTH	TEST	()	ATTERBERG LIMITS	S
GRAPHIC LOG	Latitude: 35.1051° Longitude: -85.2568°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)		ESSIVE VGTH 1)		WATER CONTENT (%)		PERCENT FINES
GRAF	Approximate Surface Elev: 654 (Ft.) +/- DEPTH ELEVATION (Ft.)	DEP	WATE	SAMP	REL	REC		LABO	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	CON	LL-PL-PI	PERCE
	0.6 TOPSOIL 653.5+/-													
	FILL - SAND AND GRAVEL , with clay, brown	-	-	\mid	1-0-1 N=1	22								
		-	-	X	0-1-0 N=1	33	_					13		26
	5.5 648.5+/- LEAN CLAY (CL), brown, medium	5-												
	stiff	-		\mid	4-2-2 N=4	89		1.0 (HP)				28		72
	8.5 645.5+/- SILTY CLAYEY SAND WITH GRAVEL (SC-SM), brown and	-	-	X	10-12-14 N=26	44						11		17
20	red, medium dense	10-												
3		-												
0		-	-											
No.		-	-	\square	10-13-16 N=29	67								
	15.0 639+/- Boring Terminated at 15 Feet	15-		\vdash	IN-29									
	Stratification lines are approximate. In-situ, the transition	may be	graduz	al.			Hamm	er Type:	Auto	matic				
Holl Aband	cement Method: ow Stem Auger onment Method: ng backfilled with soil cuttings upon completion.	deso useo See sym	cription d and a Suppo bols ar	of fie additic orting nd abl	and Testing Procedu Id and laboratory pro onal data (If any). Information for explar previations.	cedures	Notes:							
	WATER LEVEL OBSERVATIONS										-	-		
	No free water observed	╡╹	16		raco		Boring S		8-08-2	2018	_	-	pleted: 08-08-	2018
					st Mound Dr, Ste 135		Drill Rig:				Drille	er: N. D	otson	
		1		0	Chattanooga, TN		Project N	lo.: E21	75151					

			I	BOF	RIN	IG	LOG I	NO. I	B-2()9					F	Page 1 of	1
PR	OJECT	: DuPont Additional Bori	ngs				CLI	ENT: 9									
SIT	ſE:	DuPont Parkway Chattanooga, Tennesse	e					ł	Knox	ville, T	N						
g	LOCATI	ON See Exploration Plan			2 S L	щ					~	STF	RENGTH	TEST	(9	ATTERBERG LIMITS	ES
GRAPHIC LOG	Latitude: 3	15.1065° Longitude: -85.2566° Approximate Surface Elev: 657 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS		RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	тезт түре	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
	DEPTH	ELEVATIO			≤ö	Ś						F	N CO	ەن ا			L L
	0.3 <u>TOI</u> <u>LE/</u> stiff	2 <u>SOIL</u>	<i>-ر/</i> +5 <u>6.5</u>	-	-	X	2-2-3 N=5		67	_	2.5 (HP)						
	3.5	e	653.5+/-	-	-												
	brov	N CLAY (CL), with gravel, wn, stiff to very stiff		- 5 -	-	X	3-3-9 N=12		89								
				_	-	\mid	13-13-1 N=23	0	78								
				- - 10-			5-9-17 N=26	,	100		4.5 (HP)						
	hard				-												
	haro 16.0 Boi	641+/-	15-	-	X	6-12-3 N=42	0	100	_	4.25 (HP)							
	Stratifica	ansition	may be s	graduz	al.					er Type	Auto	matic					
Holl Aband	Icement Me Iow Stem A		desc used See	ription and a	of fie additic	and Testing P eld and laborate anal data (If an Information for previations.	ory proced y).	ures	Notes:								
		ed with soil cuttings upon completion.	1 [*]			oolated from G	oogle Eartl	h Pro									
	WAT								Boring S	tarted: 0	8-08-2	2018	Bori	ng Com	pleted: 08-08-	-2018	
	No free	water observed				2	ra			Drill Rig:		2 00-2			er: N. D		_0.0
							st Mound Dr, S Chattanooga, T	Ste 135		Project N		75151			JI. 14. D		

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL E2175151 DUPONT ADDITIONAL GPJ TERRACON_DATATEMPLATE.GDT 10/26/18

PR	OJECT: DuPont Additional Borings		CLIENT	: CDM Knox	Smith ville, T	Inc. N								
SIT	E: DuPont Parkway Chattanooga, Tennessee						·							
g	LOCATION See Exploration Plan	~	NS	ЪЕ	Ŀ	~		2	STR	RENGTH	TEST	(%	ATTERBERG LIMITS	ES 1
GRAPHIC LOG	Latitude: 35.1079° Longitude: -85.2565°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	ЪЕ	COMPRESSIVE STRENGTH (tsf)	(%)	WATER CONTENT (%)		PERCENT FINES
RAPI	Approximate Surface Elev: 661 (Ft.) +/-	DEPT	ATEF SER/	MPL	-IELD RESI	SECC	1 N S	ABOR	TEST TYPE	APRES RENC (tsf)	STRAIN (%)	ONTE	LL-PL-PI	RCEN
	DEPTH ELEVATION (Ft.)		≥.8	SA	ш	ш.			ΤE	CON ST	ST	Õ		Β
	0.3 <u>TOPSOIL</u> 660.5+/- LEAN CLAY (CL), with gravel,	_	_											
No.	with sand, brown, stiff 3.0 658+/-	-	-	Х	3-3-3 N=6	67	_	3.5 (HP)						
	LEAN CLAY (CL), with gravel, yellowish brown and red, very stiff to hard	-		\mathbf{X}	3-6-27 N=33	44								
		5 -												
		_		\square	3-11-25 N=36	56		4.5 (HP)						
		-	-		10.45.44		_	4.5						
		- 10-		Д	10-15-11 N=26	78	_	4.5 (HP)						
		-												
		_												
		-	_	\bigvee	6-11-9	78	_	4.5						
		15-	-	\vdash	N=20		_	(HP)						
		-	-											
		-												
		_		\square	4-9-14	78	-	4.5						
///	20.0 641+/- Boring Terminated at 20 Feet	20-		\square	N=23	10		(HP)						
	Bonnig reminated at 20 reet													
	Stratification lines are approximate. In-situ, the transition	may be	l gradua	ıl.			Hamm	er Type:	Auto	l matic				
Adver	cement Method:	<u> </u>					Neter							
	cement Method: ow Stem Auger	desc	ription	of fie	and Testing Procedure Id and laboratory procention nal data (If any).	es for a cedures	Notes:							
A	onmont Mothod	See	Suppo	rting I	nformation for explan	ation of								
	onment Method: ng backfilled with soil cuttings upon completion.				reviations. olated from Google E	arth Pro								
	WATER LEVEL OBSERVATIONS						Boring S	tarted: 0	8-08-2	2018	Borir	ng Com	oleted: 08-08-2	2018
	No free water observed			9	racc		Drill Rig:				_	er: N. D		
			_		st Mound Dr, Ste 135	_	Project N		75151					

Page 1 of 1

PR	OJECT: DuPont Additional Borings		CLIENT		Smith ville, T						_			
SIT	E: DuPont Parkway Chattanooga, Tennessee													
ŋ	LOCATION See Exploration Plan		N L	ш				>	STR	ENGTH	TEST		ATTERBERG LIMITS	S
GRAPHIC LOG	Latitude: 35.1037° Longitude: -85.2569°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	LL-PL-PI	PERCENT FINES
	Approximate Surface Elev: 662 (Ft.) +/- DEPTH ELEVATION (Ft.) 0.5_ TOPSOIL 661.5+/-		WAT OBSE	SAM	E E E E E E E E E E E E E E E E E E E	RE		LAB	TEST	COMPI STRE (1	STR/	200		PERC
	0.5 <u>TOPSOIL</u>	_					_	0.75						
	brown, stiff to very stiff	-	-	X	2-3-5 N=8	67	_	2.75 (HP)						
		- 5 -		X	2-6-10 N=16	78		4.5 (HP)						
		-	-	X	2-10-16 N=26	100		4.25 (HP)				19	40-22-18	76
2	8.0 654+/- <u>CLAYEY SAND (SC)</u> , with chert, red and yellowish brown, medium dense	-	-	\mathbf{X}	7-8-10 N=18	67		4.0 (HP)				14	38-20-18	21
13	uchice	10- -	-					(1.1.)						
2														
100	15.0 647+/-	-	-	X	7-8-10 N=18	67		4.5 (HP)						
	Boring Terminated at 15 Feet	15-												
	Stratification lines are approximate. In-situ, the transition r	may be	gradua	I.			Hamm	er Type:	Auto	matic				
	cement Method: ow Stem Auger	l and a	dditic	and Testing Procedured and laboratory procedured and laboratory procedured and laboratory procedured and (If any).		Notes:								
	onment Method: ng backfilled with soil cuttings upon completion.	syml	bols ar	nd abl	Information for explan breviations. polated from Google E						_			
	WATER LEVEL OBSERVATIONS No free water observed	- •					Boring S	tarted: 0	8-08-2	018	Borir	ng Com	pleted: 08-08-	2018
				4	racc		Drill Rig:	DR890			Drille	er: N. D	otson	
			:		st Mound Dr, Ste 135 Chattanooga, TN		Project N	lo.: E217	75151					

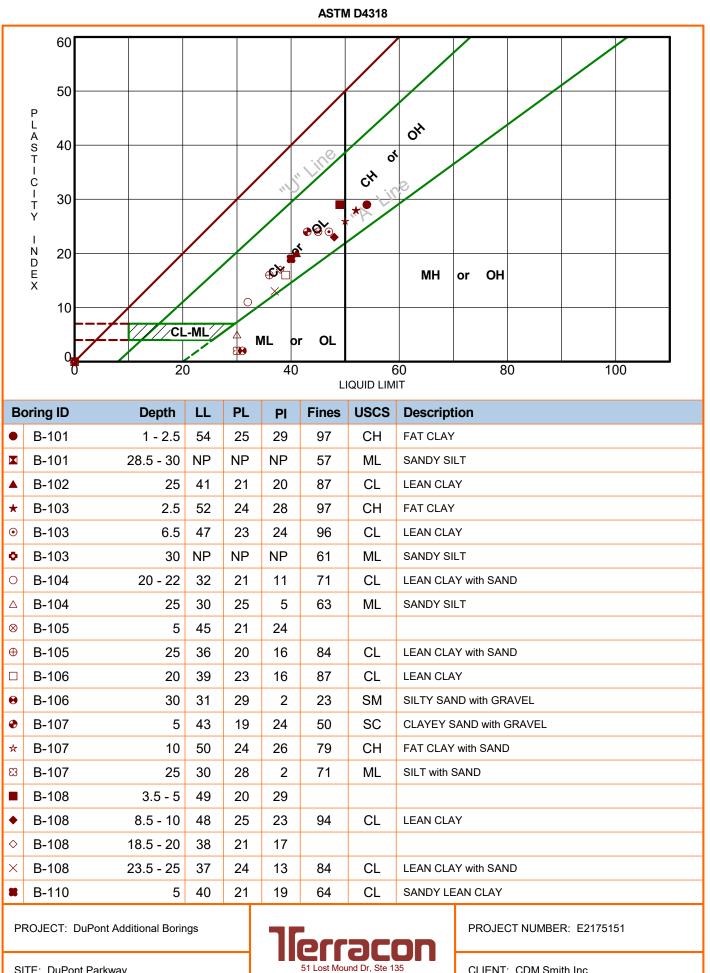
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 10/26/18

Page 1 of 1

PR	OJECT: DuPont Additional Borings				CLIENT		Smith ville, T							
SIT	E: DuPont Parkway Chattanooga, Tennessee													
U	LOCATION See Exploration Plan		- S	ш				>	STR	RENGTH	TEST		ATTERBERG LIMITS	S
GRAPHIC LOG	Latitude: 35.1043° Longitude: -85.257°	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY HP (tsf)	LYPE	COMPRESSIVE STRENGTH (tsf)	N (%)	WATER CONTENT (%)		PERCENT FINES
GRAF	Approximate Surface Elev: 654 (Ft.) +/- DEPTH ELEVATION (Ft.)	DEP	WATE	SAMP	FIEL REG	REC		LABO	TEST TYPE	STREN (tsf	STRAIN (%)	CONT	LL-PL-PI	PERCE
1. <u> 1.</u>	0.5 TOPSOIL 653.5+/-													
	LEAN CLAY (CL), with trace fine gravel, brown, medium stiff to very s tiff	_	-	X	4-2-3 N=5	67		3.5 (HP)						
		-	-	X	4-5-8 N=13	67	_	4.25 (HP)						
		5 – -			6-9-15	78	_	4.5						
	8.0 with light gray mottles 646+/- SANDY LEAN CLAY (CL), with	-			N=24		_	(HP)						
	fine gravel, brown and red, stiff	- 10-		X	10-6-8 N=14	78	_	4.0 (HP)						
		-	-											
	with common chart	-			10-6-6	78	_	4.5						
	15.0 -with coarse chert 639+/- Boring Terminated at 15 Feet	15-		\square	N=12	70		(HP)						
	Stratification lines are approximate. In-situ, the transition i	may be	gradua	I.			Hamm	er Type:	Auto	matic				
Hol	cement Method: ow Stem Auger onment Method: ng backfilled with soil cuttings upon completion.	desc usec See syml	ription I and a Suppo bols ar	of fie dditic rting nd abl	and Testing Procedu Id and laboratory pro nal data (If any). Information for explar previations.	cedures	Notes:							
		Elev	auons	interp	olated from Google E	arın Pro					-			
	WATER LEVEL OBSERVATIONS No free water observed	- -			rraco		Boring S	tarted: 0	8-08-2	2018	Borir	ng Com	oleted: 08-08-2	2018
							Drill Rig:	DR890			Drille	er: N. D	otson	
					st Mound Dr, Ste 135 Chattanooga, TN)	Project N	lo.: E21	75151					

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 10/26/18

SUMMARY OF LABORATORY RESULTS

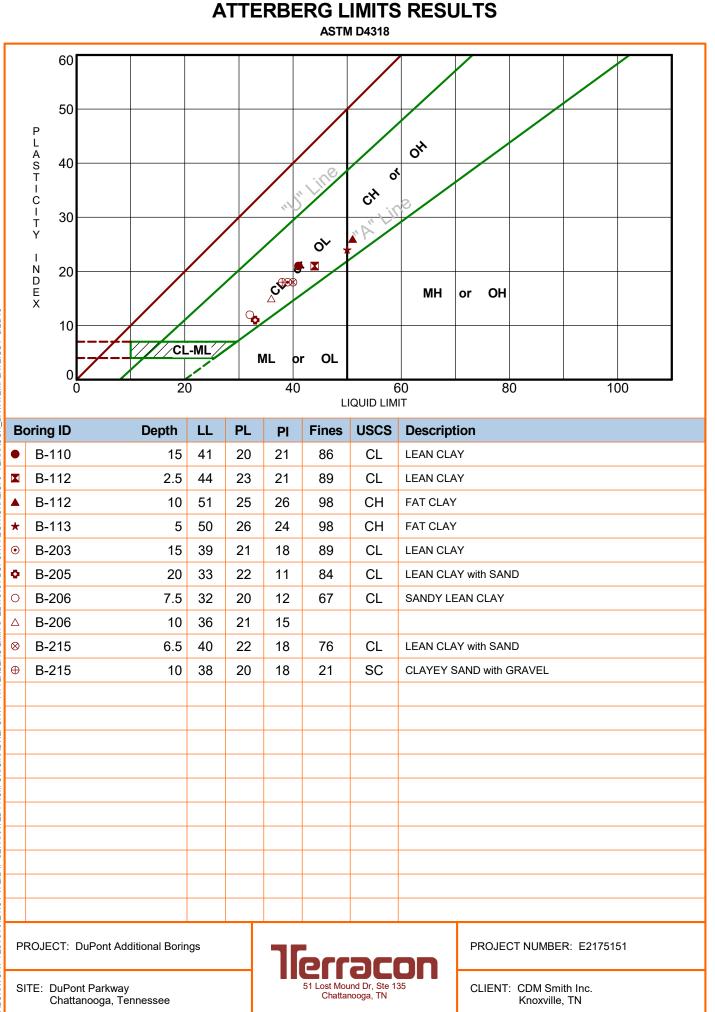

e Borehole	Depth	USCS	In-Situ P	roperties		ation			Ex	pansion	Testing			Corrosiv						
Borehole No. B-101 B-101 B-101 B-101 B-101 B-102 B-102 B-102 B-102 B-103 B-103 B-103 B-103 B-103	(ft.)	Soil Class.	Dry Density	Water	Passing #200		berg l	1	Dry Density (pcf)	Water Content	Surcharge	Expansion	Expansion Index	pН	Resistivity	Sulfates	Remarks			
			(pcf)	Content (%)	Sieve (%)	LL	PL	PI		(%)	(psf)	(%)	Index El 50	F	(ohm-cm)	(ppm)				
B-101	1	СН		19	97	54	25	29												
B-101	3.5			20													2			
B-101	8.5			23													2			
B-101	13.5			25													2			
B-101	23.5			32													2			
B-101	28.5	ML		41	57	NP	NP	NP												
B-102	20			27													2			
B-102	25	CL		30	87	41	21	20												
B-102	30			42	77												2			
B-103	2.5	СН		20	97	52	24	28												
B-103	6.5	CL		24	96	47	23	24												
B-103	10			25													2			
B-103	20			28													2			
B-103	25			29													2			
B-103	30	ML		44	61	NP	NP	NP												
B-104	2.5			18	53												2			
B-104	20	CL		28	71	32	21	11												
B-104	25	ML		33	63	30	25	5												
B-105	1				86															
B-105	5			17		45	21	24												
B-105	6.5			26	43												2			
B-105	15			25													2			
B-105	25	CL		30	84	36	20	16												
B-105	30			44													2			
B-106	2.5			19	51												2			
B-103 B-104 B-104 B-105 B-106 REMARKS 1. Dry Density 2. Visual Class 3. Submerged 4. Expansion In PROJECT: DuF SITE: DuPont R Chattance	ification. to approxin	nate saturati	on.		rings of a mu	-).												
PROJECT: DuF	PROJECT: DuPont Additional Borings					lerracon								PROJECT NUMBER: E2175151						
SITE: DuPont I Chattand	SITE: DuPont Parkway Chattanooga, Tennessee						51		nd Dr, Ste 1 ooga, TN			C	CLIENT: CDM Smith Inc. Knoxville, TN							
					PH. 423	-499-611	1	FAX. 42	3-499-8099		E	EXHIBIT: B-1								

SUMMARY OF LABORATORY RESULTS

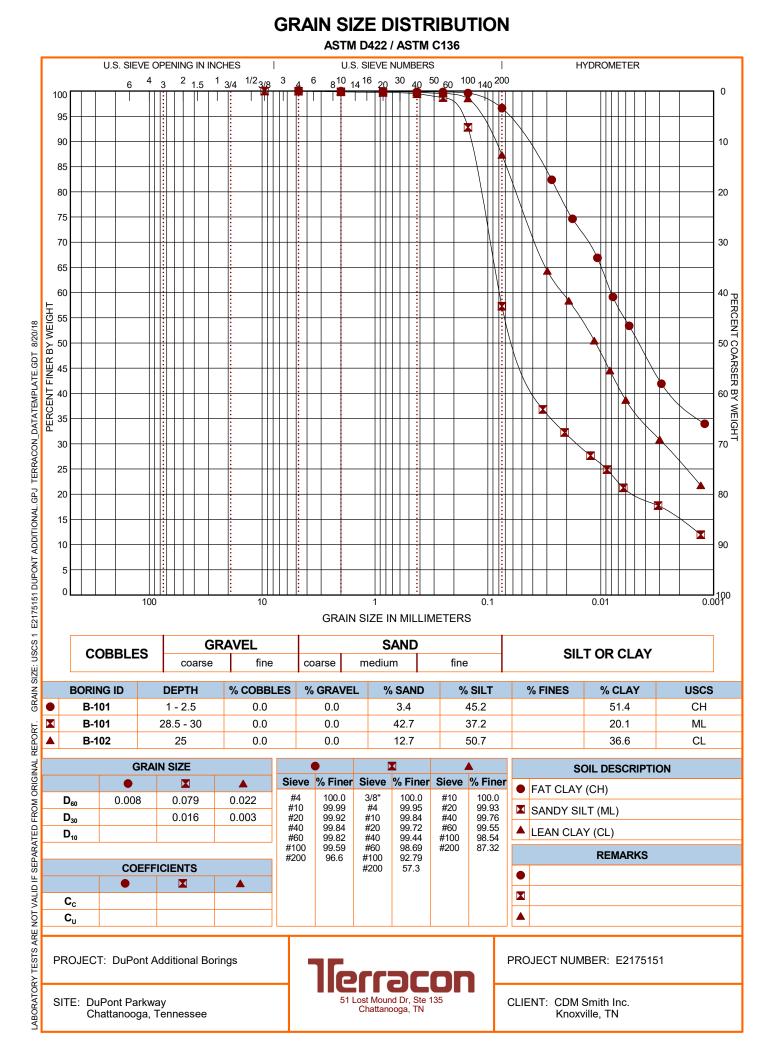
≝ Borehole	ahole	Depth (ft.)	USCS	In-Situ P	roperties		assific	ation			Ex	pansion	Testing	g Corros		Corrosiv	ity			
Bore Not Applify and Applify a			Soil Class.	Dry Density (pcf)	Water Content (%)	Passing #200 Sieve (%)	Atter	berg L PL	imits Pl	Dry Density (pcf)	Water Content (%)	Surcharge (psf)	Expansion (%)	Expansion Index EI ⁵⁰	рН	Resistivity (ohm-cm)	Sulfates (ppm)	Remarks		
פ ⊒ B-1	106	5			18													2		
B-1	106	6.5	СН		27													2		
B-1	106	10			22													2		
B-1	106	15			23													2		
B-1	106	20	CL		27	87	39	23	16											
∯ 8-1	106	25			27													2		
B-1	106	30	SM		35	23	31	29	2											
e B-1	107	2.5			16													2		
B-1		5	SC		16	50	43	19	24											
B-1		10	СН		36	79	50	24	26											
E B-1	107	20			26													2		
B-1		25	ML		35	71	30	28	2											
B-1	107	30			15	13												2		
B-1	108	3.5			17		49	20	29											
	108	6	СН		27													2		
Б В-1	108	8.5	CL		35	94	48	25	23											
ੇ B-1	108	13.5			26													2		
B-1 B-1 B-1 B-1	108	18.5			22		38	21	17											
[°] − B-1	108	23.5	CL		38	84	37	24	13											
5 В-1	108	28.5			10	6												2		
≚ ≰ B-1	110	2.5			15													2		
B-1	110	5	CL		19	64	40	21	19											
5 ≊ B-1	110	6.5			24													2		
B-1	110	10			25													2		
B-1	110	15	CL		26	86	41	20	21											
2. Visi	/ Density a ual Class bmerged	and/or mois ification. to approxin	sture determ		ne or more	rings of a mu	ılti-ring	sample	II			1	1	1	1					
4. Exp	PROJECT: DuPont Additional Borings					lerracon								PROJECT NUMBER: E2175151						
SITE: I	DuPont F Chattanc	Parkway ooga, Tenn	essee					51	Lost Mou	nd Dr, Ste 13 ooga, TN			C	CLIENT: CDM Smith Inc. Knoxville, TN						
2 2							PH. 423	-499-611	1	FAX. 42	3-499-8099		E	XHIBIT: B-2						

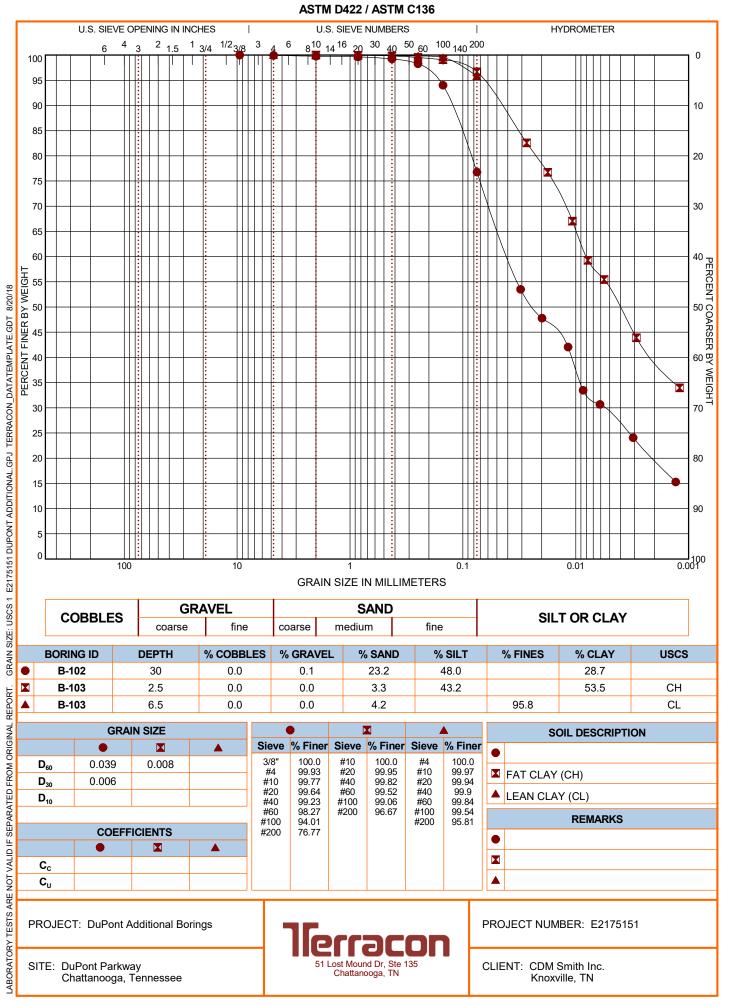
SUMMARY OF LABORATORY RESULTS

Borehole No. B-110 B-112 B-112 B-112 B-112 B-112 B-113 B-203 B-204 B-205 B-206 B-206 B-206 B-208 B-208 B-208 B-215 B-215 B-215 B-215 B-215	Depth	USCS Soil Class.	In-Situ P	roperties	Cla	ation			Ex	pansion	Testing		Corrosivity						
	(ft.)		Dry Density (pcf)	Water Content (%)	Passing #200 Sieve (%)	Atter	berg L PL	-imits PI	Dry Density (pcf)	Water Content (%)	Surcharge (psf)	Expansion (%)	Expansion Index El ⁵⁰	pН	Resistivity (ohm-cm)	Sulfates (ppm)	Remarks		
B-110	20			28													2		
B-112	2.5	CL		23	89	44	23	21											
B-112	5			24													2		
B-112	10	СН		24	98	51	25	26											
B-112	15			25													2		
B-113	5	СН		23	98	50	26	24											
B-203	2.5			24													2		
B-203	5			17													2		
B-203	7.5			19													2		
B-203	10			22													2		
B-203	15	CL		24	89	39	21	18											
B-203	20			24													2		
B-205	20	CL		25	84	33	22	11											
B-206	2.5			9	56												2		
B-206	5			20													2		
B-206	7.5	CL		21	67	32	20	12											
B-206	10			23		36	21	15											
B-206	18.5			21													2		
B-207	15			14	41												2		
B-208	5			13	26												2		
B-208	6.5			28	72												2		
B-208	10			11	17												2		
B-215	6.5	CL		19	76	40	22	18											
B-215	10	SC		14	21	38	20	18											
 Visual Class Submerger Expansion 	sification. d to approxin Index in acc	nate saturat ordance wit	ion. h ASTM D48		rings of a mu 5. Air-Dried	-													
PROJECT: DuPont Additional Borings SITE: DuPont Parkway					Tierracon 51 Lost Mound Dr. Ste 135								PROJECT NUMBER: E2175151 CLIENT: CDM Smith Inc.						
Chattar	nooga, Tenr	lessee						Chattan	ooga, TN				Knoxville, TN						
						PH. 423	-499-611	1	FAX. 42	3-499-8099		E	EXHIBIT: B-3						

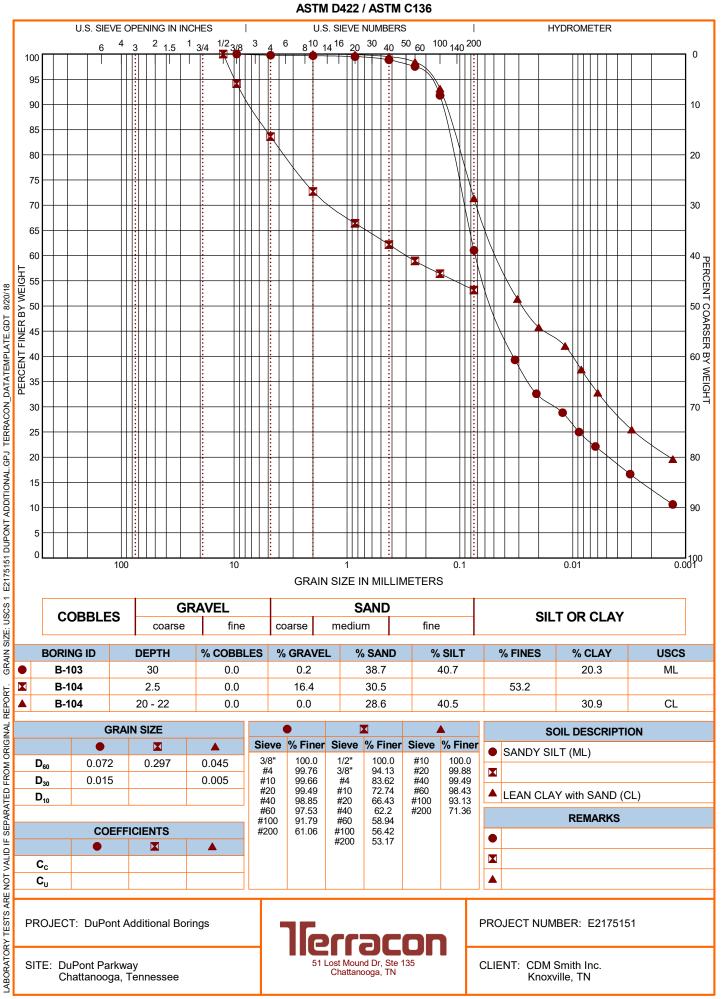

Chattanooga, TN

ATTERBERG LIMITS RESULTS

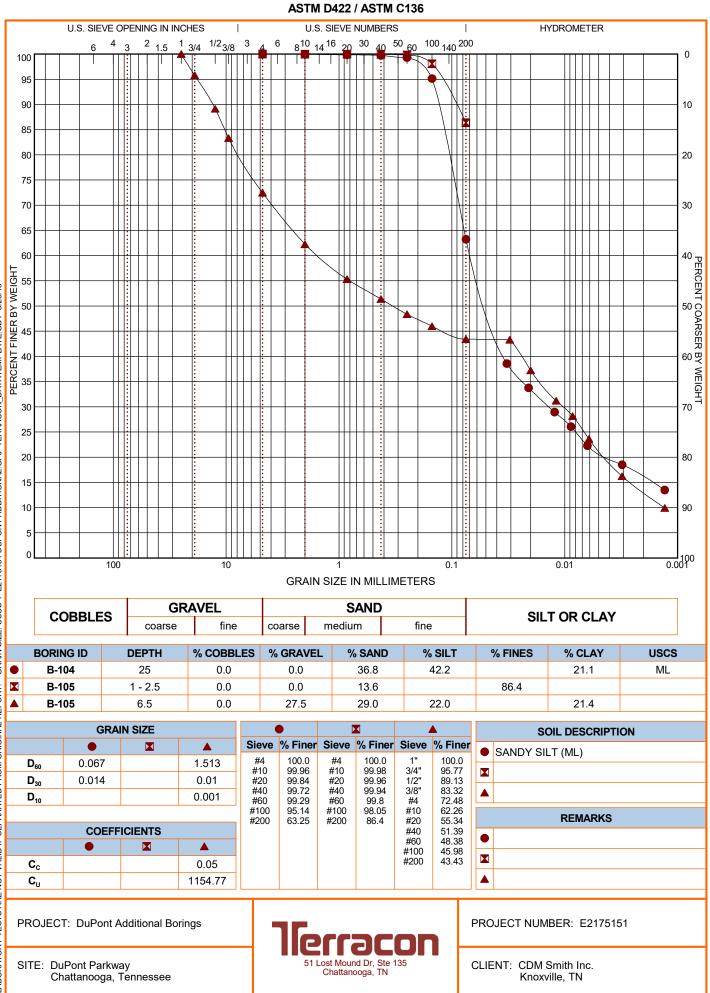

ATTERBERG LIMITS E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 8/20/18 LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.


SITE: DuPont Parkway Chattanooga, Tennessee

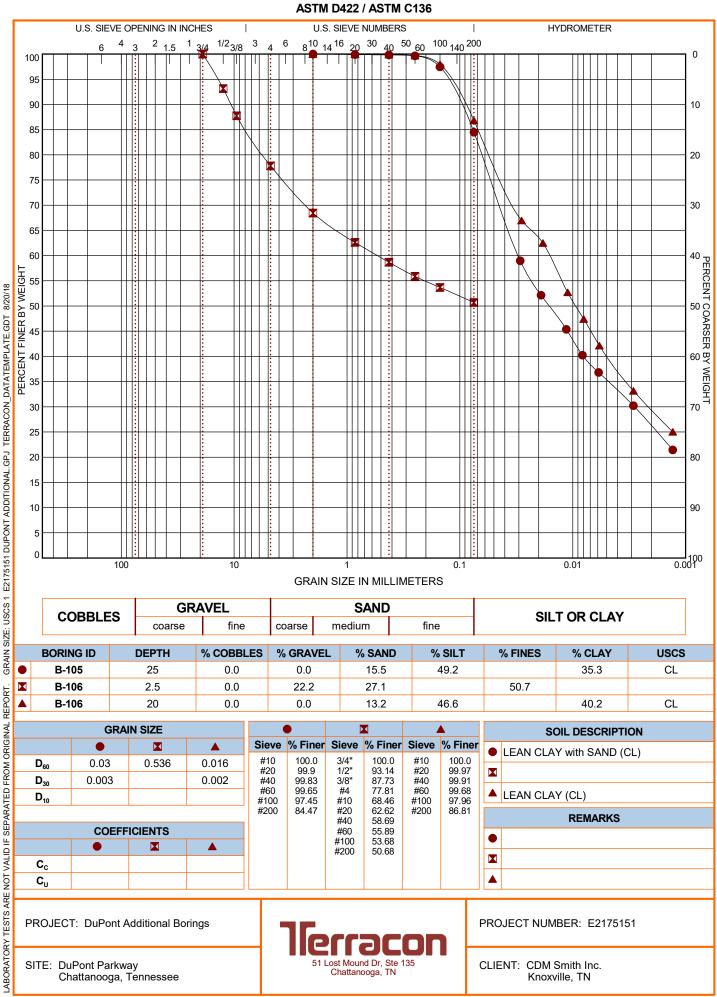
CLIENT: CDM Smith Inc. Knoxville, TN



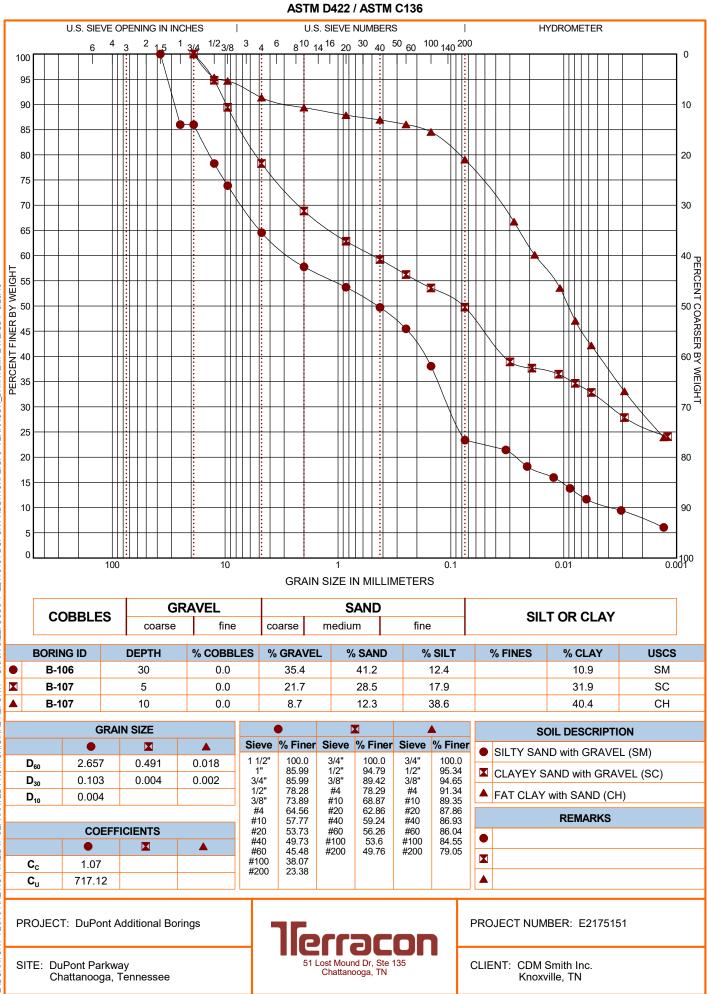
ATTERBERG LIMITS E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 8/20/18 LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.



GRAIN SIZE DISTRIBUTION

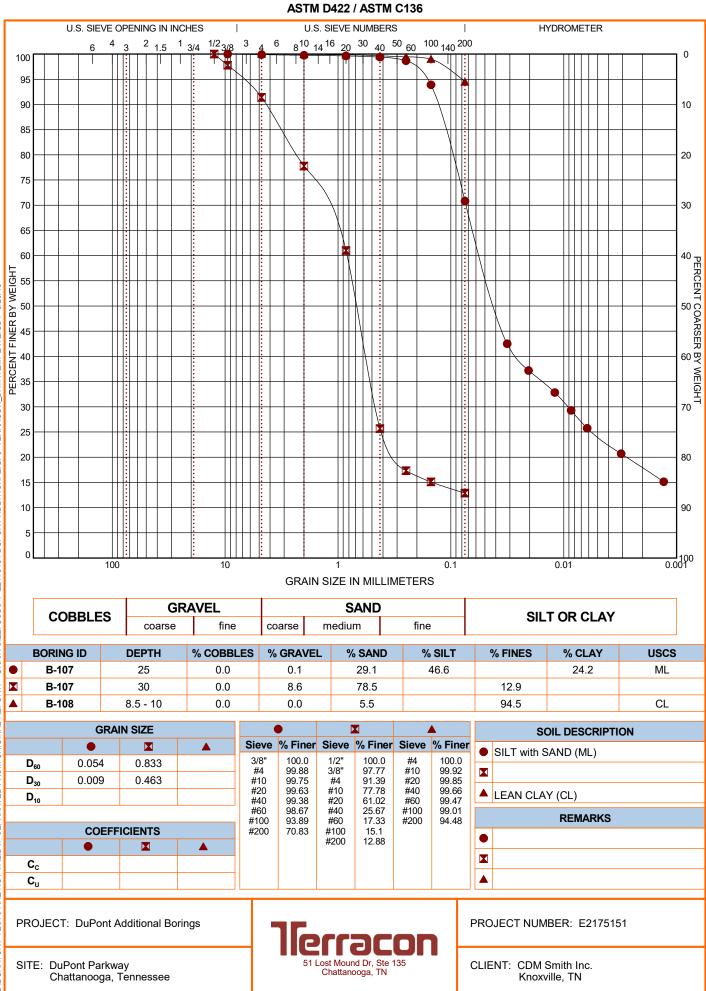


GRAIN SIZE DISTRIBUTION

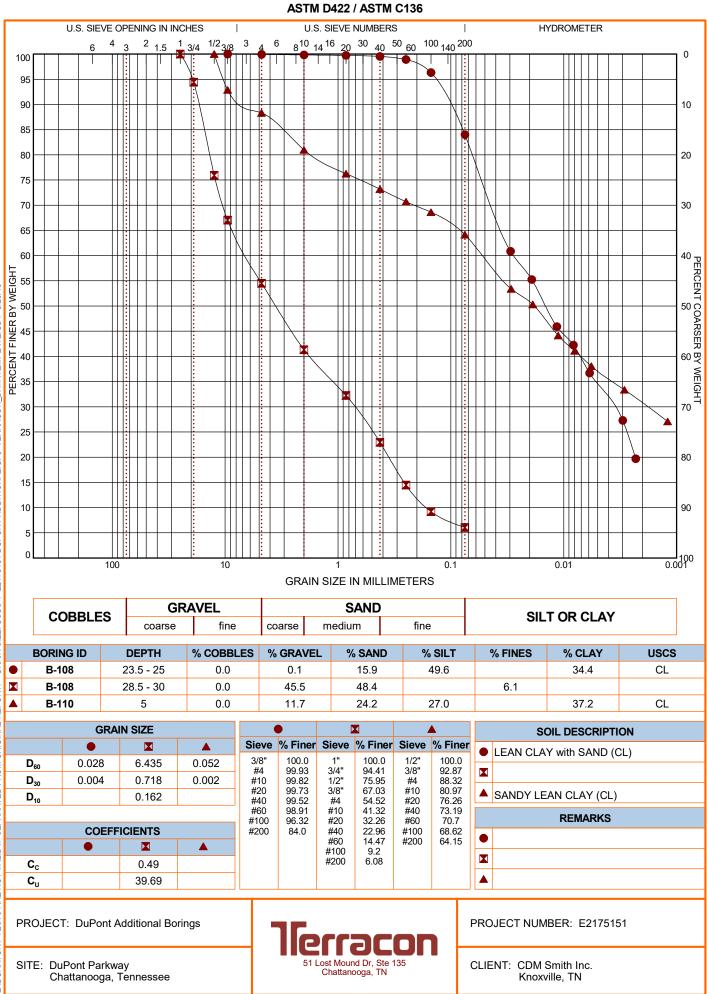


GRAIN SIZE DISTRIBUTION

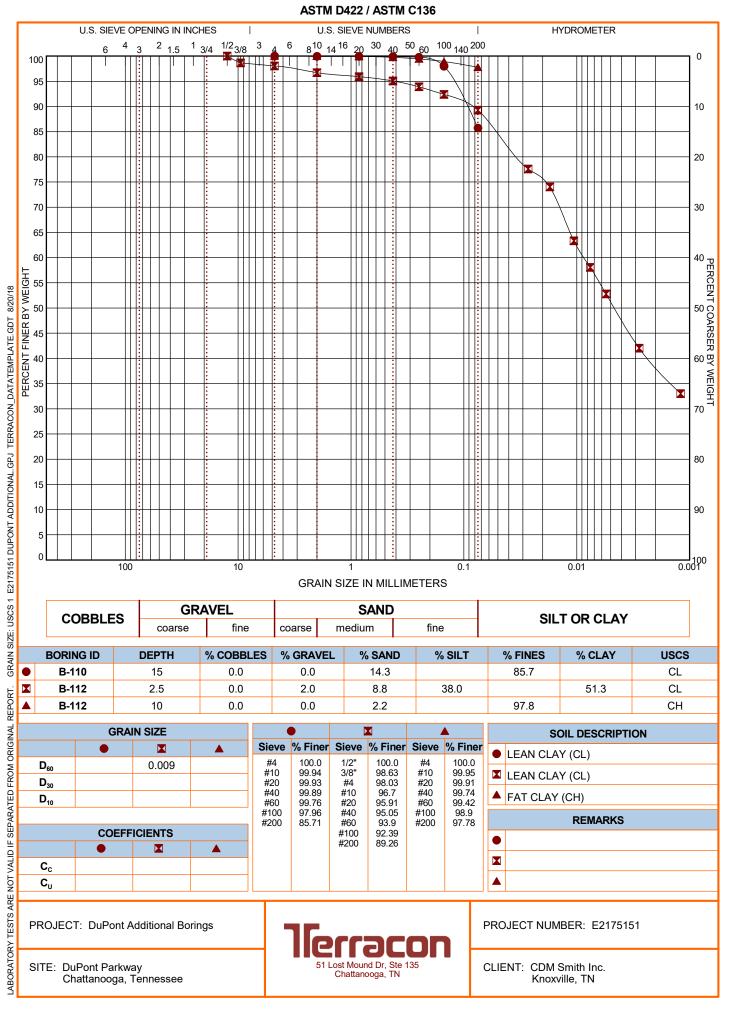
GRAIN SIZE: USCS 1 E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 8/20/18 LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.



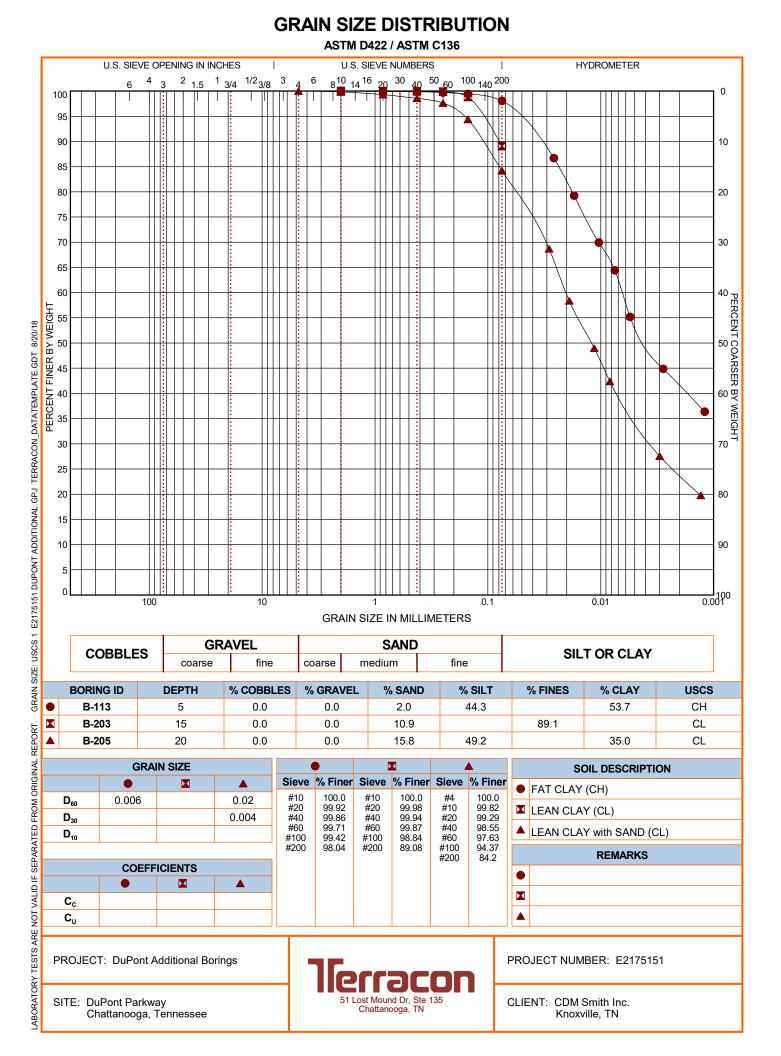
GRAIN SIZE DISTRIBUTION ASTM D422 / ASTM C136

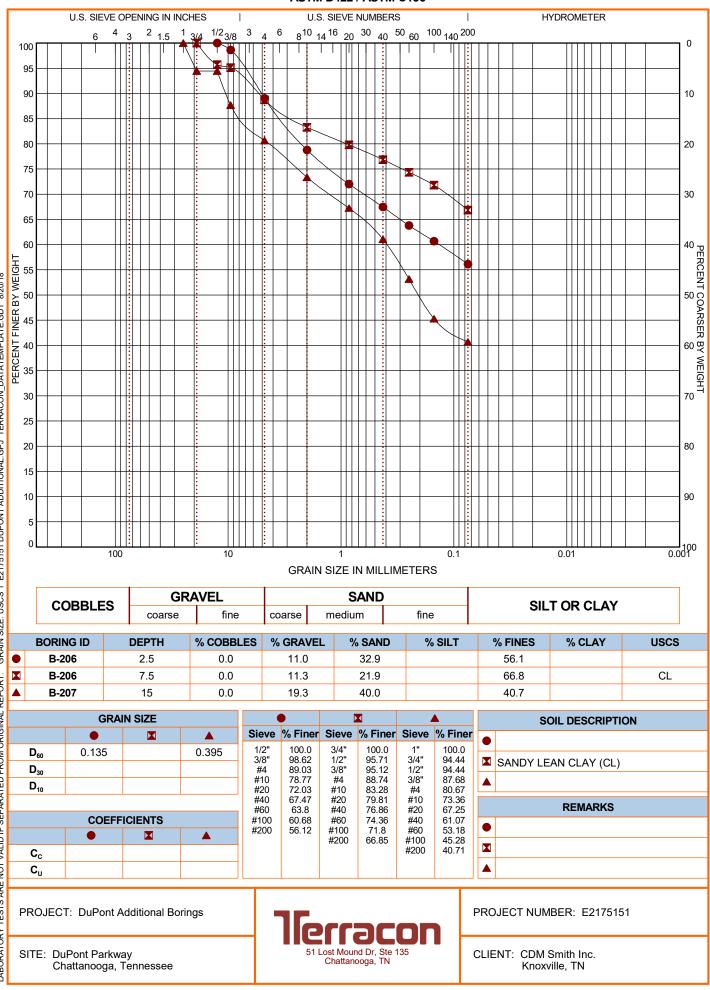

GRAIN SIZE DISTRIBUTION

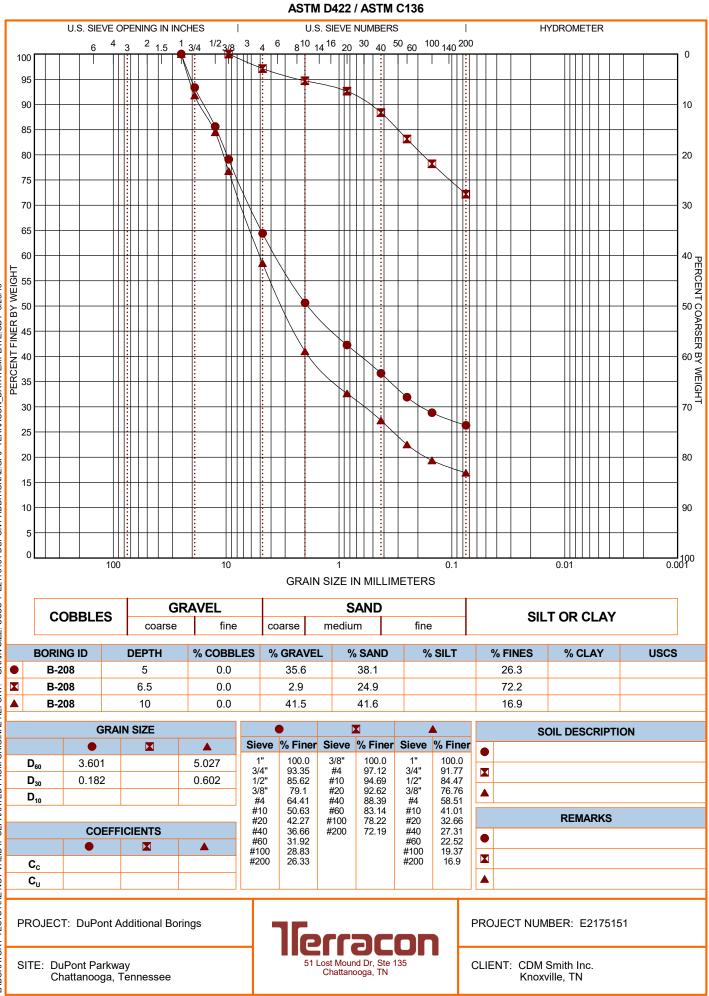
GRAIN SIZE: USCS 1 E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 8/20/18 REPORT. LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL

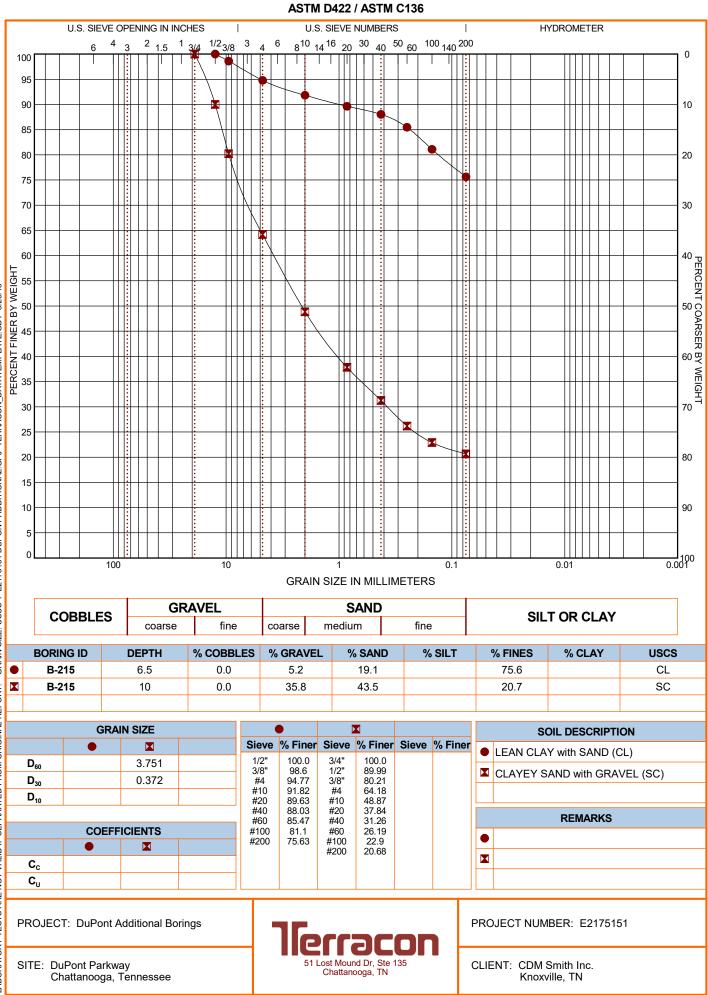


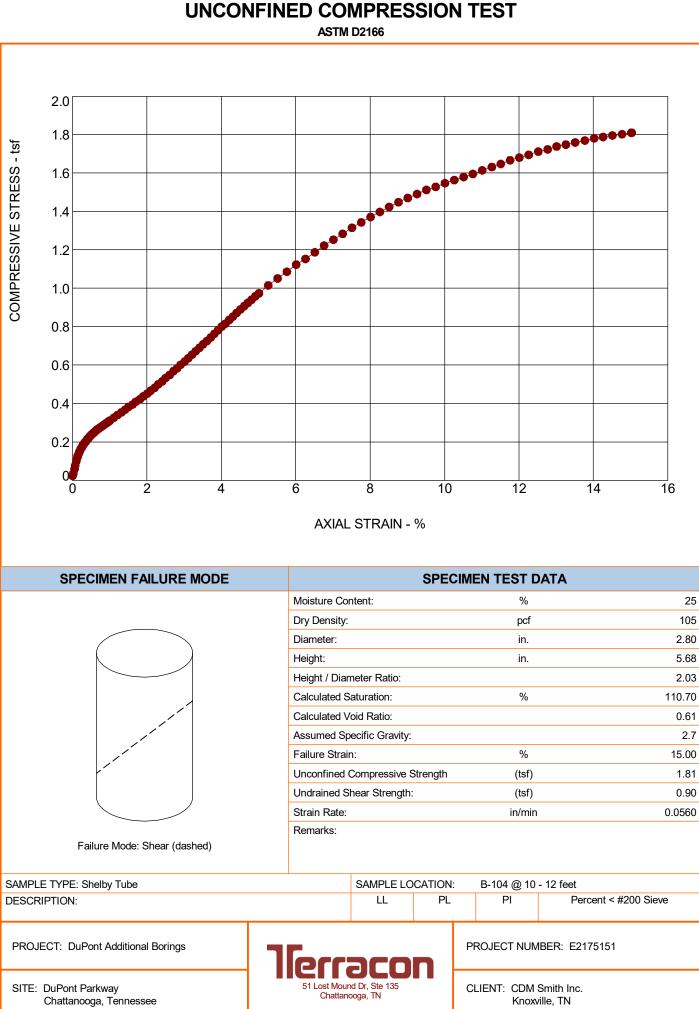
GRAIN SIZE DISTRIBUTION

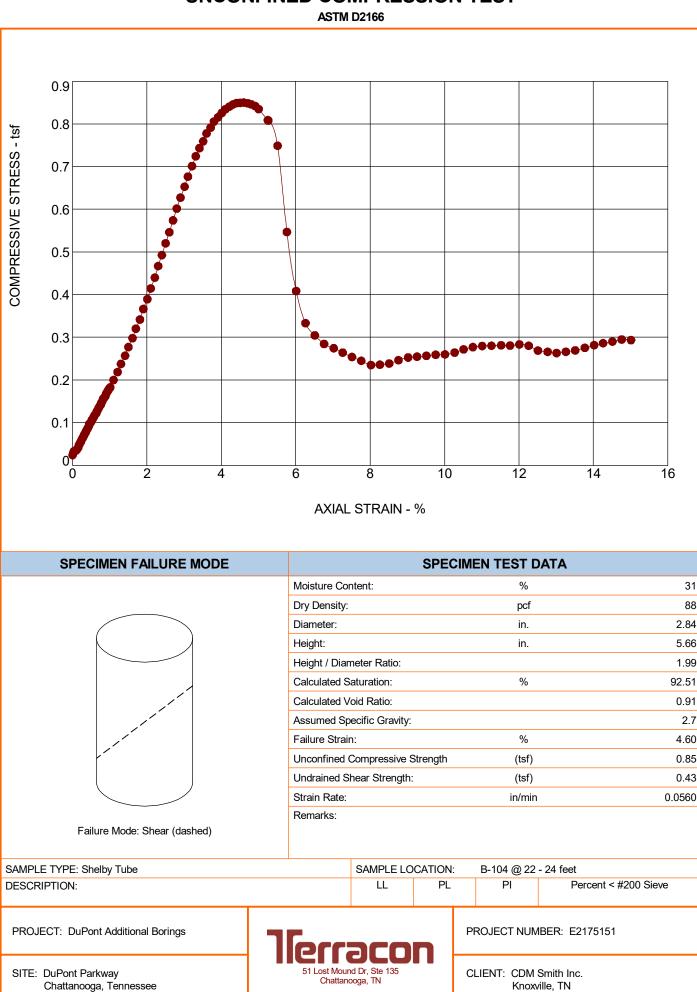

GRAIN SIZE: USCS 1 E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 8/20/18 LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

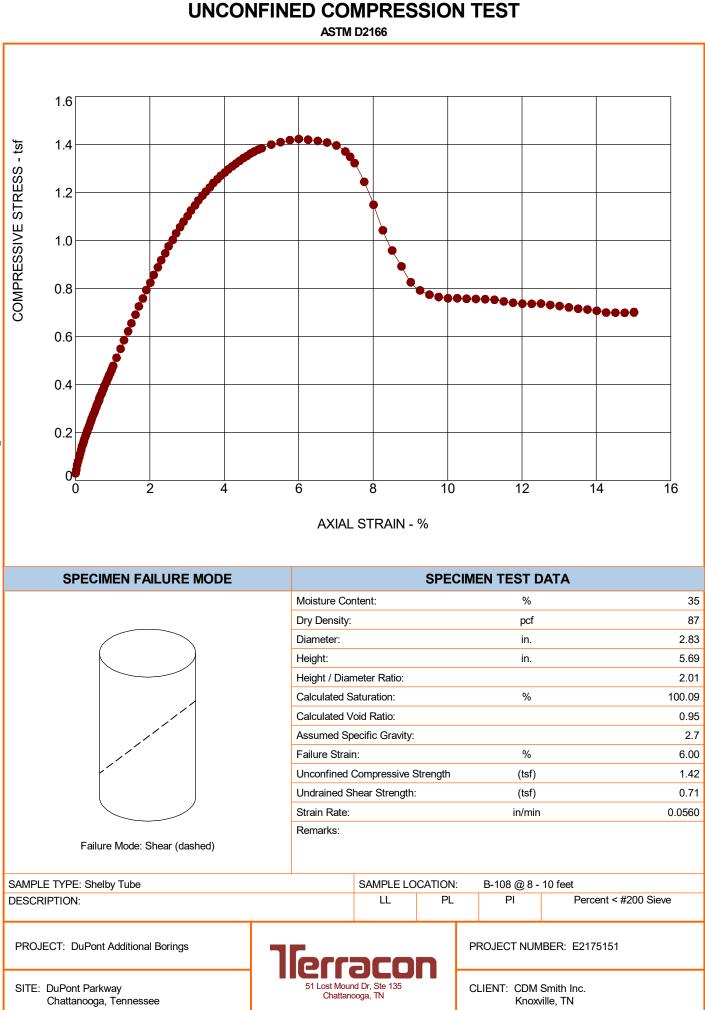

GRAIN SIZE: USCS 1 E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 8/20/18 REPORT. LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL

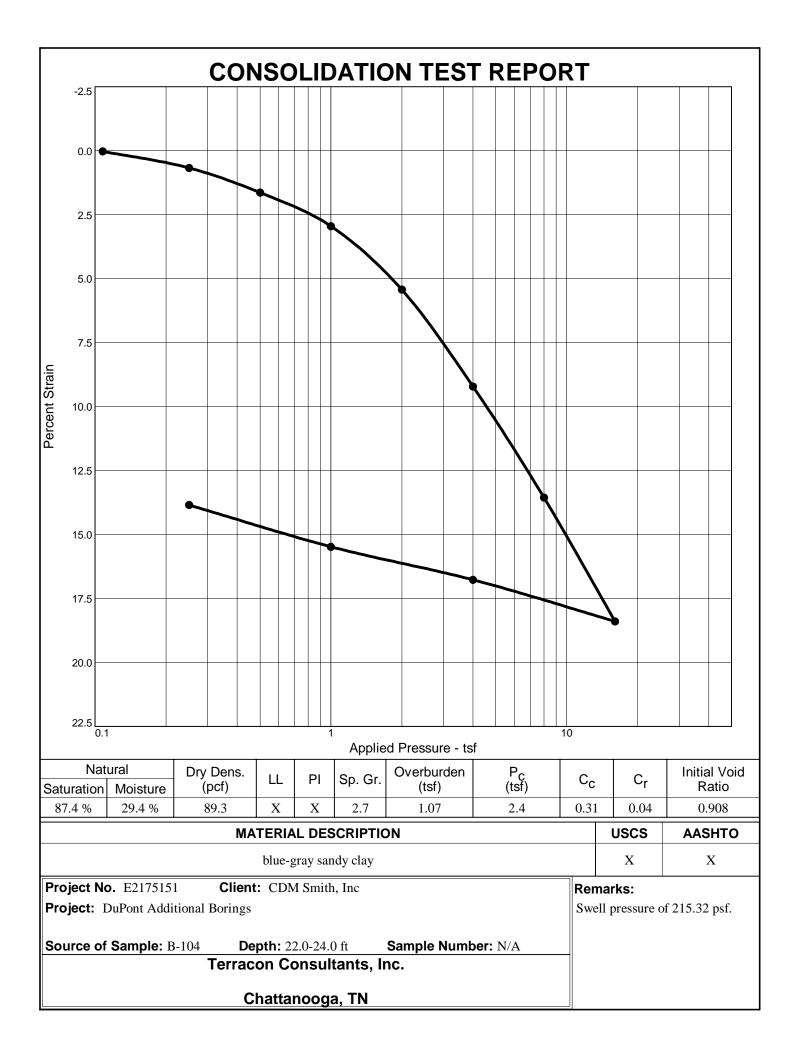

GRAIN SIZE DISTRIBUTION

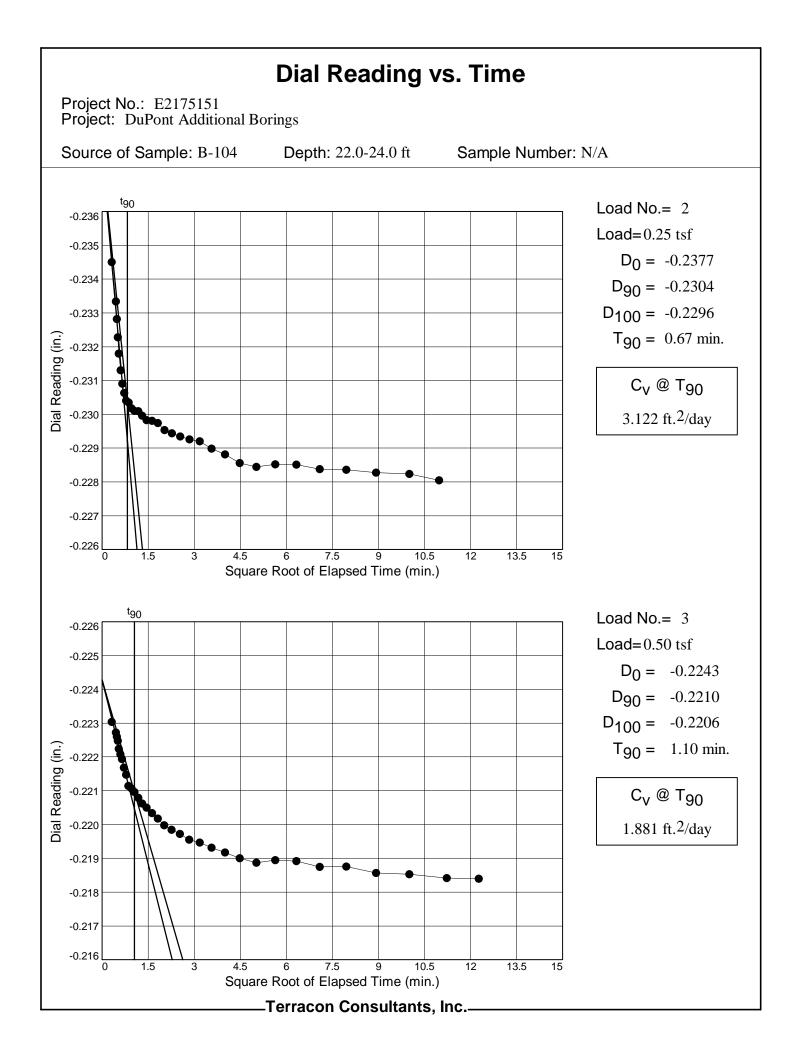


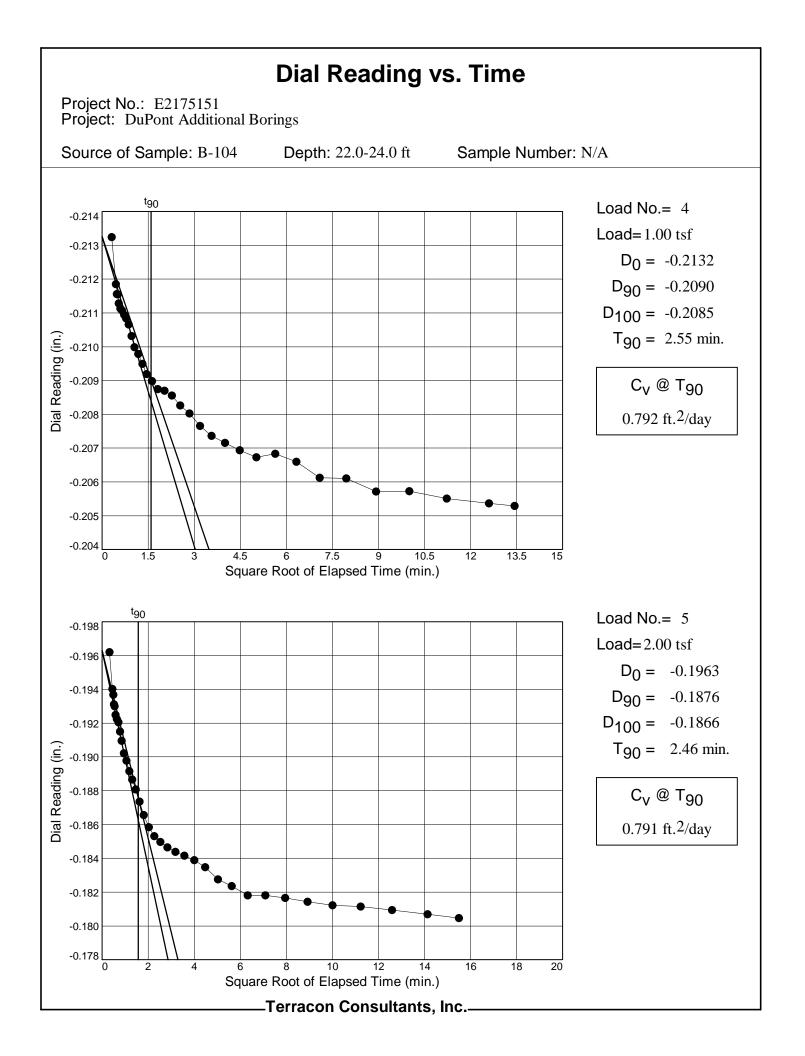

GRAIN SIZE: USCS 1 E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 8/20/18 REPORT. LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL

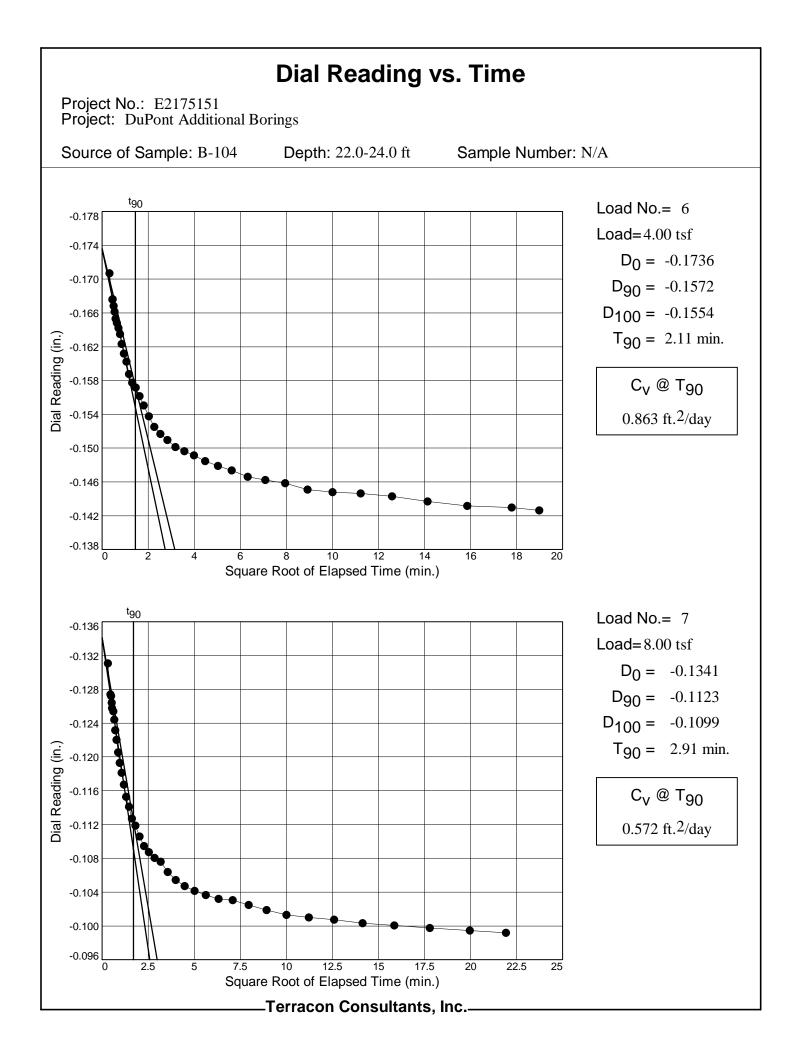

GRAIN SIZE: USCS 1 E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 8/20/18 REPORT. LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL

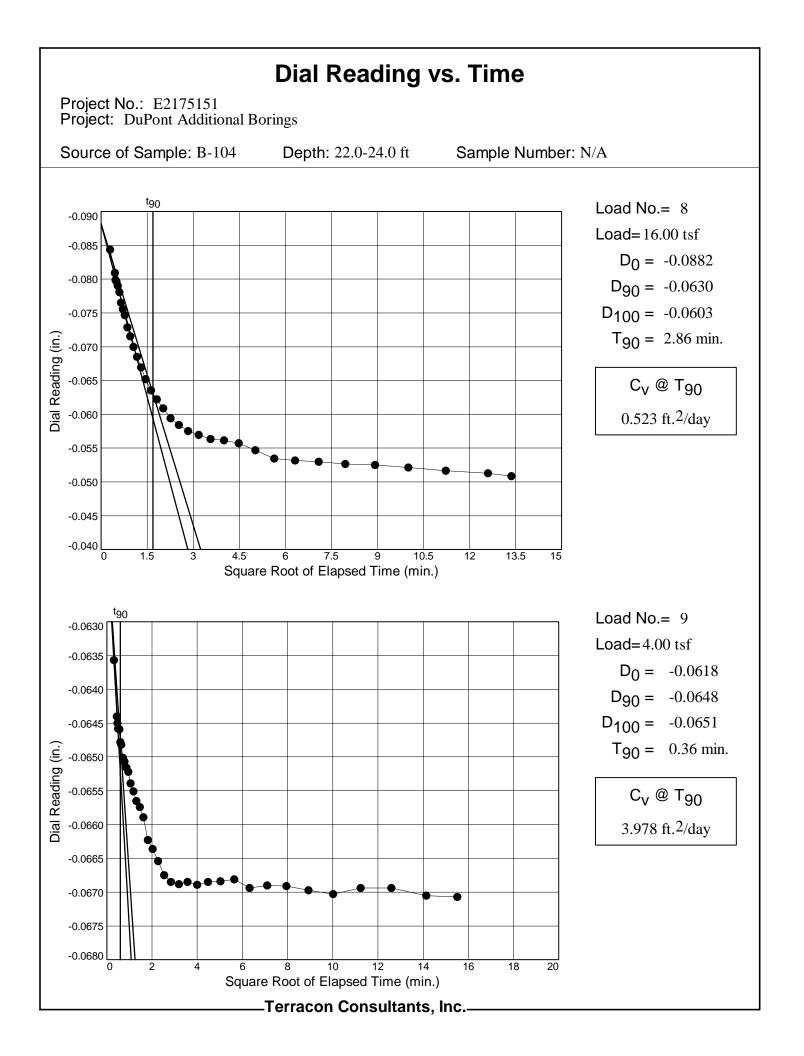

GRAIN SIZE: USCS 1 E2175151 DUPONT ADDITIONAL.GPJ TERRACON_DATATEMPLATE.GDT 8/20/18 LABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

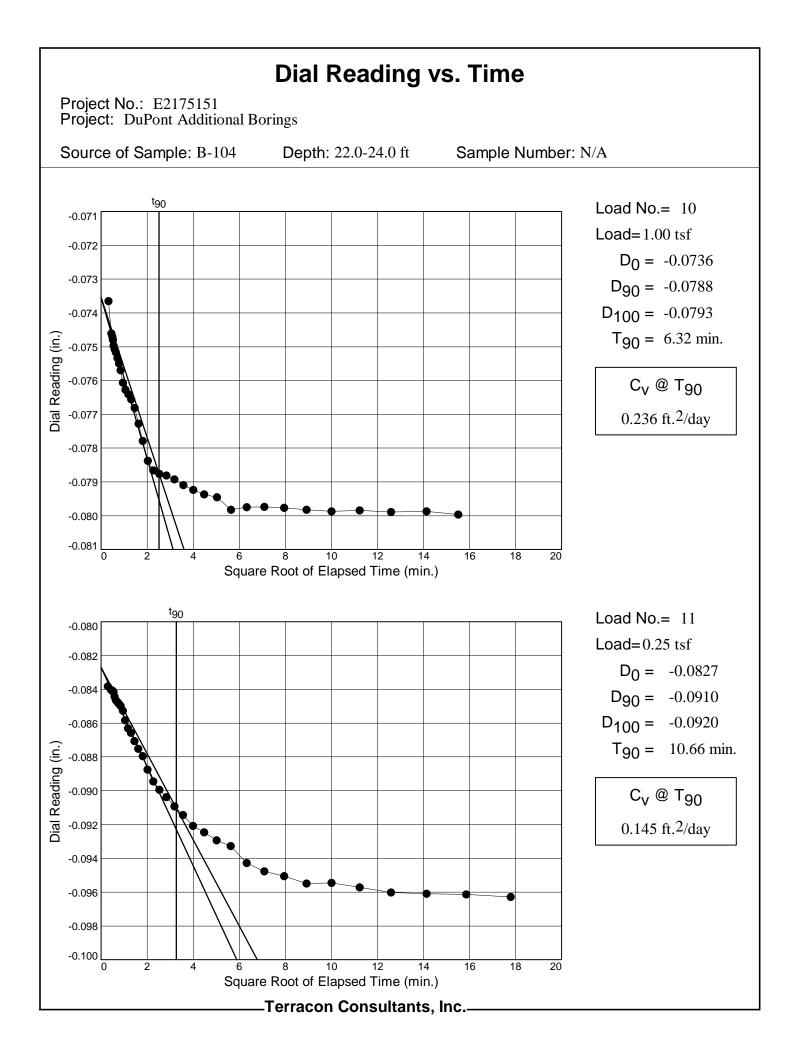

ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. UNCONFINED E2175151 DUPONT ADDITIONAL. GPJ TERRACON. DATATEMPLATE.GDT 9/28/18.

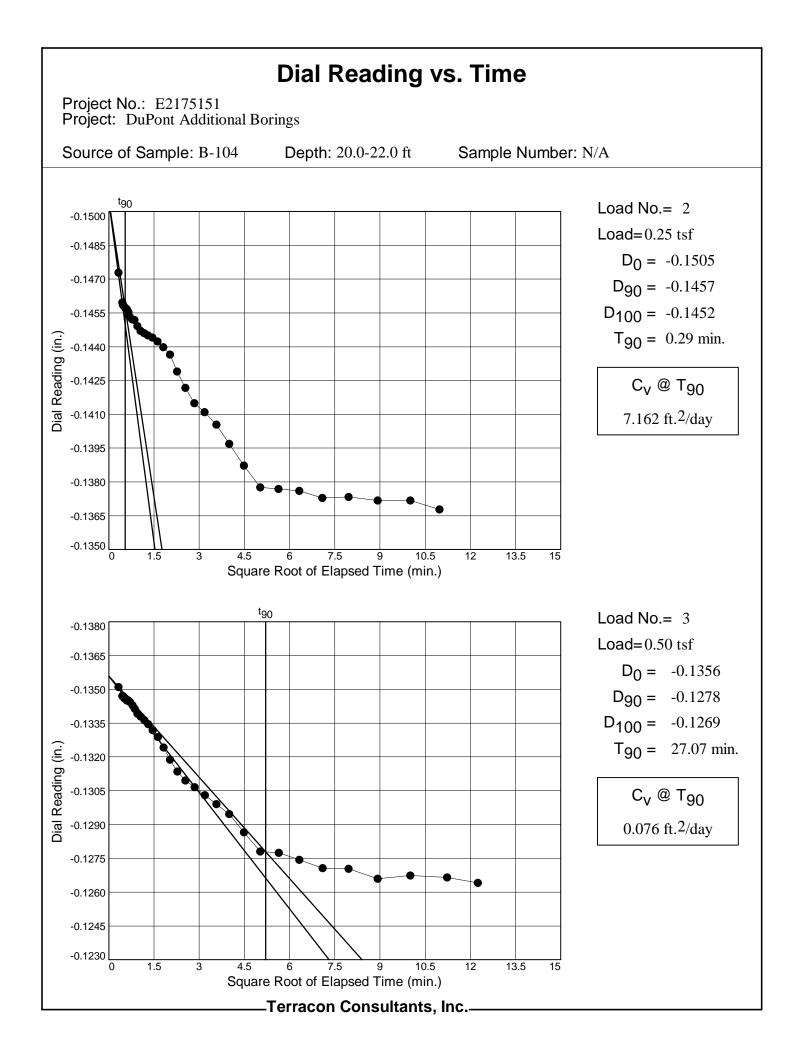


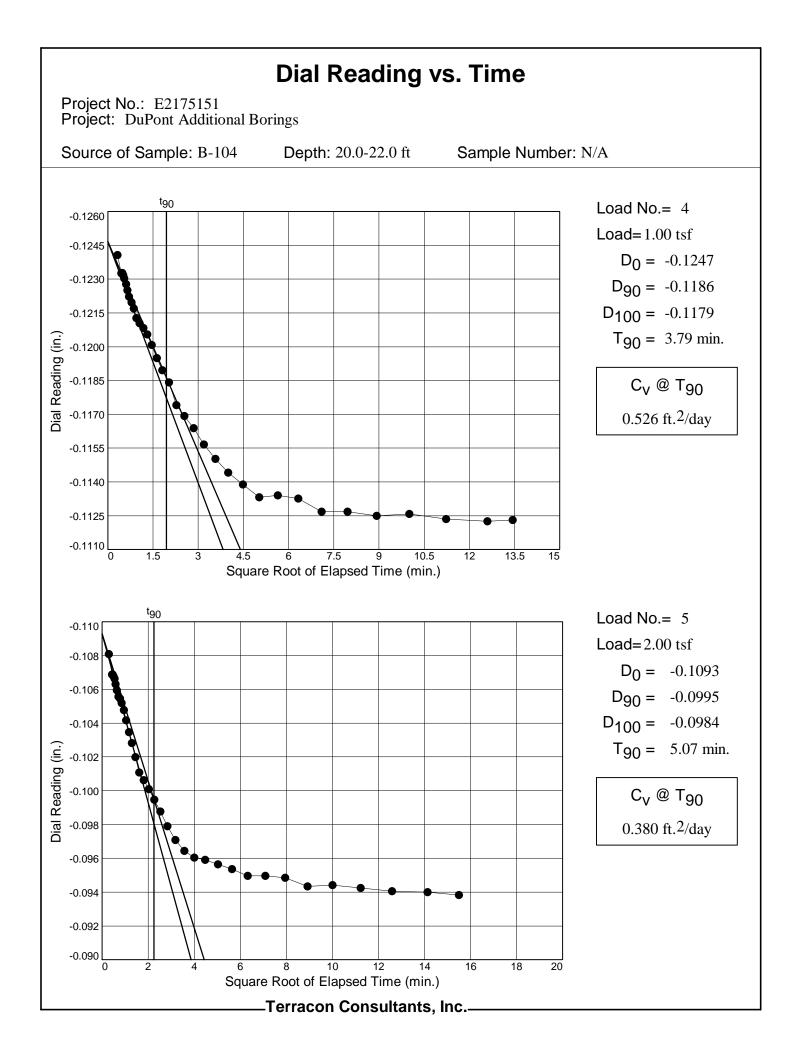

UNCONFINED COMPRESSION TEST

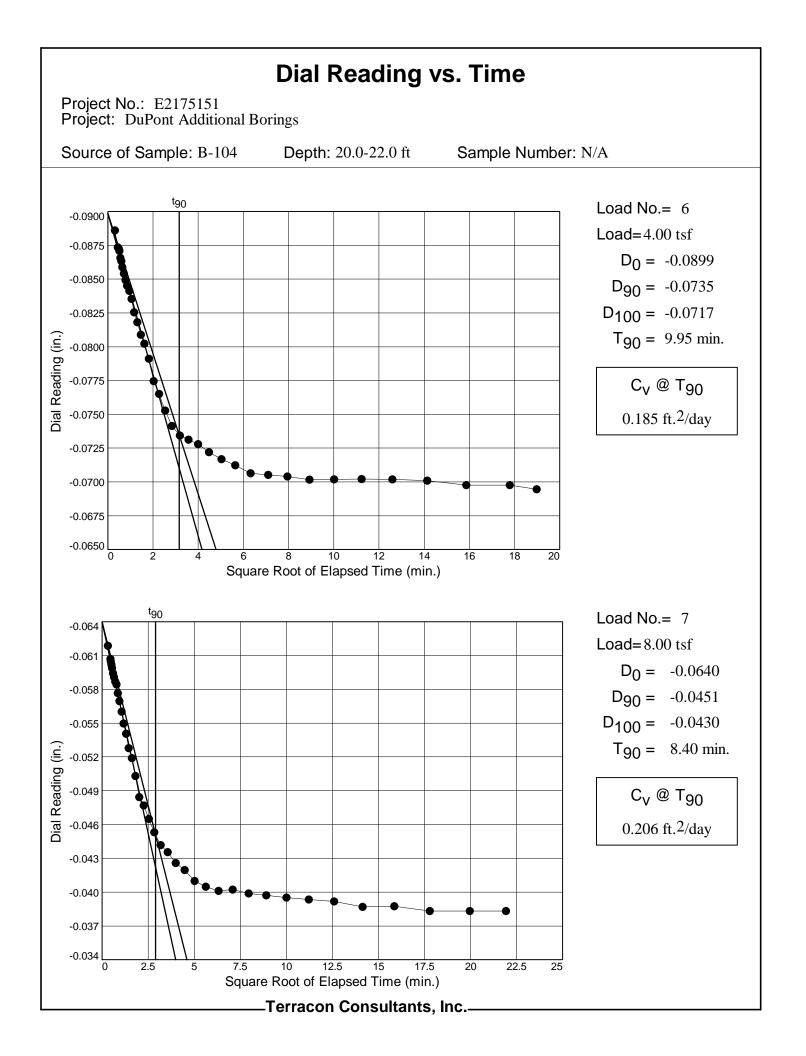


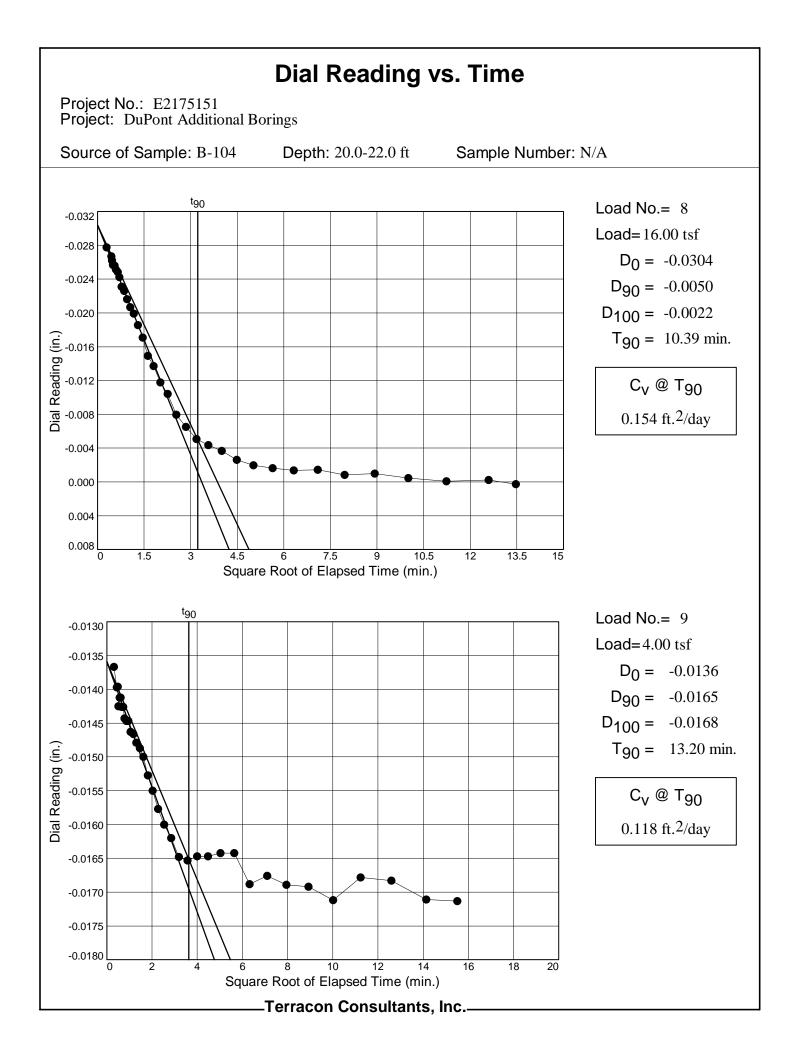

ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT. UNCONFINED E2175151 DUPONT ADDITIONAL. GPJ TERRACON. DATATEMPLATE.GDT 9/28/18.

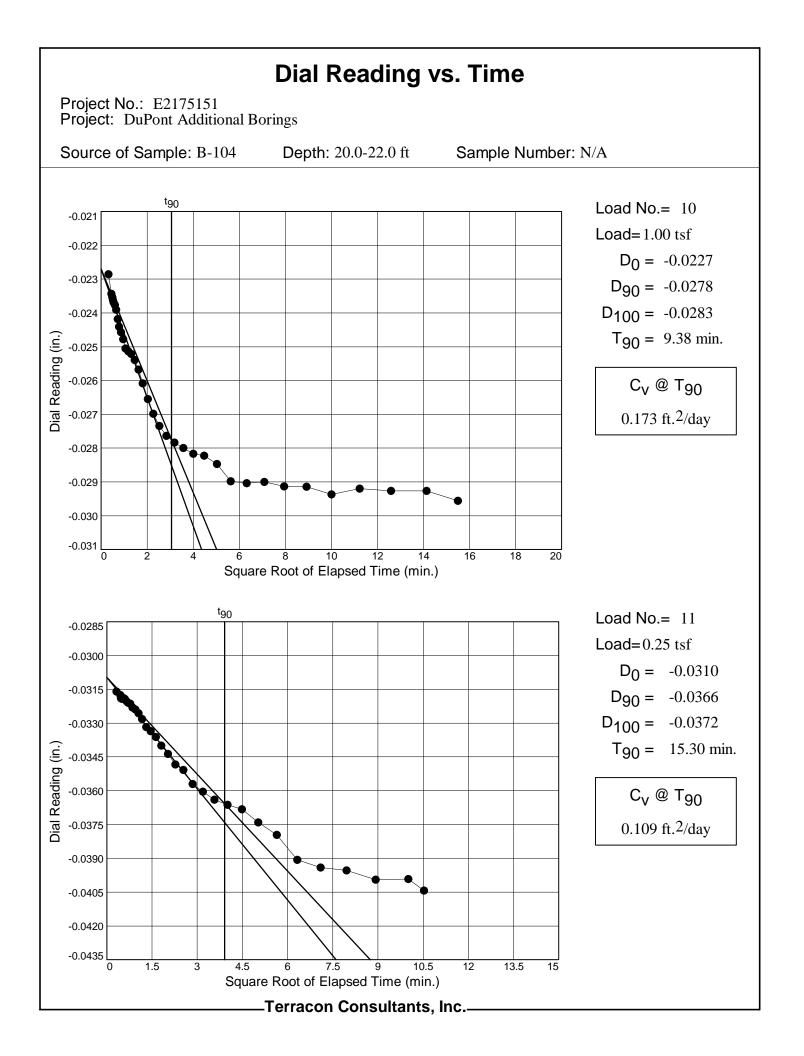












Report of Compressive Strength of Rock Core Specimens

Project: DuPont Additional Borings

Date: 8/31/2018

Project No.: E2175151

				Total		Compressive
Specimen	Wet		Dry	Load	Correction	Strength
ID	PCF	% Moisture	PCF	(lbs)	Factor	(lbs./in. ²)
B-101	145.0	0.0	145.0	55,700	1.000	18,200
B-104	156.0	0.0	156.0	57,860	1.000	18,925
B-108	160.7	0.0	160.7	55,690	1.000	18,105

Remarks:

Terracon

HYDRAULIC CONDUCTIVITY DETERMINATION FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

Project :	DuPont Add		.90						
Date:	9/4/2018 Panel Number : P-1					P-1	_		
Project No. :	E2175151				Pe	rmometer Da	ata		
Boring No.:	B-101		a _p =	0.031416	cm ²	Set Mercury to Pipet Rp at	Equilibrium	1.6	cm ³
	N/A		a _a =		-	beginning	Pipet Rp	12.3	cm ³
Depth (ft):	36.1-41.1		M ₁ =	0.030180	C =	0.000612	Annulus Ra	1.2	cm ³
Other Location:	N/A		M ₂ =	1.040953	T =	0.0931418			
Material Desc	ription :	Rock Core							
				SAMPLE	DATA				
Wet Wt. sam	ple + rina or	· tare :	266.71	g					
Tare or ring \			0.0	g		Before	e Test	After	Test
Wet Wt: of Sa	ample :		266.71	g	-	Tare No.:	Х	Tare No.:	
Diameter :		in	5.01	cm ²		Wet Wt.+tare:	1.00	Wet Wt.+tare:	
Length :		in	5.03	cm	-	Dry Wt.+tare:	1.00	Dry Wt.+tare:	
Area:		in^2	19.68	cm ²		Tare Wt:	0.00	Tare Wt:	
Volume :		in^3	99.00	cm ³		Dry Wt.:		Dry Wt.:	
Unit Wt.(wet):		pcf	2.69	g/cm^3		Water Wt.:	0	Water Wt.:	
Unit Wt.(dry):	168.11	pcf	2.69	g/cm ^{^3}		% moist.:	0.0	% moist.:	
Assumed Sp	ecific Gravity:	2.70	Max Dry D	ensity(pcf) =		OMC =		_	
						+/- OMC =			
Calculated %	saturation:		Void r	% of max =		-		_	
Calculated %	saturation:		Void r	atio (e) =		Porosity (n)=		-	
			t Pressure	atio (e) = s During Hyc	draulic Con	Porosity (n)=	st	-	
	saturation: sure (psi) =	Tes 55.00	t Pressure	atio (e) =	draulic Con	Porosity (n)= ductivity Te: Confining	st Pressure =		psi
			t Pressure	atio (e) = s During Hyc essure (psi) =	draulic Con 50.00	Porosity (n)= ductivity Te: Confining	st Pressure =	= 5.00 ective Confining	•
Cell Press	sure (psi) =	55.00	st Pressure Back Pre	atio (e) = s During Hyc essure (psi) = TEST REA	draulic Con 50.00 ADINGS	Porosity (n)= ductivity Tes Confining Note: The abov	st Pressure = /e value is Effe		•
	sure (psi) =	55.00	t Pressure	atio (e) = s During Hyc essure (psi) =	draulic Con 50.00	Porosity (n)= ductivity Tes Confining Note: The abov	st Pressure =		•
Cell Press	sure (psi) =	55.00	st Pressure Back Pre	atio (e) = s During Hyc essure (psi) = TEST REA	draulic Con 50.00 ADINGS	Porosity (n)= ductivity Tes Confining Note: The abov	st Pressure = /e value is Effe		•
Cell Press Z ₁ (Mercury H	sure (psi) = eight Differe	55.00 ence @ t ₁):	Back Pressure Back Pre	atio (e) = s During Hyc essure (psi) = <u>TEST RE/</u> cm	draulic Con 50.00 ADINGS Hydraulic (Porosity (n)= ductivity Te: Confining Note: The abov Gradient =	st Pressure = //e value is Effe 28.00		•
Cell Press Z ₁ (Mercury He Date 9/4/2018	sure (psi) = eight Differe elapsed t (seconds) 600	55.00 ence @ t ₁): Z (pipet @ t) 12.25	t Pressure Back Pre 11.2 DZp (cm) 0.086314	atio (e) = s During Hyc essure (psi) = <u>TEST RE/</u> <u>cm</u> temp (deg C) 21	draulic Con 50.00 ADINGS Hydraulic (a (temp corr) 0.977	Porosity (n)= ductivity Test Confining Note: The abov Bradient = k (cm/sec) 8.04E-09	st Pressure = /e value is Effe 28.00 k (ft./day) 2.28E-05	_ Reset = *	•
Cell Press Z ₁ (Mercury He Date 9/4/2018 9/4/2018	sure (psi) = eight Differe elapsed t (seconds) 600 1200	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2	t Pressure Back Pre 11.2 DZp (cm) 0.086314 0.136314	atio (e) = s During Hyc essure (psi) = <u>TEST RE/</u> cm temp (deg C) 21 21	draulic Con 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Porosity (n)= ductivity Tes Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09	st Pressure = /e value is Effe 28.00 k (ft./day) 2.28E-05 1.80E-05	Reset = *	•
Cell Press Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	sure (psi) = eight Differe elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2 12.15	t Pressure Back Pre 11.2 DZp (cm) 0.086314 0.136314 0.186314	atio (e) = s During Hyc essure (psi) = <u>TEST REA</u> cm temp (deg C) 21 21 21 21	draulic Con 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977	Porosity (n)= ductivity Te: Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09	st Pressure = /e value is Effe 28.00 k (ft./day) 2.28E-05 1.80E-05 1.65E-05	Reset = *	•
Cell Press Z ₁ (Mercury H Date 9/4/2018 9/4/2018	sure (psi) = eight Differe elapsed t (seconds) 600 1200	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2	t Pressure Back Pre 11.2 DZp (cm) 0.086314 0.136314	atio (e) = s During Hyc essure (psi) = <u>TEST RE/</u> cm temp (deg C) 21 21	draulic Con 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Porosity (n)= ductivity Tes Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09	st Pressure = /e value is Effe 28.00 k (ft./day) 2.28E-05 1.80E-05	Reset = *	•
Cell Press Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	sure (psi) = eight Differe elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2 12.15	t Pressure Back Pre 11.2 DZp (cm) 0.086314 0.136314 0.186314	atio (e) = s During Hyc essure (psi) = <u>TEST REA</u> cm temp (deg C) 21 21 21 21	draulic Con 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977	Porosity (n)= ductivity Te: Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09	st Pressure = /e value is Effe 28.00 k (ft./day) 2.28E-05 1.80E-05 1.65E-05	Reset = *	•
Cell Press Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	sure (psi) = eight Differe elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2 12.15	t Pressure Back Pre 11.2 DZp (cm) 0.086314 0.136314 0.186314	atio (e) = s During Hyc essure (psi) = TEST REA cm temp (deg C) 21 21 21 21 21 SUMM	draulic Con 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977	Porosity (n)= ductivity Te: Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09	st Pressure = /e value is Effe 28.00 k (ft./day) 2.28E-05 1.80E-05 1.65E-05 1.57E-05	Reset = *	•
Cell Press Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	sure (psi) = eight Differe elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2 12.15 12.1 ka = ki	t Pressure Back Pre 11.2 DZp (cm) 0.086314 0.136314 0.186314 0.236314	atio (e) = s During Hyc essure (psi) = TEST REA cm temp (deg C) 21 21 21 21 21 SUMM	draulic Con 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977	Porosity (n)= ductivity Te: Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09	st Pressure = /e value is Effe 28.00 k (ft./day) 2.28E-05 1.65E-05 1.65E-05 1.57E-05 criteria =	ective Confining Reset = * 	Pressure
Cell Press Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	sure (psi) = eight Differe elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2 12.15 12.1 ka = ki k1 =	t Pressure Back Pre 11.2 DZp (cm) 0.086314 0.136314 0.136314 0.236314 0.236314 6.44E-09 8.04E-09	atio (e) = s During Hyc essure (psi) = TEST REA cm temp (deg C) 21 21 21 21 SUMM. cm/sec cm/sec	draulic Con 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 ARY Vm 24.9	Porosity (n)= ductivity Te: Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09 Acceptance %	st Pressure = /e value is Effe 28.00 k (ft./day) 2.28E-05 1.80E-05 1.65E-05 1.57E-05	ective Confining Reset = * 95 = <u> ka-ki </u>	Pressure
Cell Press Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	sure (psi) = eight Differe elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2 12.15 12.1 ka = ki k1 = k2 =	at Pressure Back Pressure Back Pressure 11.2 DZp 0.086314 0.136314 0.136314 0.236314 6.44E-09 8.04E-09 6.36E-09 6.36E-09	atio (e) = s During Hyc essure (psi) = TEST RE/ cm temp (deg C) 21 21 21 21 SUMM cm/sec cm/sec cm/sec	draulic Con 50.00 ADINGS Hydraulic C a (temp corr) 0.977 0.977 0.977 0.977 0.977 ARY Vm 24.9 1.2	Porosity (n)= ductivity Te: Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09 Acceptance % %	st Pressure = /e value is Effe 28.00 k (ft./day) 2.28E-05 1.65E-05 1.65E-05 1.57E-05 criteria =	ective Confining Reset = * 	Pressure
Cell Press Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	sure (psi) = eight Differe elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2 12.15 12.1 ka = ki k1 = k2 = k3 =	at Pressure Back Pre Back Pre 11.2 DZp 0.086314 0.136314 0.136314 0.236314 6.44E-09 8.04E-09 6.36E-09 5.81E-09	atio (e) = s During Hyc essure (psi) = <u>TEST REA</u> cm temp (deg C) 21 21 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec	draulic Con 50.00 ADINGS Hydraulic C a (temp corr) 0.977	Porosity (n)= ductivity Te: Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09 Acceptance % % %	st Pressure = /e value is Effe 28.00 k (ft./day) 2.28E-05 1.65E-05 1.65E-05 1.57E-05 criteria =	ective Confining Reset = * 95 = <u> ka-ki </u>	Pressure
Cell Press Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	sure (psi) = eight Differe elapsed t (seconds) 600 1200 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.25 12.2 12.15 12.1 ka = ki k1 = k2 =	at Pressure Back Pressure Back Pressure 11.2 DZp 0.086314 0.136314 0.136314 0.236314 6.44E-09 8.04E-09 6.36E-09 6.36E-09	atio (e) = s During Hyc essure (psi) = <u>TEST REA</u> cm temp (deg C) 21 21 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec	draulic Con 50.00 ADINGS Hydraulic C a (temp corr) 0.977 0.977 0.977 0.977 0.977 ARY Vm 24.9 1.2	Porosity (n)= ductivity Te: Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09 Acceptance % %	st Pressure = /e value is Effe 28.00 k (ft./day) 2.28E-05 1.65E-05 1.65E-05 1.57E-05 criteria =	ective Confining Reset = * 95 = <u> ka-ki </u>	Pressure
Cell Press Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	sure (psi) = eight Differe elapsed t (seconds) 600 1200 1800	55.00 ence @ t_1): Z (pipet @ t) 12.25 12.2 12.15 12.1 ka = ki k1 = k2 = k3 = k4 =	at Pressure Back Pre Back Pre 11.2 DZp 0.086314 0.136314 0.136314 0.236314 6.44E-09 8.04E-09 6.36E-09 5.81E-09	atio (e) = s During Hyc essure (psi) = <u>TEST RE/</u> cm temp (deg C) 21 21 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec	draulic Con 50.00 ADINGS Hydraulic C a (temp corr) 0.977	Porosity (n)= ductivity Te: Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09 Acceptance % % %	st Pressure = /e value is Effe 28.00 k (ft./day) 2.28E-05 1.80E-05 1.65E-05 1.57E-05 criteria = Vm =	ective Confining Reset = * 95 = <u> ka-ki </u>	Pressure
Cell Press Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	sure (psi) = eight Differe elapsed t (seconds) 600 1200 1800 2400 2400	55.00 ence @ t_1): Z (pipet @ t) 12.25 12.2 12.15 12.1 ka = ki k1 = k2 = k3 = k4 =	at Pressure Back Pre Back Pre 11.2 DZp 0.086314 0.136314 0.136314 0.236314 0.236314 0.236314 6.44E-09 8.04E-09 6.36E-09 5.81E-09 5.54E-09 5.54E-09	atio (e) = s During Hyc essure (psi) = <u>TEST REA</u> cm temp (deg C) 21 21 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	draulic Con 50.00 ADINGS Hydraulic C a (temp corr) 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 1.2 9.7 13.9	Porosity (n)= ductivity Te: Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09 Acceptance % % % %	st Pressure = /e value is Effe 28.00 k (ft./day) 2.28E-05 1.80E-05 1.65E-05 1.57E-05 criteria = Vm =	ective Confining Reset = * 95 = <u> ka-ki </u>	Pressure
Cell Press Z ₁ (Mercury He Date 9/4/2018 9/4/2018 9/4/2018	sure (psi) = eight Differe elapsed t (seconds) 600 1200 1800 2400 2400	55.00 ence @ t_1): Z (pipet @ t) 12.25 12.2 12.15 12.1 ka = ki k1 = k2 = k3 = k4 = onductivity	t Pressure Back Pre 11.2 DZp (cm) 0.086314 0.136314 0.136314 0.236514 0.25516 0.26516 0	atio (e) = s During Hyc essure (psi) = <u>TEST REA</u> cm temp (deg C) 21 21 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	draulic Con 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 1.2 9.7 13.9 cm/sec	Porosity (n)= ductivity Te: Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09 5.54E-09 Acceptance % % % 1.83E-05	st Pressure = /e value is Effe 28.00 k (ft./day) 2.28E-05 1.80E-05 1.65E-05 1.57E-05 criteria = Vm =	ective Confining Reset = * 95 = <u> ka-ki </u>	Pressure
Cell Press Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	sure (psi) = eight Differe elapsed t (seconds) 600 1200 1200 2400 2400 Void Ratio Porosity Bulk Densit	55.00 ence @ t_1): Z (pipet @ t) 12.25 12.2 12.15 12.1 ka = ki k1 = k2 = k3 = k4 = onductivity	t Pressure Back Pre DZp (cm) 0.086314 0.136314 0.136314 0.236514 0.2365209 0.554E-09 0 0.554E-09 0 0.554E-09 0 0.554E-09 0 0.554E-09 0 0.554E-09 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	atio (e) = s During Hyc essure (psi) = <u>TEST REA</u> cm temp (deg C) 21 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	draulic Con 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 13.9 cm/sec g/cm ³	Porosity (n)= ductivity Te: Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09 Acceptance % % % % 1.83E-05 168.1	st Pressure = //e value is Effe 28.00 k (ft./day) 2.28E-05 1.65E-05 1.65E-05 1.57E-05 criteria = Vm =	ective Confining Reset = * 95 = <u> ka-ki </u>	Pressure
Cell Press	sure (psi) = eight Differe elapsed t (seconds) 600 1200 1800 2400 2400	55.00 ence @ t_1): Z (pipet @ t) 12.25 12.2 12.15 12.1 ka = ki k1 = k2 = k3 = k4 = onductivity	t Pressure Back Pre DZp (cm) 0.086314 0.136314 0.136314 0.236514 0.296514 0.297514 0	atio (e) = s During Hyc essure (psi) = <u>TEST RE/</u> cm temp (deg C) 21 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	draulic Con 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 1.2 9.7 13.9 cm/sec	Porosity (n)= ductivity Te: Confining Note: The abov Gradient = k (cm/sec) 8.04E-09 6.36E-09 5.81E-09 5.54E-09 5.54E-09 Acceptance % % % 1.83E-05	st Pressure = /e value is Effe 28.00 k (ft./day) 2.28E-05 1.65E-05 1.65E-05 1.57E-05 criteria = Vm = ft/day pcf C)	ective Confining Reset = * 95 = <u> ka-ki </u>	Pressure

Terracon

HYDRAULIC CONDUCTIVITY DETERMINATION FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

Project :	DuPont Ad	lditional Borin	igs						
Date:	9/4/2018 Panel Number : P-1								
Project No. :	E2175151				Pe	rmometer Da	ata		
Boring No.:	B-104		a _p =	0.031416	; cm²	Set Mercury to Pipet Rp at	Equilibrium	1.6	cm ³
Sample:	N/A		a _a =		•	beginning	Pipet Rp	12.5	cm ³
Depth (ft):	28.2-30.0		M ₁ =	0.030180) C =	0.00062	Annulus Ra	1.2	cm ³
Other Location:	N/A		M ₂ =	1.040953	5 T =	0.0919346			
Material Des	scription :	Rock Core							
				SAMPLE	E DATA				
Wet Wt. san	nole + ring o	r tare :	273.13	g					
Tare or ring			0.0	_9 _9		Before	e Test	After	Test
Wet Wt: of S			273.13	g	_	Tare No.:	Х	Tare No.:	
Diameter :	1.97	in	5.01	cm ²		Wet Wt.+tare:	1.00	Wet Wt.+tare:	
Length :	2.01	in	5.10	cm	-	Dry Wt.+tare:	1.00	Dry Wt.+tare:	
Area:	3.05	in^2	19.68	cm ²		Tare Wt:	0.00	Tare Wt:	
Volume :	6.12	_in^3	100.30	cm ³		Dry Wt.:		Dry Wt.:	
Unit Wt.(wet)		pcf	2.72	g/cm ^{^3}		Water Wt.:	0	Water Wt.:	
Unit Wt.(dry):	169.93	pcf	2.72	g/cm ^{^3}		% moist.:	0.0	_% moist.:	
Assumed S	Specific Gravity:	2.70	Max Dry D	Density(pcf) =		OMC =		_	
Calculated %	6 saturation:		Void ı	% of max = atio (e) =		+/- OMC = Porosity (n)=		_	
		Tes	t Pressure	s During Hy	draulic Con	ductivity Te	st		
Cell Pres	ssure (psi) =			es During Hyd essure (psi) =		Confining	Pressure =		psi
Cell Pres	ssure (psi) =			essure (psi) =	50.00	Confining	Pressure =	= 5.00 ective Confining	•
Cell Pres	. <i>'</i>	55.00			50.00	Confining Note: The abov	Pressure =		•
	. <i>'</i>	55.00	Back Pr	essure (psi) = TEST RE	50.00 50.00 ADINGS	Confining Note: The abov	Pressure = ve value is Effe		•
Z ₁ (Mercury I	Height Differ	55.00 ence @ t ₁):	Back Pro 11.3 DZp (cm)	ESSURE (psi) = TEST RE	50.00 ADINGS Hydraulic (Confining Note: The abov Gradient =	Pressure = ve value is Effe 28.00		•
Z ₁ (Mercury I Date 9/4/2018	Height Differ elapsed t <u>(seconds)</u> 3 600	55.00 ence @ t ₁): Z (pipet @ t) 12.35	Back Pro 11.3 DZp (cm) 0.127296	essure (psi) = TEST RE. cm temp (deg C) 21	50.00 ADINGS Hydraulic (a (temp corr) 0.977	Confining Note: The abov Gradient = k (cm/sec) 1.19E-08	Pressure = /e value is Effe 28.00 k (ft./day) 3.37E-05	_ Reset = *	•
Z ₁ (Mercury I Date 9/4/2018 9/4/2018	Height Differ elapsed t <u>(seconds)</u> 3 600 3 1200	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3	Back Pro 11.3 DZp (cm) 0.127296 0.177296	essure (psi) = TEST RE. cm temp (deg C) 21 21	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 1.19E-08 8.29E-09	Pressure = // 28.00 k (ft./day) 3.37E-05 2.35E-05	_ Reset = *	•
Z ₁ (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Differ elapsed t (seconds) 3 600 3 1200 3 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.35	Back Pro 11.3 DZp (cm) 0.127296 0.177296 0.227296	essure (psi) = TEST RE. cm temp (deg C) 21	 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 	Confining Note: The abov Gradient = k (cm/sec) 1.19E-08 8.29E-09 7.10E-09	Pressure = re value is Effe 28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05	Reset = *	•
Z ₁ (Mercury I Date 9/4/2018 9/4/2018	Height Differ elapsed t (seconds) 3 600 3 1200 3 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3 12.25	Back Pro 11.3 DZp (cm) 0.127296 0.177296	essure (psi) = <u>TEST RE</u> cm (deg C) 21 21 21 21 21	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 1.19E-08 8.29E-09	Pressure = // 28.00 k (ft./day) 3.37E-05 2.35E-05	Reset = *	•
Z ₁ (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Differ elapsed t (seconds) 3 600 3 1200 3 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3 12.25	Back Pro 11.3 DZp (cm) 0.127296 0.227296 0.277296	essure (psi) = <u>TEST RE</u> cm temp (deg C) 21 21 21 21 21 21 SUMM	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 1.19E-08 8.29E-09 7.10E-09 6.52E-09	Pressure = /e value is Effe 28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05	Reset = *	Pressure
Z ₁ (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Differ elapsed t (seconds) 3 600 3 1200 3 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3 12.25 12.2	Back Pro 11.3 DZp (cm) 0.127296 0.177296 0.227296	essure (psi) = <u>TEST RE</u> cm temp (deg C) 21 21 21 21 21 21 SUMM	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 1.19E-08 8.29E-09 7.10E-09	Pressure = /e value is Effe 28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05	Reset = *	•
Z ₁ (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Differ elapsed t (seconds) 3 600 3 1200 3 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3 12.25 12.2 ka = ki k1 =	Back Pro 11.3 DZp (cm) 0.127296 0.277296 0.277296 8.45E-09 1.19E-08	essure (psi) = TEST RE. cm temp (deg C) 21 21 21 21 21 21 21 21 Cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 1.19E-08 8.29E-09 7.10E-09 6.52E-09 Acceptance %	Pressure = /e value is Effe 28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05	ective Confining Reset = * 95 = <u> ka-ki </u>	Pressure
Z ₁ (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Differ elapsed t (seconds) 3 600 3 1200 3 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3 12.25 12.2 ka = ki k1 = k2 =	Back Pro 11.3 DZp (cm) 0.127296 0.277296 0.227296 0.277296 8.45E-09 1.19E-08 8.29E-09	essure (psi) = <u>TEST RE</u> cm temp (deg C) 21 21 21 21 21 21 Cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 ARY Vm 40.6 1.8	Confining Note: The abov Gradient = k (cm/sec) 1.19E-08 8.29E-09 7.10E-09 6.52E-09 Acceptance	Pressure = // value is Effe 28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05 criteria =	ective Confining Reset = * 	Pressure
Z ₁ (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Differ elapsed t (seconds) 3 600 3 1200 3 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3 12.25 12.2 ka = ki k1 = k2 = k3 =	Back Pro 11.3 DZp (cm) 0.127296 0.277296 0.227296 0.2277296 0.2277296 1.19E-08 8.29E-09 7.10E-09	essure (psi) = <u>TEST RE</u> cm temp (deg C) 21 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 ARY Vm 40.6 1.8 15.9	Confining Note: The abov Gradient = k (cm/sec) 1.19E-08 8.29E-09 7.10E-09 6.52E-09 Acceptance % %	Pressure = // value is Effe 28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05 criteria =	ective Confining Reset = * 95 = <u> ka-ki </u>	Pressure
Z ₁ (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Differ elapsed t (seconds) 3 600 3 1200 3 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3 12.25 12.2 ka = ki k1 = k2 =	Back Pro 11.3 DZp (cm) 0.127296 0.277296 0.227296 0.277296 8.45E-09 1.19E-08 8.29E-09	essure (psi) = <u>TEST RE</u> cm temp (deg C) 21 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 ARY Vm 40.6 1.8	Confining Note: The abov Gradient = k (cm/sec) 1.19E-08 8.29E-09 7.10E-09 6.52E-09 Acceptance	Pressure = // value is Effe 28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05 criteria =	ective Confining Reset = * 95 = <u> ka-ki </u>	Pressure
Z ₁ (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Differ elapsed t (seconds) 3 600 3 1200 3 1800 3 2400	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3 12.25 12.2 12.2 ka = ki k1 = k2 = k3 =	Back Pro 11.3 DZp (cm) 0.127296 0.277296 0.227296 0.2277296 0.2277296 1.19E-08 8.29E-09 7.10E-09	essure (psi) = <u>TEST RE</u> cm temp (deg C) 21 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 ARY Vm 40.6 1.8 15.9	Confining Note: The abov Gradient = k (cm/sec) 1.19E-08 8.29E-09 7.10E-09 6.52E-09 Acceptance % %	Pressure = /e value is Eff 28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05 criteria = Vm =	ective Confining Reset = * 95 = <u> ka-ki </u>	Pressure
Z ₁ (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Differ elapsed t (seconds) 3 600 3 1200 3 1800 3 2400 3 2400	55.00 ence @ t_1): Z (pipet @ t) 12.35 12.3 12.25 12.2 ka = ki k1 = k2 = k3 = k4 =	Back Pro 11.3 DZp (cm) 0.127296 0.227296 0.227296 0.2277296 0.2277296 0.2277296 0.2277296 0.2276 0.2276 0.2276 0.2276 0.2277296 0.2276 0.22	essure (psi) = <u>TEST RE</u> , cm temp (deg C) 21 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 ARY Vm 40.6 1.8 15.9 22.9	Confining Note: The abov Gradient = k (cm/sec) 1.19E-08 8.29E-09 7.10E-09 6.52E-09 Acceptance % % %	Pressure = /e value is Eff 28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05 criteria = Vm =	ective Confining Reset = * 95 = <u> ka-ki </u>	Pressure
Z ₁ (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Differ elapsed t (seconds) 3 600 3 1200 3 1800 3 2400 4 Hydraulic o Void Ratio Porosity	55.00 ence @ t_1): Z (pipet @ t) 12.35 12.3 12.25 12.2 ka = ki k1 = k2 = k3 = k4 = conductivity	Back Pro 11.3 DZp (cm) 0.127296 0.227296 0.227296 0.277296 8.45E-09 1.19E-08 8.29E-09 7.10E-09 6.52E-09 k = e = n =	essure (psi) = <u>TEST RE</u> cm temp (deg C) 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 0.977 ARY Vm 40.6 1.8 15.9 22.9 cm/sec	Confining Note: The abov Gradient = k (cm/sec) 1.19E-08 8.29E-09 7.10E-09 6.52E-09 Acceptance % % % % 2.39E-05	Pressure = /e value is Effe 28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05 criteria = Vm = ft/day	ective Confining Reset = * 95 = <u> ka-ki </u>	Pressure
Z ₁ (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Differ elapsed t (seconds) 3 600 3 1200 3 1800 3 2400 3 2400 Hydraulic o Void Ratio Porosity Bulk Densi	55.00 ence @ t_1): Z (pipet @ t) 12.35 12.25 12.2 12.2 ka = ki k1 = k2 = k3 = k4 = conductivity	Back Pro 11.3 DZp (cm) 0.127296 0.227296 0.227296 0.277296 8.45E-09 1.19E-08 8.29E-09 7.10E-09 6.52E-09 k = e = n = g =	essure (psi) = <u>TEST RE.</u> cm temp (deg C) 21 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 0.977 cm/sec g/cm³ 	Confining Note: The abov Gradient = k (cm/sec) 1.19E-08 8.29E-09 7.10E-09 6.52E-09 Acceptance % % % % 2.39E-05 169.9	Pressure = /e value is Effe 28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05 criteria = Vm = ft/day pcf	ective Confining Reset = * 95 = <u> ka-ki </u>	Pressure
Z ₁ (Mercury I Date 9/4/2018 9/4/2018 9/4/2018	Height Differ elapsed t (seconds) 3 600 3 1200 3 1800 3 2400 4 Hydraulic o Void Ratio Porosity	55.00 ence @ t_1): Z (pipet @ t) 12.35 12.25 12.2 ka = ki k1 = k2 = k3 = k4 = conductivity ty tent	Back Pro 11.3 DZp (cm) 0.127296 0.227296 0.227296 0.277296 8.45E-09 1.19E-08 8.29E-09 7.10E-09 6.52E-09 k = e = n =	essure (psi) = <u>TEST RE</u> cm temp (deg C) 21 21 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 0.977 ARY Vm 40.6 1.8 15.9 22.9 cm/sec	Confining Note: The abov Gradient = k (cm/sec) 1.19E-08 8.29E-09 7.10E-09 6.52E-09 Acceptance % % % % 2.39E-05	Pressure = /e value is Effe 28.00 k (ft./day) 3.37E-05 2.35E-05 2.01E-05 1.85E-05 criteria = Vm = ft/day pcf C)	ective Confining Reset = * 95 = <u> ka-ki </u>	Pressure

Terracon

HYDRAULIC CONDUCTIVITY DETERMINATION FLEXIBLE WALL PERMEAMETER - CONSTANT VOLUME (Mercury Permometer Test)

Project :	DuPont Ad	annoniai Donn	iys						
Date:	9/4/2018			Pan	el Number :	P-1			
Project No. :	E2175151				Pe	rmometer Da	ata		
Boring No.:	B-108		a _p =	0.031416	; cm ²	Set Mercury to Pipet Rp at	Equilibrium	1.6	cm ³
Sample:	N/A		a _a =			beginning	Pipet Rp	12.4	cm ³
Depth (ft):	33.6-39.6		M ₁ =	0.030180) C =	0.0006129	Annulus Ra	1.2	cm ³
Other Location:	N/A		M ₂ =	1.040953	3 T =	0.0930009			
Material Des	cription :	Rock Core							
				SAMPLE	E DATA				
Wet Wt. san	nple + rina o	r tare :	267.89	g					
Tare or ring	Wt. :		0.0	g		Before	e Test	After	Test
Wet Wt: of S	Sample :		267.89	g	_	Tare No.:	Х	Tare No.:	
Diameter :	1.97	in	5.01	cm ²		Wet Wt.+tare:	1.00	Wet Wt.+tare:	
Length :	1.98	in	5.04	cm	_	Dry Wt.+tare:	1.00	Dry Wt.+tare:	
Area:	3.05	in^2	19.68	cm ²		Tare Wt:	0.00	Tare Wt:	
Volume :	6.05	in^3	99.15	cm ³ g/cm ^{^3}		Dry Wt.:		Dry Wt.:	
Unit Wt.(wet):		pcf	2.70 2.70	g/cm ^{^3}		Water Wt.: % moist.:	<u> </u>	_Water Wt.: % moist.:	
Unit Wt.(dry):	168.60	pcf		_		% III0ISL.	0.0	- ⁷⁰ 11015t	
Assumed S	specific Gravity:	2.70	Max Dry D	ensity(pcf) = % of max =		OMC = +/- OMC =		_	
Calculated %	6 saturation:		Void ı	% of max = atio (e) =		Porosity (n)=		_	
		_				_		_	
		Tee							
	aura (nai)					ductivity Te		F 00	nai
Cell Pres	ssure (psi) =			essure (psi) =		Confining	Pressure =		psi
Cell Pres	ssure (psi) =				50.00	Confining	Pressure =	= 5.00 ective Confining	•
Zell Pres	~ <i>,</i>	55.00		essure (psi) =	50.00 SADINGS	Confining	Pressure =		•
Z ₁ (Mercury H	Height Differ	55.00 ence @ t ₁):	Back Pro	ESSURE (psi) = TEST RE	= 50.00 ADINGS Hydraulic (Confining Note: The abov Gradient =	Pressure = ve value is Effe 28.00		•
	Height Differo	55.00 ence @ t ₁): Z	Back Pro 11.2 DZp	essure (psi) = TEST RE cm temp	= 50.00 ADINGS Hydraulic (a	Confining Note: The abov Gradient = k	Pressure = re value is Effe 28.00 k	ective Confining	•
Z ₁ (Mercury H	Height Differo elapsed t (seconds)	55.00 ence @ t ₁): Z (pipet @ t)	Back Pro 11.2 DZp (cm)	essure (psi) = TEST RE cm temp (deg C)	= 50.00 ADINGS Hydraulic (a (temp corr)	Confining Note: The abov Gradient = k (cm/sec)	Pressure = //e value is Effe 28.00 k (ft./day)	ective ConfiningReset = *	•
Z ₁ (Mercury H Date 9/4/2018	Height Differo elapsed t (seconds) 3 600	55.00 ence @ t ₁): Z (pipet @ t) 12.35	Back Pro 11.2 DZp (cm) 0.002581	essure (psi) = TEST RE. cm temp (deg C) 21	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977	Confining Note: The abov Gradient = k (cm/sec) 2.40E-10	Pressure = // 28.00 k (ft./day) 6.79E-07	_ Reset = *	•
Z ₁ (Mercury H	Height Differd elapsed t (seconds) 3 600 3 1200	55.00 ence @ t ₁): Z (pipet @ t)	Back Pro 11.2 DZp (cm) 0.002581 0.052581	essure (psi) = <u>TEST RE</u> cm (deg C) <u>21</u> <u>21</u> <u>21</u> 21	= 50.00 ADINGS Hydraulic (a (temp corr)	Confining Note: The abov Gradient = k (cm/sec)	Pressure = /e value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06	Reset = *	•
Z ₁ (Mercury H Date 9/4/2018 9/4/2018	Height Differo elapsed t (seconds) 3 600 3 1200 3 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3	Back Pro 11.2 DZp (cm) 0.002581	essure (psi) = TEST RE. cm temp (deg C) 21 21	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09	Pressure = // 28.00 k (ft./day) 6.79E-07	Reset = *	•
Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	Height Differo elapsed t (seconds) 3 600 3 1200 3 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3 12.25	Back Pro 11.2 DZp (cm) 0.002581 0.052581 0.102581	essure (psi) = <u>TEST RE</u> cm (deg C) <u>21</u> <u>21</u> <u>21</u> 21	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09	Pressure = // 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06	Reset = *	•
Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	Height Differo elapsed t (seconds) 3 600 3 1200 3 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3 12.25 12.2 ka =	Back Pro 11.2 DZp (cm) 0.002581 0.052581 0.102581	essure (psi) = <u>TEST RE</u> cm temp (deg C) 21 21 21 21 21 21 SUMM	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09	Pressure = // value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05	Reset = *	•
Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	Height Differo elapsed t (seconds) 3 600 3 1200 3 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.25 12.2 12.2 ka = ki	Back Pro 11.2 DZp (cm) 0.002581 0.102581 0.152581 2.36E-09	essure (psi) = <u>TEST RE</u> cm temp (deg C) 21 21 21 21 21 21 21 21 21 21	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance	Pressure = // value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05 criteria =	ective Confining Reset = * 	Pressure
Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	Height Differo elapsed t (seconds) 3 600 3 1200 3 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3 12.25 12.2 ka = ki k1 =	Back Pro 11.2 DZp (cm) 0.002581 0.052581 0.102581 0.152581 2.36E-09 2.40E-10	essure (psi) = TEST RE. cm temp (deg C) 21 21 21 21 21 21 21 21 Cm/sec cm/sec	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance %	Pressure = // value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05	ective Confining Reset = * 	Pressure
Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	Height Differd elapsed t (seconds) 3 600 3 1200 3 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3 12.25 12.2 ka = ki k1 = k2 =	Back Pro 11.2 DZp (cm) 0.002581 0.052581 0.102581 0.152581 2.36E-09 2.40E-10 2.45E-09	essure (psi) = TEST RE. cm temp (deg C) 21 21 21 21 21 21 Cm/sec cm/sec cm/sec	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 ARY Vm 89.8 3.6	Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance	Pressure = // value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05 criteria =	ective Confining Reset = * 	Pressure
Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	Height Differd elapsed t (seconds) 3 600 3 1200 3 1800	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3 12.25 12.2 ka = ki k1 =	Back Pro 11.2 DZp (cm) 0.002581 0.052581 0.102581 0.152581 2.36E-09 2.40E-10	essure (psi) = <u>TEST RE</u> cm temp (deg C) 21 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 0.977	Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance %	Pressure = // value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05 criteria =	ective Confining Reset = * 	Pressure
Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	Height Differe elapsed t (seconds) 600 1200 1800 2400	55.00 ence @ t_1): Z (pipet @ t) 12.35 12.3 12.25 12.2 ka = ki k1 = k2 = k3 = k4 =	Back Pro 11.2 DZp (cm) 0.002581 0.102581 0.102581 0.152581 0.152581 2.36E-09 2.40E-10 2.45E-09 3.19E-09 3.56E-09	essure (psi) = <u>TEST RE</u> cm temp (deg C) 21 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 NARY Vm 89.8 3.6 35.1 51.1	Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance	Pressure = re value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05 criteria = Vm =	ective Confining Reset = * 	Pressure
Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	Height Different elapsed t (seconds) 600 1200 1800 2400	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3 12.25 12.2 12.2 ka = ki k1 = k2 = k3 =	Back Pro 11.2 DZp (cm) 0.002581 0.102581 0.152581 0.152581 2.36E-09 2.40E-10 2.45E-09 3.19E-09 3.56E-09 k =	essure (psi) = <u>TEST RE</u> , cm temp (deg C) 21 21 21 21 21 SUMM cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 ARY Vm 89.8 3.6 35.1	Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance % %	Pressure = re value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05 criteria = Vm =	ective Confining Reset = * 	Pressure
Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	Height Different elapsed t (seconds) 600 1200 1200 2400 2400	55.00 ence @ t_1): Z (pipet @ t) 12.35 12.3 12.25 12.2 ka = ki k1 = k2 = k3 = k4 =	Back Pro 11.2 DZp (cm) 0.002581 0.102581 0.102581 0.152581 2.36E-09 2.40E-10 2.45E-09 3.19E-09 3.56E-09 k = e =	essure (psi) = <u>TEST RE</u> cm temp (deg C) 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 NARY Vm 89.8 3.6 35.1 51.1	Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance	Pressure = re value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05 criteria = Vm =	ective Confining Reset = * 	Pressure
Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	Height Difference elapsed t (seconds) 600 1200 1800 2400 2400 Hydraulic c Void Ratio Porosity	55.00 ence @ t_1): Z (pipet @ t) 12.35 12.3 12.25 12.2 ka = ki k1 = k2 = k3 = k4 =	Back Pro 11.2 DZp (cm) 0.002581 0.102581 0.102581 0.152581 2.36E-09 2.40E-10 2.45E-09 3.19E-09 3.56E-09 k = e = n =	essure (psi) = <u>TEST RE</u> cm temp (deg C) 21 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977	Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance % % % % 6.69E-06	Pressure = /e value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05 criteria = Vm = ft/day	ective Confining Reset = * 	Pressure
Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	Height Difference elapsed t (seconds) 600 1200 1800 2400 2400 Hydraulic co Void Ratio Porosity Bulk Densi	55.00 ence @ t ₁): Z (pipet @ t) 12.35 12.3 12.25 12.2 ka = ki k1 = k2 = k3 = k4 = conductivity	Back Pro 11.2 DZp (cm) 0.002581 0.102581 0.102581 0.102581 0.152581 2.36E-09 2.40E-10 2.45E-09 3.19E-09 3.56E-09 k = e = n = g =	essure (psi) = <u>TEST RE</u> cm temp (deg C) 21 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977 0.977 0.977 0.977 0.977 1ARY Vm 89.8 3.6 35.1 51.1 cm/sec g/cm ³	Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance % % % % 6.69E-06 168.6	Pressure = /e value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05 criteria = Vm = ft/day pcf	ective Confining Reset = * 	Pressure
Z ₁ (Mercury H Date 9/4/2018 9/4/2018 9/4/2018	Height Difference elapsed t (seconds) 600 1200 1800 2400 2400 Hydraulic c Void Ratio Porosity	55.00 ence @ t_1): Z (pipet @ t) 12.35 12.3 12.25 12.2 ka = ki k1 = k2 = k3 = k4 = conductivity ty tent	Back Pro 11.2 DZp (cm) 0.002581 0.102581 0.102581 0.152581 2.36E-09 2.40E-10 2.45E-09 3.19E-09 3.56E-09 k = e = n =	essure (psi) = <u>TEST RE</u> cm temp (deg C) 21 21 21 21 21 21 21 Cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec cm/sec	= 50.00 ADINGS Hydraulic (a (temp corr) 0.977	Confining Note: The abov Gradient = k (cm/sec) 2.40E-10 2.45E-09 3.19E-09 3.56E-09 Acceptance % % % % 6.69E-06	Pressure = /e value is Effe 28.00 k (ft./day) 6.79E-07 6.93E-06 9.04E-06 1.01E-05 criteria = Vm = ft/day pcf C)	ective Confining Reset = * 	Pressure

SUPPORTING INFORMATION

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

DuPont Additional Borings Chattanooga, Tennessee October 26, 2018 Terracon Project No. E2175151

SAMPLING	WATER LEVEL		FIELD TESTS
	_── Water Initially Encountered	N	Standard Penetration Test Resistance (Blows/Ft.)
Rock Core Shelby Tube	Water Level After a Specified Period of Time	(HP)	Hand Penetrometer
	Water Level After a Specified Period of Time	(T)	Torvane
Standard Penetration Test	Water levels indicated on the soil boring logs are the levels measured in the borehole at the times	(DCP)	Dynamic Cone Penetrometer
	indicated. Groundwater level variations will occur over time. In low permeability soils, accurate determination of groundwater levels is not	UC	Unconfined Compressive Strength
	possible with short term water level observations.	(PID)	Photo-Ionization Detector
		(OVA)	Organic Vapor Analyzer

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

		STRENGTH TER	MS			
RELATIVE DENSITY	OF COARSE-GRAINED SOILS	CONSISTENCY OF FINE-GRAINED SOILS				
(More than 50%) Density determined by	(More than 50% retained on No. 200 sieve.) Density determined by Standard Penetration Resistance		(50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance			
Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength Qu, (tsf)	Standard Penetration or N-Value Blows/Ft.		
Very Loose	0 - 3	Very Soft	less than 0.25	0 - 1		
Loose	4 - 9	Soft	0.25 to 0.50	2 - 4		
Medium Dense	10 - 29	Medium Stiff	0.50 to 1.00	4 - 8		
Dense	30 - 50	Stiff	1.00 to 2.00	8 - 15		
Very Dense	> 50	Very Stiff	2.00 to 4.00	15 - 30		
		Hard	> 4.00	> 30		

RELATIVE PROPORTION	S OF SAND AND GRAVEL	RELATIVE PROPORTIONS OF FINES		
Descriptive Term(s) of other constituents	Percent of Dry Weight	Descriptive Term(s) of other constituents	Percent of Dry Weight	
Trace	<15	Trace	<5	
With	15-29	With	5-12	
Modifier	>30	Modifier	>12	
GRAIN SIZE T	ERMINOLOGY	PLASTICITY DESCRIPTION		
Major Component of Sample	Particle Size	Term	Plasticity Index	
Boulders	Over 12 in. (300 mm)	Non-plastic	0	
Cobbles	12 in. to 3 in. (300mm to 75mm)	Low	1 - 10	
Gravel	3 in. to #4 sieve (75mm to 4.75 mm)	Medium	11 - 30	
Sand	#4 to #200 sieve (4.75mm to 0.075mm	High	> 30	
Silt or Clay	Passing #200 sieve (0.075mm)			

UNIFIED SOIL CLASSIFICATION SYSTEM

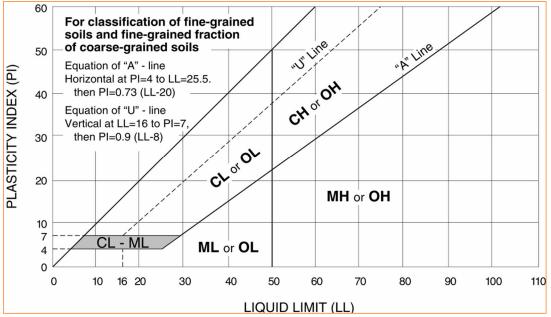
DuPont Gravity Sewer and Pump Station Chattanooga, Tennessee October 26, 2018 Terracon Project No. E2175151

Terracon GeoReport

						Soil Classification
Criteria for Assigni	ing Group Symbols	and Group Names	Using Laboratory	Tests A	Group Symbol	Group Name ^B
	Gravels:	Clean Gravels:	Cu ³ 4 and 1 £ Cc £ 3 ^E		GW	Well-graded gravel F
	More than 50% of	Less than 5% fines ^C	Cu < 4 and/or 1 > Cc > 3	E	GP	Poorly graded gravel F
	coarse fraction	Gravels with Fines:	Fines classify as ML or M	ЛH	GM	Silty gravel ^{F, G, H}
Coarse-Grained Soils: More than 50% retained	retained on No. 4 sieve	More than 12% fines ^C	Fines classify as CL or C	н	GC	Clayey gravel ^{F, G, H}
on No. 200 sieve	Sands:	Clean Sands:	Cu ³ 6 and 1 £ Cc £ 3 ^E		SW	Well-graded sand
	50% or more of coarse	Less than 5% fines D	Cu < 6 and/or 1 > Cc > 3	E	SP	Poorly graded sand I
	fraction passes No. 4	Sands with Fines:	Fines classify as ML or N	Fines classify as ML or MH		Silty sand ^{G, H, I}
	sieve	More than 12% fines ^D Fines classify as CL or CH		H	SC	Clayey sand ^{G, H, I}
		Inorganic:	PI > 7 and plots on or above "A"		CL	Lean clay ^K , L, M
	Silts and Clays:	norganic.	PI < 4 or plots below "A" line ^J		ML	Silt ^K , L, M
	Liquid limit less than 50	Organic:	Liquid limit - oven dried	< 0.75	OL	Organic clay ^{K, L, M, N}
Fine-Grained Soils: 50% or more passes the		Organic.	Liquid limit - not dried	< 0.75	OL	Organic silt ^K , L, M, O
No. 200 sieve		Inorganic:	PI plots on or above "A" line		СН	Fat clay ^K , ^{L, M}
	Silts and Clays:	morganic.	PI plots below "A" line		MH	Elastic Silt ^{K, L, M}
	Liquid limit 50 or more	Organic:	Liquid limit - oven dried	< 0.75	он	Organic clay K, L, M, P
		Organic.	Liquid limit - not dried	< 0.75	ОП	Organic silt K, L, M, Q
Highly organic soils:	Primarily	organic matter, dark in co	olor, and organic odor		PT	Peat
			1114			

A Based on the material passing the 3-inch (75-mm) sieve

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.


- ^C Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

^E Cu = D₆₀/D₁₀ Cc =
$$\frac{(D_{30})^2}{D_{10} \times D_{10}}$$

F If soil contains ³ 15% sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- ¹ If soil contains ³ 15% gravel, add "with gravel" to group name.
- ^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- L If soil contains ³ 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^MIf soil contains ³ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- NPI ³ 4 and plots on or above "A" line.
- ^OPI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- ^QPI plots below "A" line.

DESCRIPTION OF ROCK PROPERTIES

DuPont Gravity Sewer and Pump Station
Chattanooga, Tennessee

October 26, 2018
Terracon Project No. E2175151

Terracon GeoReport

	WEATHERING
Term	Description
Unweathered	No visible sign of rock material weathering, perhaps slight discoloration on major discontinuity surfaces.
Slightly weathered	Discoloration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discolored by weathering and may be somewhat weaker externally than in its fresh condition.
Moderately weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a continuous framework or as corestones.
Highly weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a discontinuous framework or as corestones.
Completely weathered	All rock material is decomposed and/or disintegrated to soil. The original mass structure is still largely intact.
Residual soil	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.

STRENGTH OR HARDNESS					
Field Identification	Uniaxial Compressive Strength, psi (MPa)				
Indented by thumbnail	40-150 (0.3-1)				
Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife	150-700 (1-5)				
Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer	700-4,000 (5-30)				
Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer	4,000-7,000 (30-50)				
Specimen requires more than one blow of geological hammer to fracture it	7,000-15,000 (50-100)				
Specimen requires many blows of geological hammer to fracture it	15,000-36,000 (100-250)				
Specimen can only be chipped with geological hammer	>36,000 (>250)				
	Indented by thumbnail Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer Specimen requires more than one blow of geological hammer to fracture it Specimen requires many blows of geological hammer to fracture it				

DISCONTINUITY DESCRIPTION

Fracture Spacing (Joints	, Faults, Other Fractures)	Bedding Spacing (May Include Foliation or Banding)		
Description	Spacing	Description	Spacing	
Extremely close	< ¾ in (<19 mm)	Laminated	< ½ in (<12 mm)	
Very close	¾ in – 2-1/2 in (19 - 60 mm)	Very thin	½ in − 2 in (12 − 50 mm)	
Close	2-1/2 in – 8 in (60 – 200 mm)	Thin	2 in – 1 ft. (50 – 300 mm)	
Moderate	8 in – 2 ft. (200 – 600 mm)	Medium	1 ft. – 3 ft. (300 – 900 mm)	
Wide	2 ft. – 6 ft. (600 mm – 2.0 m)	Thick	3 ft. – 10 ft. (900 mm – 3 m)	
Very Wide	6 ft. – 20 ft. (2.0 – 6 m)	Massive	> 10 ft. (3 m)	

<u>Discontinuity Orientation (Angle)</u>: Measure the angle of discontinuity relative to a plane perpendicular to the longitudinal axis of the core. (For most cases, the core axis is vertical; therefore, the plane perpendicular to the core axis is horizontal.) For example, a horizontal bedding plane would have a 0-degree angle.

ROCK QUALITY DESIGNATION (RQD) ¹				
Description	RQD Value (%)			
Very Poor	0 - 25			
Poor	25 – 50			
Fair	50 – 75			
Good	75 – 90			
Excellent	90 - 100			
1 The combined length of all cound and integet come	ante aquel te er greater then 4 inches in length, everesed as a			

1. The combined length of all sound and intact core segments equal to or greater than 4 inches in length, expressed as a percentage of the total core run length.

Reference: U.S. Department of Transportation, Federal Highway Administration, Publication No FHWA-NHI-10-034, December 2009 <u>Technical Manual for Design and Construction of Road Tunnels – Civil Elements</u> Appendix B

Report for Geophysical Services

This page intentionally left blank.

October 12, 2018

CDM Smith 4600 Park Rd #240 Charlotte, North Carolina 28209

Attention: Mr. Erdem Onur Tastan, Ph.D., P.E.

Reference: Report for Geophysical Services DuPont Pump Station and Basin Improvements Phase 2 Chattanooga, Tennessee S&ME Project No. 1281-18-061

Dear Mr. Tastan:

S&ME, Inc. (S&ME) has performed geophysical services at the above referenced site located in Chattanooga, Tennessee. These services were performed in general accordance with S&ME Proposal No. 121800346 dated August 15, 2018.

Project Information

CDM Smith is performing consulting services for a proposed new pump station facility within the existing boat ramp area located on Dixie Drive in Chattanooga, Tennessee (**Figure 1**). During the test boring program conducted by CDM Smith for the proposed facility, an approximate 11-foot vertical void was encountered in one of the borings (B-108). Depth to the top of rock at B-108 is about 33 feet below ground surface (bgs) with the encountered top of the void at about 45 feet bgs. The water table is just above the soil/rock interface, so the void is anticipated to be water-filled. The site is mostly covered by asphalt pavement with two sewer utilities (30 inch and 36 inches in diameter) running east-west across the site at about 5 feet bgs and electrical lines for the existing light poles. CDM Smith requested S&ME provide geophysical services within the areas of the proposed facility in an effort to identify potential karst features such as voids, bedrock joints/fractures, etc.

Methodology and Field Services

On October 3 and 4, 2018, S&ME completed an Electrical Resistivity Tomography (ERT) survey within the accessible portions of the site. ERT is an active geophysical technique that involves the introduction of a known amount of current into the ground and measuring the response in order to identify variations in subsurface electrical potentials. By introducing a known amount of current into the ground, the measured voltage potential at the surface is used to calculate the resistivity of a particular volume of subsurface media.

In general, clayey and moist soils result in lower resistivity (higher conductivity) readings, while dry sands, gravels, chert, and competent limestone/dolomite exhibit higher resistivity values. The resistivity of materials also partially depends on the substance filling its pore or void space. If a cavity or fracture is air-filled, a highly resistive anomaly within the limestone/dolomite unit is expected. If it is water- or clay-filled, an anomaly more conductive than the surrounding limestone/dolomite unit is expected. Natural variations in porosity and grain size

distribution can also cause such anomalies. It is important to note that actual ground resistivity is not collected during a resistivity survey. The survey is used to collect the apparent resistivity of a volume of material that is dependent upon electrode spacing. Actual resistivities are later determined through a data inversion process.

The ERT method requires that a series of small current and potential stainless-steel electrodes be inserted into the ground and data collected using various array configurations (Dipole-Dipole, Wenner, etc.). The electrodes are connected to a transmitter/recording instrument (resistivity meter) that generates the induced current and stores the resulting measurements for later processing and analysis. The configuration of the collected data (array) is dependent on the objectives of the investigation (e.g., vertical soil and bedrock profiling, cavity detection, fracture mapping, etc.). ERT measurements are acquired from the voltage potential difference measured between two electrodes and are dependent upon the distance between the electrodes. Material included between the electrodes is essentially averaged. Therefore, limitations of this method exist dependent upon the resolution of data acquisition needed versus the depth of a target.

We used an AGI SuperSting[™] R8/IP resistivity system configured with 56 electrodes in general accordance with ASTM D6431-99 (2010) "Using DC Resistivity for Subsurface Investigations". A total of three ERT profiles at 275 feet in length were collected at the site using the Dipole-Dipole array configuration (**Figure 2**). Line locations were generally based site access and to avoid potential influence from the existing buried utilities. However, the beginnings of Lines 2 and 3 were slightly shortened due to shallow interference identified during data processing which may be related to the buried electrical lines. Electrodes for each profile were spaced at 5 feet. Due to the presence of asphalt pavements, 1/2 inch diameter holes were required at each electrode location in order for the electrodes to be inserted directly into the underlying soils. Each hole was backfilled with a flowable asphalt sealant at the end of the survey. The ERT data was processed using AGI's EarthImager 2D software and Golden Software's Surfer[®] was used to grid and plot the data. Elevations used for our models were based on provided plans and not actual field survey measurements performed by S&ME and should be considered approximate. ERT data profiles are presented in **Figure 2**.

♦ Results

The ERT results depicted in **Figure 2** indicate a varying resistivity contrast across the surveyed area that range from approximately 10 ohm-meters (ohm/m) to 200 ohm/m. Presented depths of the ERT profiles are at about 60 feet below ground surface (bgs).

- In general, the ERT profiles exhibit two layers (Layer 1 and 2). The upper Layer 1 is primarily characterized by conductive material less than about 50 ohm/m and the lower. Layer 2 generally consists of material greater than about 50 ohm/m with the interpreted upper surface about 5 to 15 feet bgs. Based on the provided borings, Layer 1 is related to the soil overburden and Layer 2 is related to limestone bedrock.
- Two anomalous subsurface features were also identified in the ERT data sets (Anomalies A and B).
- Anomaly A is characterized by a conductive area within the interpreted bedrock (Layer 2) and was identified along each of the three profiles. The east-west trending anomaly is consistent with possible water/clay-filled voids, joints, and/or fractures within the bedrock.
- Anomaly B appears to be generally characterized by a topographic low along the surface of the interpreted bedrock along Line 2. However, the interpreted bedrock within this feature also exhibits relatively lower resistivity values that may be related to water/clay-filled voids, joints, and/or fractures.

Limitations

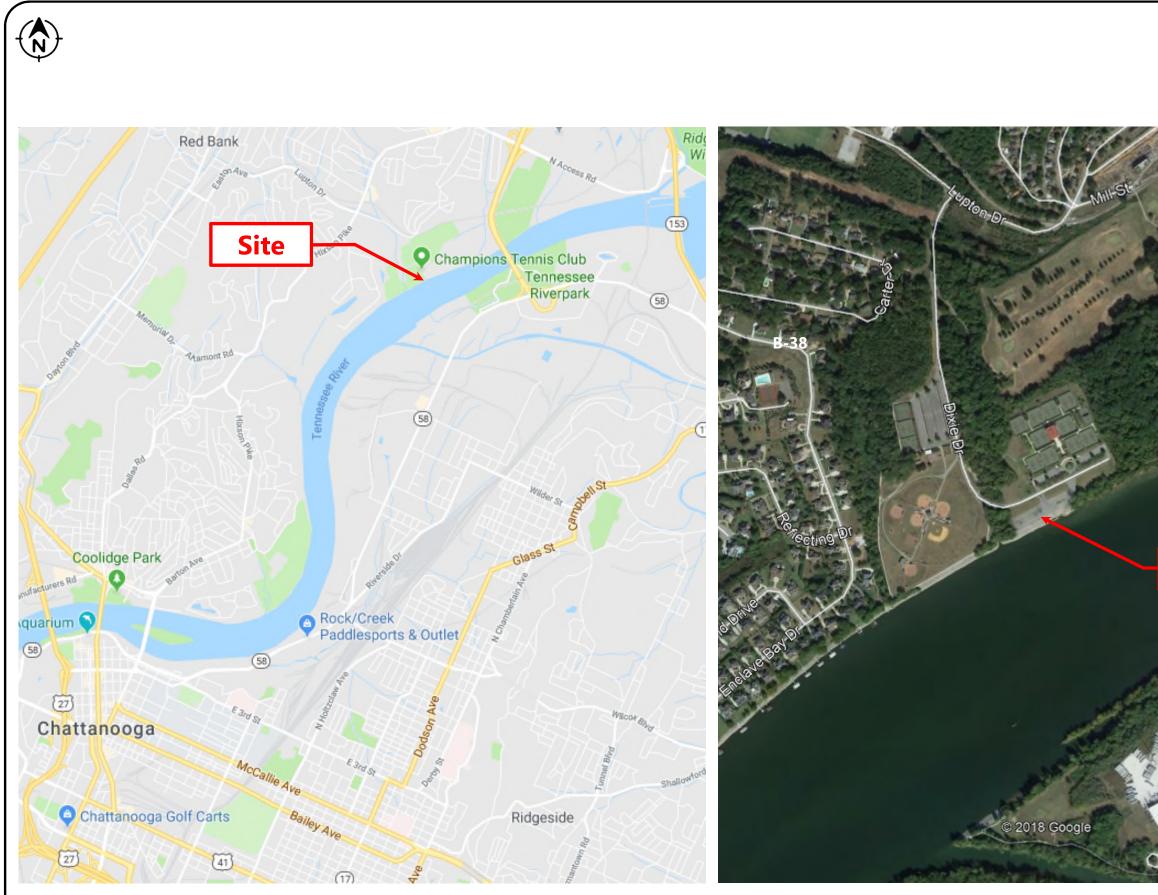
The geophysical method used for this survey has inherent limitations. Buried site metallic features (e.g., utilities, etc.) and overhead transmission lines can produce excessive noise and/or false responses in ERT data. As such, ERT profile locations are generally positioned where possible influence is limited. Depth of exploration for an ERT survey is limited by the allowable length of the collected data profile. Limiting factors due to site constraints such as property boundaries, surficial obstructions, utilities, etc. can reduce profile lengths. Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of subsurface features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of subsurface features was based on our review of provided information and of the geophysical survey. Under no circumstances will S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

Closure

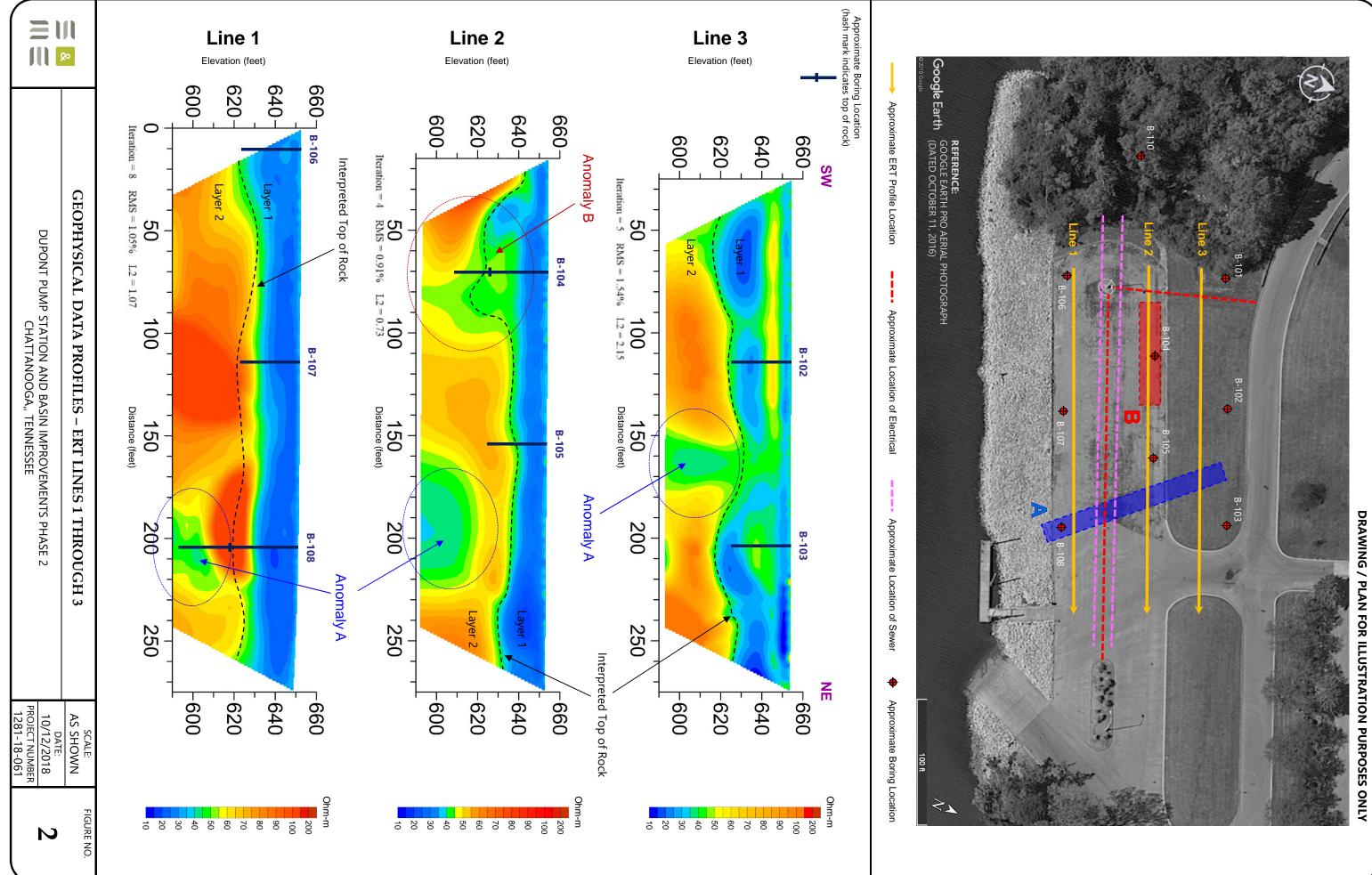
S&ME appreciates the opportunity to assist you during this phase of the project. If you should have any questions concerning this report or if we may be of further assistance, please contact us.

Sincerely,

S&ME, Inc.


Jason B. Cox, PG (GA) Project Geophysicist

Kevin D. Hon,


Geophysical Group Leader

Attachments: Site Vicinity Map, Figure 1 Geophysical Data Profiles – ERT Lines 1 through 3, Figure 2 This page intentionally left blank.

Attachments

REFERENCE: GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED OCTOBER 11, 2016)		
<image/>	SITE VICINITY MAP	DUPONT PUMP STATION AND BASIN IMPROVEMENTS PHASE 2 CHATTANOOGA,, TENNESSEE
Tennessee River	NOT 1 [10/1 PROJEC 1281	CALE: TO SCALE DATE: 2/2018 T NUMBER -18-061 JRE NO.
5 / PLAN FOR ILLUSTRATION PURPOSES ONLY		1

January 30, 2019

CDM Smith 4600 Park Rd #240 Charlotte, North Carolina 28209

Attention: Mr. Erdem Onur Tastan, Ph.D., P.E.

Reference: Revised Report for Geophysical Services DuPont Pump Station and Basin Improvements Phase 2 Chattanooga, Tennessee S&ME Project No. 1281-18-061R2

Dear Mr. Tastan:

S&ME, Inc. (S&ME) has performed geophysical services at the above referenced site located in Chattanooga, Tennessee. These services were performed in general accordance with S&ME Proposal No. 121800346CO1 dated January 9, 2019. This report has been revised based on comments in an email from CDM Smith on January 30, 2019.

Project Information

CDM Smith is performing consulting services for a proposed new pump station facility located near Dixie Drive in Chattanooga, Tennessee (**Figure 1**). During the test boring program conducted by CDM Smith for the original location of the proposed facility, an approximate 11-foot vertical void was encountered in one of the borings (B-108). Depth to the top of rock at B-108 is about 33 feet below ground surface (bgs) with the encountered top of the void at about 45 feet bgs. The water table is just above the soil/rock interface so the encountered void is likely water-filled. S&ME previously performed geophysical services within the original proposed area and identified potential karst features such as voids and bedrock joints/fractures. CDM Smith requested S&ME provide additional geophysical services at three alternative sites for the proposed facility (Sites A, B, and D).

Methodology and Field Services

Between October 3, 2018 and January 17, 2018, S&ME completed Electrical Resistivity Tomography (ERT) surveys within the accessible portions of the original site and Sites A, B, and D (**Figure 2**). ERT is an active geophysical technique that involves the introduction of a known amount of current into the ground and measuring the response in order to identify varying electrical potentials in subsurface material. By introducing a known amount of current into the ground, the measured voltage potential at the surface is used to calculate the resistivity of a particular volume of subsurface media.

In general, clayey and moist soils result in lower resistivity (higher conductivity) readings, while dry sands, gravels, chert, and competent limestone/dolomite exhibit higher resistivity values. The resistivity of materials also partially depends on the substance filling its pore or void space. If a cavity or fracture is air-filled, a highly resistive anomaly within the limestone/dolomite unit is expected. If it is water- or clay-filled, an anomaly more conductive

than the surrounding limestone/dolomite unit is expected. Natural variations in porosity and grain size distribution can also cause such anomalies. It is important to note that actual ground resistivity is not collected during a resistivity survey. The survey is used to collect the apparent resistivity of a volume of material that is dependent upon electrode spacing. Actual resistivities are later determined through a data inversion process.

The ERT method requires that a series of small current and potential stainless-steel electrodes be inserted into the ground and data collected using various array configurations (Dipole-Dipole, Wenner, etc.). The electrodes are connected to a transmitter/recording instrument (resistivity meter) that generates the induced current and stores the resulting measurements for later processing and analysis. The configuration of the collected data (array) is dependent on the objectives of the investigation (e.g., vertical soil and bedrock profiling, cavity detection, fracture mapping, etc.). ERT measurements are acquired from the voltage potential difference measured between two electrodes and are dependent upon the distance between the electrodes. Material included between the electrodes is essentially averaged. Therefore, limitations of this method exist dependent upon the resolution of data acquisition needed versus the depth of a target.

An AGI SuperStingTM R8/IP resistivity system configured with 56 electrodes was used in general accordance with ASTM D6431-99 (2010) "Using DC Resistivity for Subsurface Investigations". A total of twelve (12) ERT profiles ranging between about 275 and 330 feet in length were collected using the Dipole-Dipole array configuration; Lines 1, 2, and 3 at the original site, Lines 4, 5, and 6 at Site B, Lines 7, 8, and 9 at Site D, and Lines 10, 11, and 12 at Site A (**Figure 2**). Line locations were generally based on site access and, if possible, to avoid potential influence from existing buried utilities. However, the beginnings of Lines 2 and 3, and the end of Line 12, were slightly shortened due to shallow interference identified during data processing which are likely related to buried electrical lines and/or structures within those areas. Electrodes for each profile were spaced at 5 feet. Where asphalt pavements were encountered, 1/2 inch diameter holes were required in order for the electrodes to be inserted directly into the underlying soils. Each drilled hole was backfilled with a flowable asphalt sealant at the end of the survey.

ERT data was processed using AGI's EarthImager 2D software and Golden Software's Surfer[®] was used to grid and plot the data. Elevations used for our models were based on provided plans from CDM Smith and/or from the Hamilton County GIS website rather than actual field survey measurements performed by S&ME and should be considered approximate. ERT data profiles are presented in **Figures 3 through 6**.

♦ Results

The ERT results depicted in **Figure 3 through 6** indicate a varying resistivity contrast across the surveyed areas that generally range from approximately 10 ohm-meters (ohm-m) to 200 ohm-m. Presented depths of the ERT profiles are at about 40 to 60 feet below ground surface (bgs).

• In general, the ERT profiles exhibit two layers (Layer 1 and 2). The upper Layer 1 is primarily characterized by relatively conductive material less than about 50 ohm-m and the underlying Layer 2 generally consists of material greater than about 50 ohm-m. Based on the provided borings, Layer 1 is interpreted to be related to the soil overburden and Layer 2 is interpreted to be related to the limestone bedrock.

- Eight anomalous subsurface features were also identified in the ERT data sets (Anomalies A through H); Anomalies A and B at the original site, Anomaly C at Site B, Anomalies D and E at Site D, and Anomalies F, G, and H at Site A.
- Anomalies A, F, and G are characterized by conductive areas within the interpreted bedrock (Layer 2) and are consistent with possible water/clay-filled voids (A and F) and/or joints/fractures within the bedrock (G).
- Anomalies B, C, D, E, and H appear to be generally characterized by a topographic low along the surface of the interpreted bedrock. However, the interpreted bedrock within several of these features also exhibit relatively lower resistivity values that may be related to water/clay-filled voids, joints, and/or fractures (B and C).
- In addition, the buried structures located at the end of Line 11 and south of Line 6 may have influenced the ERT data sets. As such, Anomaly H may instead be associated with a buried structure and the higher conductivity values exhibited in Line 6 may have masked the actual subsurface conditions so potential features along Line 6 were not interpreted.

Anomaly	Site	ERT Line	Description			
А	Original	1, 2 and 3	Possible water/clay-filled voids within the bedrock			
В	Original	2	Topographic low along bedrock surface with possible joints/fractures			
С	В	4 and 5	Topographic low along bedrock surface with possible joints/fractures			
D	D	7	Topographic low along bedrock surface			
E	D	7	Topographic low along bedrock surface			
F	A	12	Possible water/clay-filled voids within the bedrock			
G	A	12	Possible joints/fractures within the bedrock			
н	А	11	Topographic low along bedrock surface (possibly influenced by buried structure)			

• Interpreted anomalies are also summarized in the table below.

Limitations

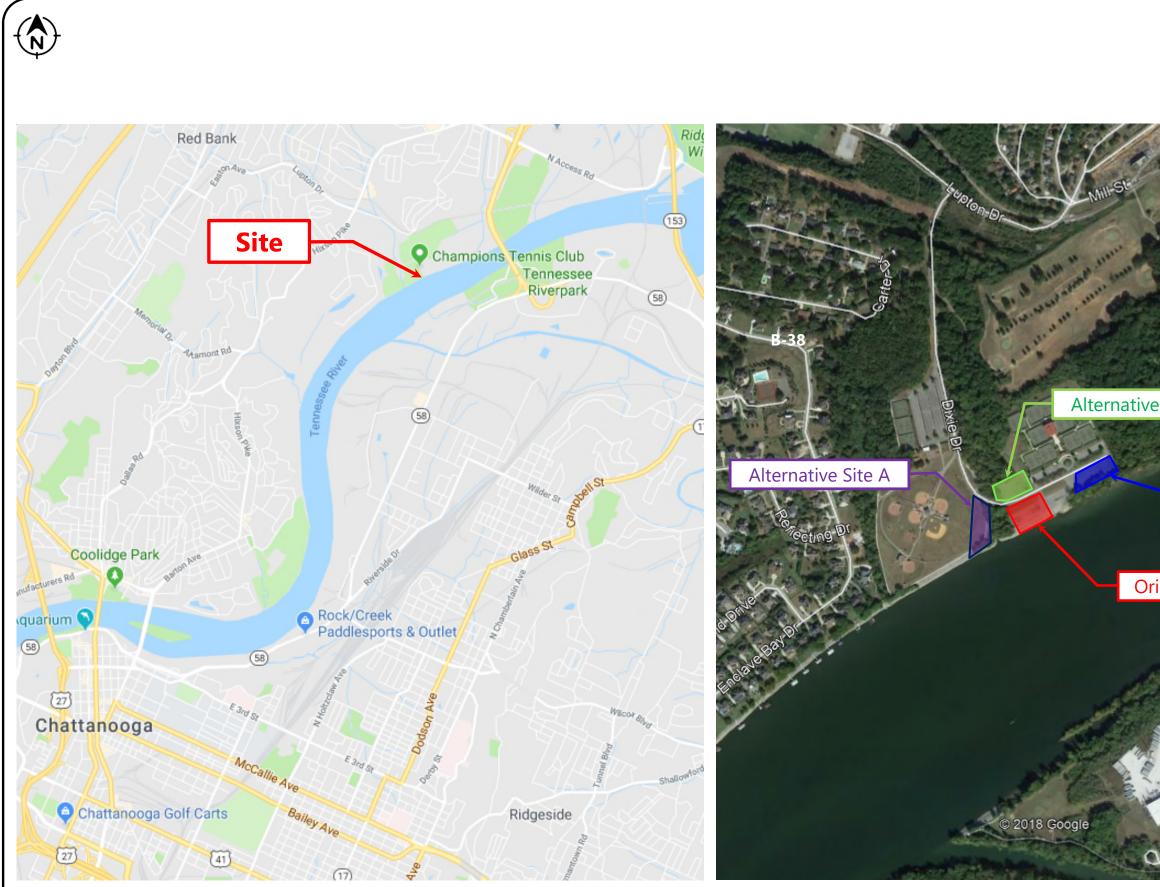
The geophysical method used for this survey has inherent limitations. Buried site metallic features (e.g., utilities, etc.) and overhead transmission lines can produce excessive noise and/or false responses in ERT data. As such, ERT profile locations are generally positioned where possible influence is limited. Depth of exploration for an ERT survey is limited by the allowable length of the collected data profile. Limiting factors due to site constraints such as property boundaries, surficial obstructions, utilities, etc. can reduce profile lengths. Regardless of the thoroughness of a geophysical study, there is always a possibility that actual conditions may not match the interpretations. The results should be considered accurate only to the degree implied by the methods used and the method's limitations and data coverage. Accordingly, the possibility exists that not all features at a project site will be located due to either subsurface soil conditions or the occurrence of features outside the lateral limits and below the depth of penetration of the methods used. As with most surface geophysical methods, resolution of the subsurface will also decrease with depth. As such, the size and/or contrast of subsurface features compared to the imaged subsurface media must be significant enough to produce the anticipated response. The location and/or determination (or the lack thereof) of subsurface features was based on our review of provided information and of the geophysical survey. Under no circumstances will S&ME assume any responsibility for damages resulting from the presence of subsurface features that may exist but were not identified by our survey.

Closure

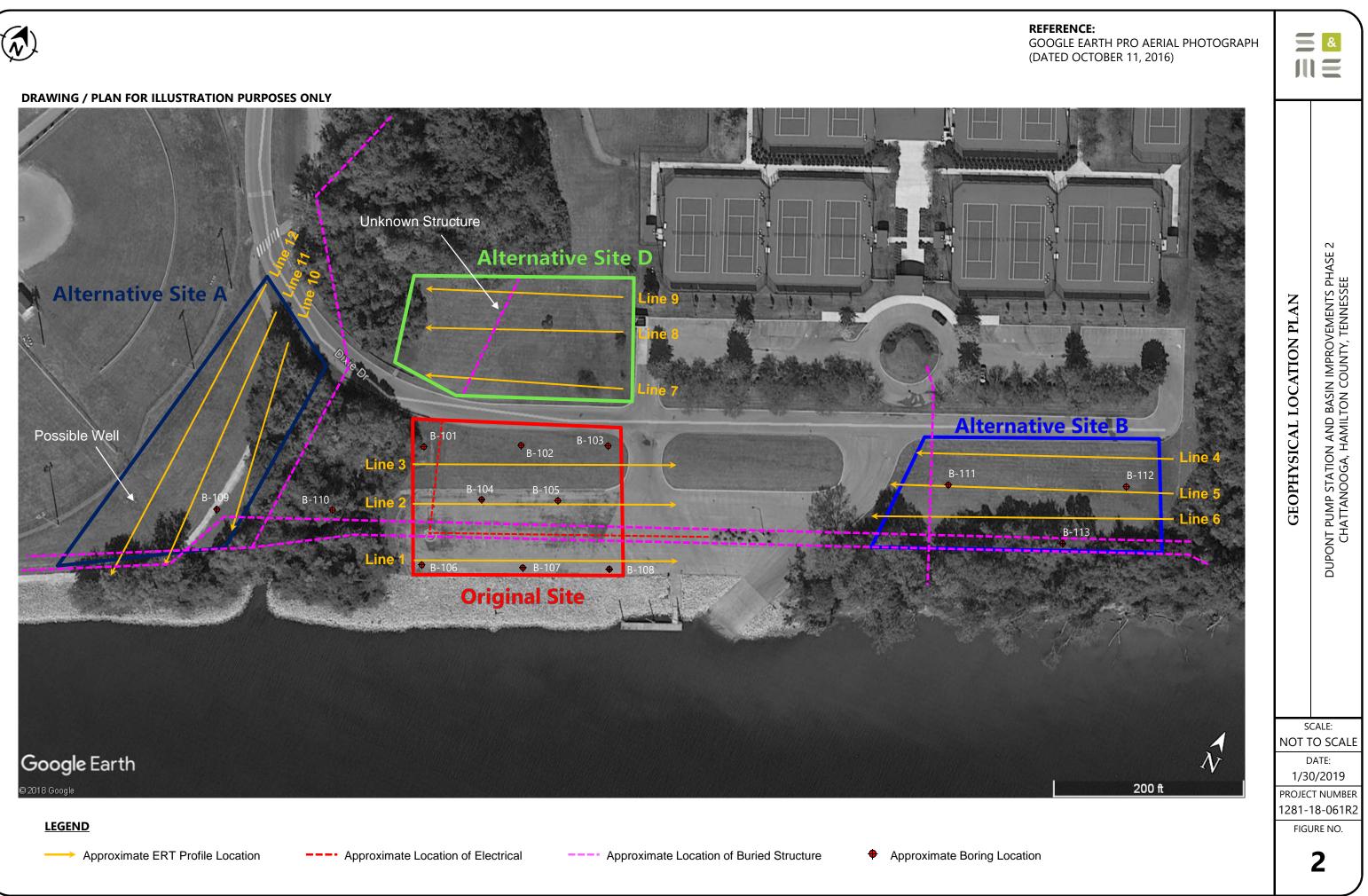
S&ME appreciates the opportunity to assist you during this phase of the project. If you should have any questions concerning this report or if we may be of further assistance, please contact us.

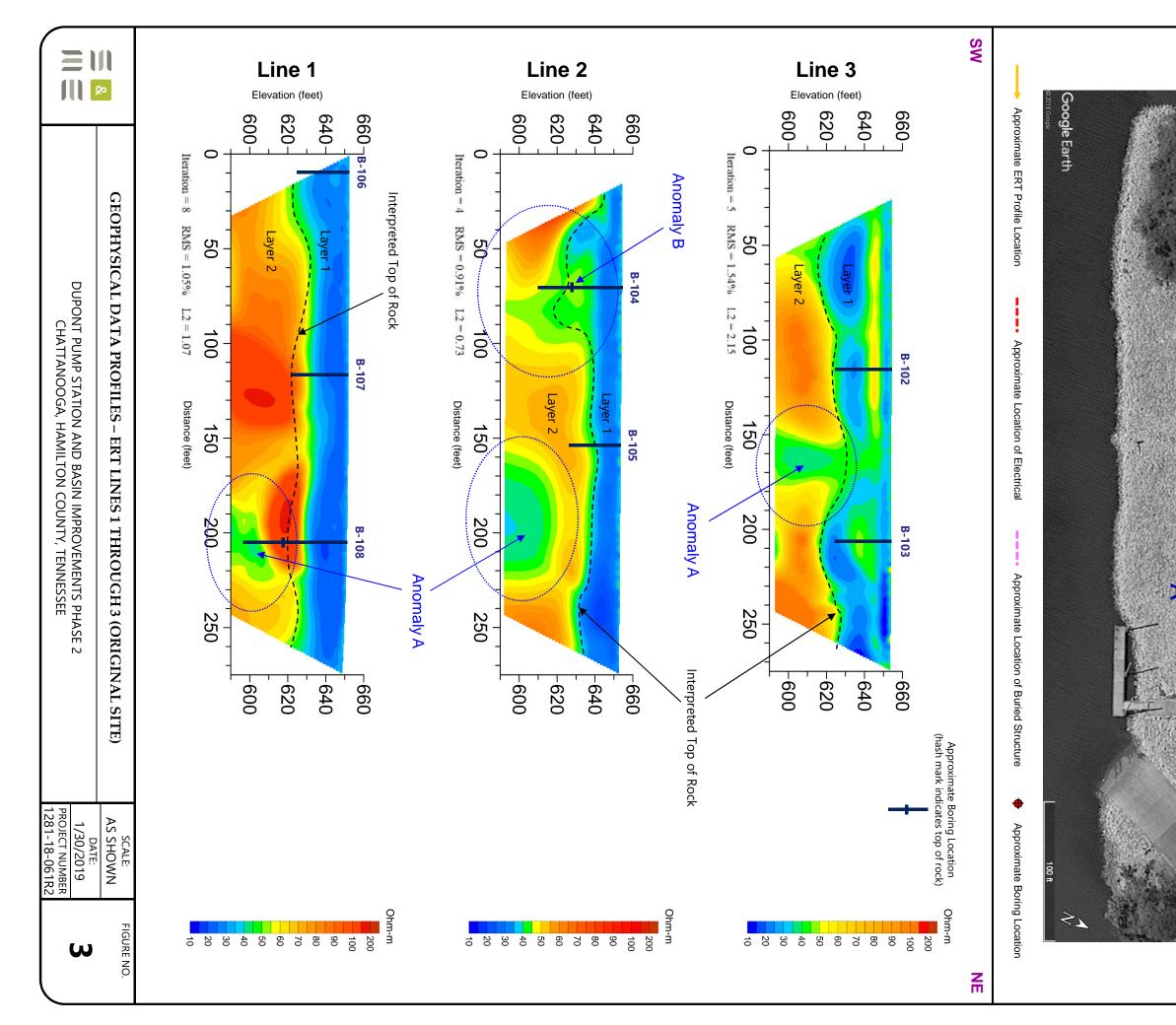
Sincerely,

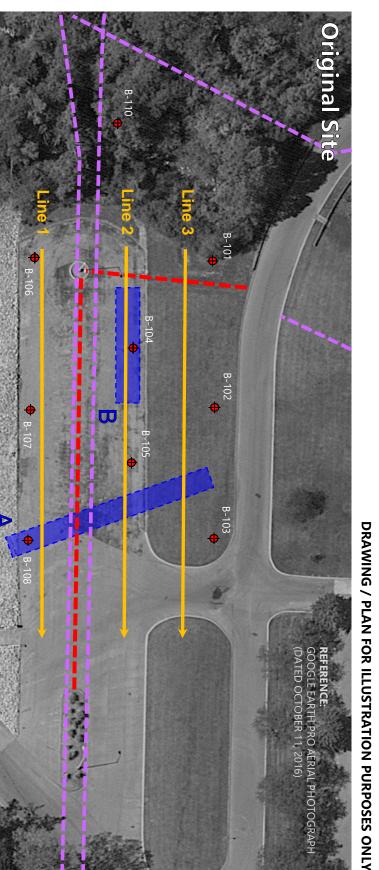
S&ME, Inc.

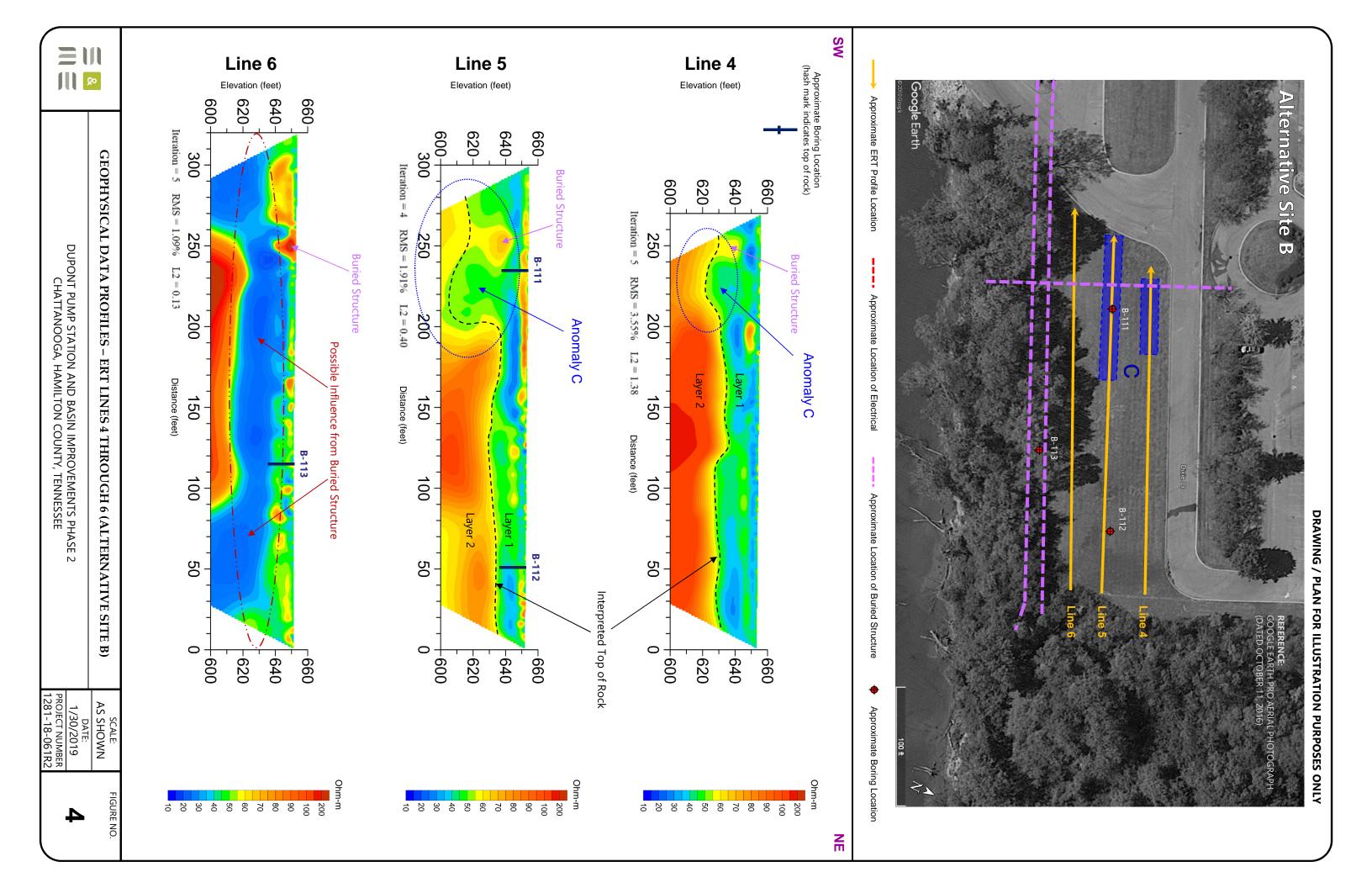

Jason B. Cox, PG (GA) Project Geophysicist

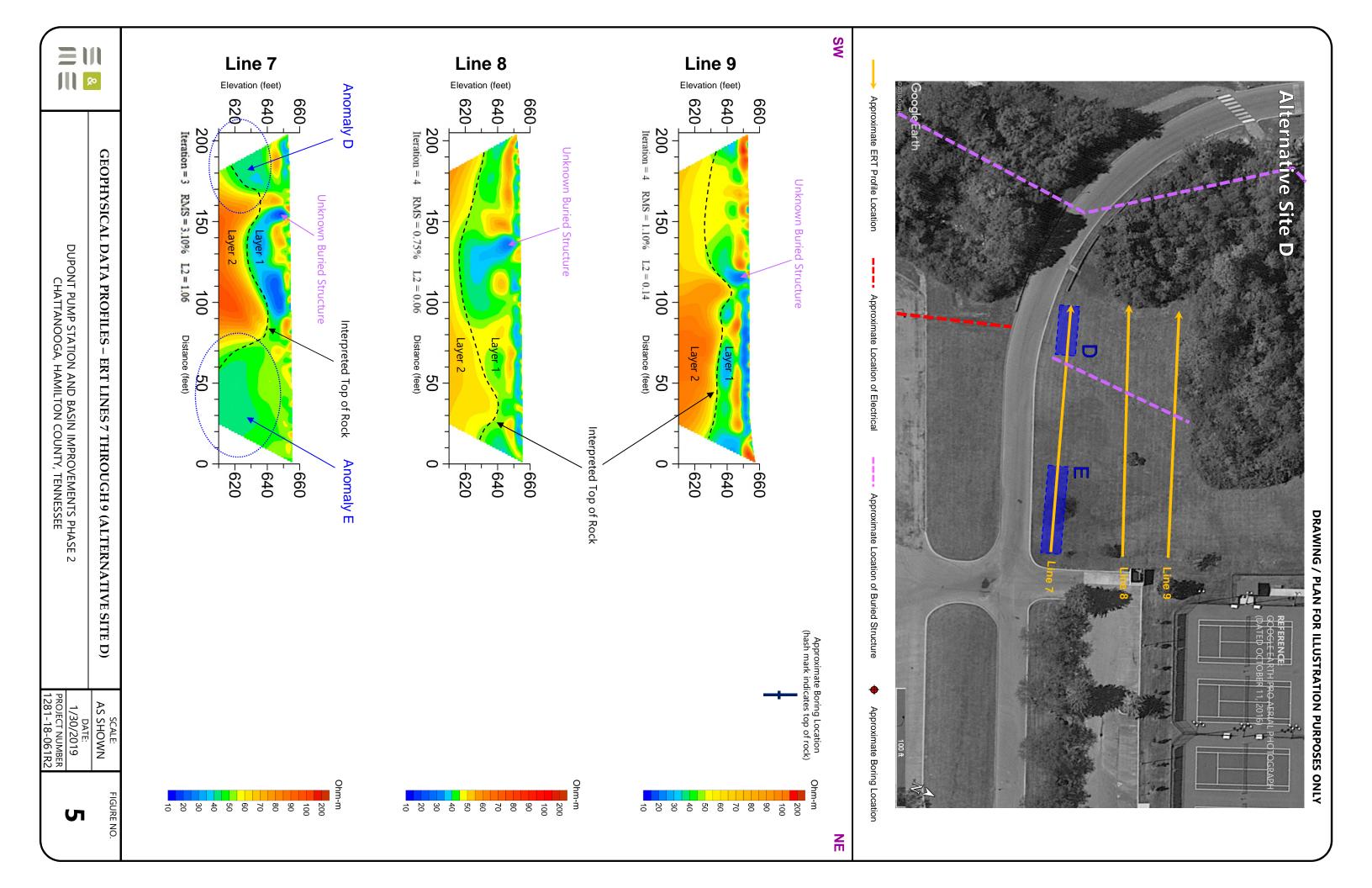
Kevin D. Hon,


Geophysical Group Leader


Attachments: Site Vicinity Plan, Figure 1
Geophysical Location Plan, Figure 2
Geophysical Data Profiles – ERT Lines 1 through 3 (Original Site), Figure 3
Geophysical Data Profiles, ERT Lines 4 through 6 (Alternative Site B), Figure 4
Geophysical Data Profiles, ERT Lines 7 through 9 (Alternative Site D), Figure 5
Geophysical Data Profiles, ERT Lines 10 through 12 (Alternative Site A), Figure 6


Attachments




		$\overline{}$
REFERENCE: GOOGLE EARTH PRO AERIAL PHOTOGRAPH (DATED OCTOBER 11, 2016)		
e site D Atternative Site B	NOT 1	O P C m C m CHATTANOOGA, HAMILTON COUNTY, TENNESSEE
Tennessee Riv	1/30 PROJEC 1281-	DATE: D/2019 IT NUMBER 18-061R2 JRE NO.
5 / PLAN FOR ILLUSTRATION PURPOSES ONLY		1



Appendix C

CDM Smith Test Boring Logs

This page intentionally left blank.

Sheet 1 of 4

BOREHOLE LOG CDM-204

Client: City of Chattanooga, TN Project Location: Chattanooga, TN

Drilling Contractor: Terracon, Inc.

Drilling Method/Rig: HSA/Acker

Drillers: Richard

CDM Smil

Drilling Date: Start: 11/20/2018 End: 11/20/2018

Borehole Coordinates: See Boring Location Plan

Project Name: Dupont Pump Station and Basin Improvements Project Number: 109746

Surface Elevation (ft.): 655.5

Total Depth (ft.): 66.3

Depth to Initial Water Level (ft-bgs): 24.0

Abandonment Method: Backfilled with grout.

Logged By: KNA

	Sample Type	Sample Number	Sample Adv/Rec (inches)	<u>Elev.</u> Depth (ft.) 655.5	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation		Material Description
				0		0		TOPSOIL		of Topsoil.
	SS	S-1	24/20		6	3 3 5		CL		bist, medium stiff, brown and dark brown, lean CLAY , trace roots.
	SS	S-2	24/24		10	4 5 5 8			M	bist, stiff, brown, lean CLAY , trace roots.
	SS	S-3	24/24	<u>650.5</u> 5	11	2 4 7 9			M	bist, stiff, brown, lean CLAY, trace roots.
	SS	S-4	24/22		10	2 4 6 6			M	oist, stiff, brown with gray, lean CLAY .
	SS	S-5	24/18	645.5	10	2 4 6 7			M	oist, stiff, brown, lean CLAY .
T 3/19/19	SS	S-6	24/18	10 	8	WOH 4 4 7			M	bist, stiff, brown, lean CLAY .
ORING LOGS.GPJ CDM_CORP.GDT	SS	S-7	24/18	 640.5 15	9	1 4 5 7			M	bist, stiff, brown, lean CLAY .
SING			EXPL			BBREV	IATION	S		REMARKS
BOREHOLE GINT_DUPONT BOR	HSA SSA HA AR DTR FR MR RC CT JET D	DRILLING METHODS: SAMPLING TYPES: HSA - Hollow Stem Auger AS - Auger/Grab Sample SSA - Solid Stem Auger CS - California Sampler HA - Hand Auger BX - 1.5" Rock Core AR - Air Rotary NX - 2.1" Rock Core DTR - Dual Tube Rotary GP - Geoprobe FR - Foam Rotary HP - Hydro Punch MR - Mud Rotary SS - Split Spoon RC - Reverse Circulation ST - Shelby Tube GT - Cable Tool WS - Wash Sample JET - Jetting OTHER-							face	Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long WOH = Weight of hammer REC = Recovery RQD = Rock Quality Designation 24-hour water level reading for depth to initial water level
<u>B</u>	510			a		PWR	- Partiall	y Weathere	ea Kock	Reviewed by: EOT Date: 3-11-19

BOREHOLE LOG CDM-204

		ity of Cha cation:	-					Project Name: Dupont Pump Station and Basin Improvements Project Number: 109746
Sample Type	Sample Number	Sample Adv/Rec (inches)	<u>Elev.</u> Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
SS	S-8	24/18	 	11	3 5 6 9		CL	Moist, stiff, brown, black and gray, lean CLAY , trace fine sand.
SS	S-9	24/18	 	2	WOH WOH 2 4		СН	Moist to wet, very soft, gray, fat CLAY . (Black, decayed wood from 23' to 24')
SS	S-10	24/18	 	2	WOH WOH 2 3			Wet, very soft, dark gray, fat CLAY , trace sand.
							SW	Wet, dense, gray, fine to medium SAND . (Gravel in tip)
SS	S-11	24/18	 	31	3 10 21 16			
SS	S-12	24/18	<u>620.5</u> 35 	2	16		CL	Wet, very soft, tan, CLAY , some gravel.
			615.5		1			

CDM Smith

Sheet 3 of 4

BOREHOLE LOG CDM-204

		ity of Cha			<u>ب</u>			Project Name: Dupont Pump Station and Basin Improvements Project Number: 109746
sample Type	Sample Number	Sample Adv/Rec (inches)	<u>Elev.</u> Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
		-					CL	
								Wet, severe weathering, extremely fractured, light gray, LIMESTONE.
		-	45 				VOID	Water filled VOID from 45.1 feet to 47.1 feet bgs.
NQ2	C-1	96/16					VOID	Wet, severe weathering, extremely fractured, light gray, LIMESTONE.
			 <u>605.5</u> - 50					Water filled VOID from 47.5 feet to 63.2 feet bgs.
NQ2	C-2	120/0	 					
			 - <u>595.5</u> - 					
IQ2	C-3	57.6/26.5					VOID	Wet, hard, moderately weathered, slightly fractured, gray LIMESTONE.
			590.5					REC=46%; RQD=21% Water filled VOID from 63.4 feet to 64.4 feet bgs.

BOREHOLE LOG CDM-204

FIQ		ocation:	Challar	iooga,				Project Number: 109746
Запре Туре	Sample Number	Sample Adv/Rec (inches)	<u>Elev.</u> Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
								Wet, hard, moderately weathered, slightly fractured, gray LIMESTONE.
								Boring terminated at 66.3 feet bgs.
			70					
			 _ <u>580.5</u> _ 75					
			_ <u>575.5</u> 					

			Sheet
_	\sim	\mathbf{a}	

1 of 4

BOREHOLE LOG B-501

Project Name: Dupont Pump Station and Basin Improvements

CDM

Client: City of Chattanooga, TN

Project Location: Chattanooga, TN Project Number: 109746 Drilling Contractor: S&ME/Tri-State Surface Elevation (ft.): 651.9 Drilling Method/Rig: HSA/CME-550X Total Depth (ft.): 65.2 Drillers: Freeman Depth to Initial Water Level (ft-bgs): 0.0 Abandonment Method: Backfilled with grout. Drilling Date: Start: 2/28/2019 End: 3/1/2019 Borehole Coordinates: See Boring Location Plan Logged By: KNA Blows per 6-in or Drilling Rate (min/ft) USCS Designation Graphic Log Sample Adv/Rec (inches) Sample Number Sample Type N-Value Elev. Material Depth Description (ft.) 651.9 CL 0 Moist, stiff, brown, CLAY 5 6 SS S-1 18/18 14 8 <u>646.9</u> 5 Moist, stiff, brown, CLAY, trace mica 4 18/16 4 SS S-2 10 6 <u>641.9</u> 10 CORP.GDT 3/19/19 CDM Moist, stiff, brown, CLAY, trace mica 3 - Pockets of wet, light gray/tan, CLAY. SS S-3 18/18 9 4 BOREHOLE GINT DUPONT BORING LOGS.GPJ 5 <u>636.9</u> 15 **EXPLANATION OF ABBREVIATIONS** REMARKS DRILLING METHODS: HSA - Hollow Stem Auger SSA - Solid Stem Auger HA - Hand Auger SAMPLING TYPES ING TYPES: Auger/Grab Sample California Sampler 1.5" Rock Core 2.1" Rock Core AS CS BX Hammer weight = 140 pounds, drop height = 30 inches 2 Split spoon = 2 inches OD, 24 inches long WOH = Weight of hammer Air Rotary Dual Tube Rotary Foam Rotary AR DTR NX GP HP -REC = Recovery Geoprobe Hydro Punch FR MR RC CT JET RQD = Rock Quality Designation Mud Rotary Reverse Circulation SS ST Split Spoon Shelby Tube 24-hour water level reading for depth to initial water level Cable Tool Jetting -WS Wash Sample OTHER: D Driving Drill Through Casing Above Ground Surface AGS DTC PWR - Partially Weathered Rock Date: 3-11-19 Reviewed by: EOT

Sheet 2 of 4

		ity of Cha ocation:	-		TN			Project Name: Dupont Pump Station and Basin Improvements Project Number: 109746
Sample Type	Sample Number	Sample Adv/Rec (inches)	<u>Elev.</u> Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
SS	S-4	18/18		6	2 3 3		CL	Moist to wet, medium stiff, CLAY , trace mica - Pockets of wet, tan, CLAY.
SS	S-5	24/24	_ <u>631.9</u> 	9	3 4 5 6			Wet, stiff, brown, orange and gray, CLAY , trace mica
SS	S-6	24/24		0	WOH WOR WOH 2		SC	Wet, very soft, dark gray, CLAY , some fine to coarse sand
ST	ST-1	24/22	_ <u>626.9</u> 25		P U S H			Wet, dark gray, CLAY , some fine to coarse sand
SS	S-7	24/24		3	2 1 2 3			Wet, very loose, dark gray, fine to coarse SAND , some clay - 2" wood fragments in spoon tip.
SS	S-8	10/6		>50	9 50/4"			Wet, very dense, dark gray, fine to coarse SAND - Rock fragments in tip. Auger refusal encountered at 28.8 ft bgs. Begin rock coring.
NQ	C-1	17/13	_6 <u>21.9</u>					Hard, fresh, blue-gray, fine grained, LIMESTONE; primary joint set horizontal, close, rough, stepped, fresh, tight; secondary joint set vertical, rough, planar, discolored, tight. REC = 76%
NQ	C-2	60/48						Hard to very hard, fresh, blue-gray, fine grained LIMESTONE; primary joint set shallow, moderately close, rough, stepped, fresh, partly open. REC = 80%, RQD = 72%
			 				VOID	Water-filled VOID from 33.7 to 34.2 ft bgs.
NQ	C-3	60/56						Hard to very hard, fresh, blue-gray and white, fine grained LIMESTONE; primary joint set horizontal, moderately close, rough, stepped, fresh to discolored, partly open; secondary joint set steep, wide, rough, stepped, discolored, open. REC = 93%, RQD = 93%

CDM Smith

		ity of Cha	-					Project Name: Dupont Pump Station and Basin Improvements
Pro	ject L	ocation:	Chattan	looga, [·]		,		Project Number: 109746
Sample Type	Sample Number	Sample Adv/Rec (inches)	<u>Elev.</u> Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
NQ	C-4	60/49						Hard to very hard, fresh, blue-gray and white, fine grained LIMESTONE ; primary joint set shallow, moderately close, rough, planar, fresh, tight. REC = 82%, RQD = 63% - Becomes highly fractured near void
							VOID	Water-filled VOID from 43.7 to 44.5 ft bgs.
NQ	C-5	60/59	_ <u>606.9</u> 					2" Flint 45.1 to 45.3 ft bgs. Hard, fresh, blue-gray, fine grainedLIMESTONE; primary joint set horizontal, wide, rough, stepped, fresh, partly open; secondary joint set steep, very wide, rough, planar, discolored, tight. REC = 99%, RQD = 99%
NQ	C-6	60/56.5	 					Hard to very hard, fresh, blue-gray, fine grained LIMESTONE; primary joint set horizontal, wide, rough, stepped, fresh, open; secondary joint set steep, very wide, rough, planar, discolored, partly open. REC = 94%, RQD = 94%
NQ	C-7	60/63	 <u>- 596.9</u> 					Hard, fresh, blue-gray, black and white, fine grained LIMESTONE; primary joint set shallow, close, rough, planar, fresh, open to partly open. REC = 100%, RQD = 92% - Flint seams 55.1 to 56 ft bgs and 57.2 to 58 ft bgs.
NQ	C-8	60/57	60 586.9					Hard to very hard, fresh, blue-gray, fine grained LIMESTONE ; primary joint set shallow, moderately close, rough stepped, partly open. REC = 95%, RQD = 95%

Pro	ject Lo	ocation:	Chattar	nooga,				Project Number: 109746
Sample Type	Sample Number	Sample Adv/Rec (inches)	<u>Elev.</u> Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
								Boring terminated at 65.2 ft bgs.
			_ <u>581.9</u> 70					
			_ <u>576.9</u> 					
			571.9					
			_ <u>571.9</u>					
			_ <u>566.9</u> 85					
			[]					
			└					
			+ -					

	eet 1 of 3
--	------------

Client: City of Chattanooga, TN Project Location: Chattanooga, TN Project Name: Dupont Pump Station and Basin Improvements Project Number: 109746

Drilling Contractor: S&ME/Tri-State

Drilling Method/Rig: HSA/CME-550X

Drillers: Freeman

CDM Smith

Drilling Date: Start: 2/26/2019 End: 2/27/2019

Borehole Coordinates: See Boring Location Plan

Surface Elevation (ft.): 653.7

Total Depth (ft.): 54.9

Depth to Initial Water Level (ft-bgs): 0.2

Abandonment Method: Backfilled with grout.

Logged By: KNA

Sample Type	Sample Number	Sample Adv/Rec (inches)	<u>Elev.</u> Depth (ft.) 653.7	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation		Material Description
SS	S-1	18/18	0 	15	5 6 9		CL	М	vist, stiff, brown and gray, CLAY , trace roots
SS	S-2	18/18	 	14	6 6 8			Μ	ist, stiff, brown, tan and gray, CLAY
	S-3	18/18		12	5 5 7				ist, stiff, brown, CLAY , trace mica /et, gray, vertical seams.
SSA ARTE DINO DINITION AND ARTER ART ART ART ART ART ART ART ART ART AR	A - Hol - Sol - Hai - Air - Dua - Foa - Mu - Rev - Cal - Jett - Driv	ETHODS: ilow Stem Augen nd Auger Rotary al Tube Rotary am Rotary d Rotary verse Circulat ble Tool ting	15 ANATIC ger er y tion	N OF A	AS CS BX NX GP HP SS ST WS OTHE AGS	LING TYPI - Auger/G - Californ - 1.5" Roc - 2.1" Roc - Geoprot - Hydro P - Split Sp - Split Sp - Shelby - Wash S R: - Above	ES: Grab Sampler ia Sampler ck Core ck Core ce unch oon Tube	face	REMARKS Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long WOH = Weight of hammer REC = Recovery RQD = Rock Quality Designation 24-hour water level reading for depth to initial water level Reviewed by: EOT Date: 3-11-19

Dro	ioct I	ocation:	Chattar	e noor	тм			Project Number: 109746
110		ocation.	Unattai	iooga,	1.			
Sample Type	Sample Number	Sample Adv/Rec (inches)	<u>Elev.</u> Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
SS	S-4 ST-1	18/18 24/24	 	7	2 3 4 P U S		CL	Moist, medium stiff, brown and tan, CLAY , trace mica - Gray seams.
SS	S-5	24/24	 	9	H 4 3 6 4			Wet, stiff, brown and gray-black, CLAY , little fine to coarse sand, trace mica
SS	S-6	24/24		2	WOH WOR 2 3		SC	Wet, very soft, brown and gray-black, CLAY , little fine to coarse sand, trace mica Wet, very loose, dark gray, fine to coarse SAND, some clay, trace mica
SS	S-7	24/24		2	1 1 1 2			Wet, very loose, dark gray, fine to coarse SAND, some clay, little wood, trace mica
SS	<u>S-8</u>	3/0		>50	50/3"			No Recovery. Begin rock coring at 28.6 ft bgs.
NQ	C-1	16/15						Moderately hard, slightly weathered, gray and white, dolomitic LIMESTONE; primary joint set shallow, close, rough, stepped, discolored, open. REC = 94%, RQD = 94%
NQ	C-2	60/60	30 					Moderately hard to hard, slightly weathered, blue-gray, dolomitic LIMESTONE; primary joint set horizontal, close to moderately close, rough, stepped, discolored, open; secondary joint set steep, wide, rough, planar, discolored, partly open. REC = 100%, RQD = 77%
NQ	C-3	60/59.5	_ <u>618.7</u>					Moderately hard to hard, fresh, blue and gray, fine grained LIMESTONE; primary joint set horizontal to shallow, close to moderately close, rough, planar, fresh, tight to partly open. REC = 99%, RQD = 84% - Clayey sand infilling.

CDM Smith

Clie	ent: C	ity of Cha	attanoog	ga, TN				Project Name: Dupont Pump Station and Basin Improvements
Pro	ject L	ocation:	Chattar	nooga,	TN	r		Project Number: 109746
Sample Type	Sample Number	Sample Adv/Rec (inches)	<u>Elev.</u> Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
NQ	C-4	60/59						horizontal, close, rough, stepped, fresh, tight to open. REC = 99%, RQD = 93% Very hard flint seam 43.1 to 43.3 ft bgs.
NQ	C-5	60/59	<u>- 608.7</u> 					 Hard, fresh, blue-gray, fine grained LIMESTONE; primary joint set horizontal, close, rough, stepped, fresh to discolored, partly open to open. REC = 99%, RQD = 74% -Very hard, fresh, dark gray and white, aphanitic FLINT; primary joint set shallow, close, rough, stepped, fresh, open encountered from 45.0 to 46.3 ft bgs and from 47.5 to 48 ft bgs.
NQ	C-6	60/58.5	- <u>-</u> - 					Moderately hard, fresh, blue-gray, fine grained LIMESTONE; primary joint set horizontal to shallow, moderately close, rough, stepped, fresh, tight to partly open. REC = 98%, RQD = 98%
BOREHOLE GINT_DUPONT BORING LOGS.GPJ CDM_CORP.GDT 3/19/19			_ <u>598.7</u> _ 					Boring terminated at 54.9 ft bgs.

Sheet 1 of 3

BOREHOLE LOG B-503

Client: City of Chattanooga, TN Project Location: Chattanooga, TN Project Name: Dupont Pump Station and Basin Improvements Project Number: 109746

Drilling Contractor: S&ME/Tri-State

Drilling Method/Rig: HSA/CME-550X

Drillers: Freeman

CDM Smil

Drilling Date: Start: 3/1/2019 End: 3/2/2019

Borehole Coordinates: See Boring Location Plan

Surface Elevation (ft.): 652.8

Total Depth (ft.): 60.3

Depth to Initial Water Level (ft-bgs): NR

Abandonment Method: Backfilled with grout.

Logged By: KNA

Sample Type	Sample Number	Sample Adv/Rec (inches)	Elev. Depth (ft.) 652.8	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
SS	S-1	24/22	0	5	4 3 2 2		CL	Moist, medium stiff, brown, CLAY and fine to coarse GRAVEL , trace roots
SS	S-2	24/23		7	3 2 5 5			Moist, medium stiff, brown-gray, CLAY , trace fine to coarse gravel, trace roots
SS	S-3	24/24	6 <u>47.8</u> 5	12	5 5 7 8			Moist, stiff, brown, CLAY
SS	S-4	24/24		11	4 5 6 8			Moist, stiff, brown, CLAY - Pockets of wet, gray clay
SS	ST-1	24/3			P U S H			Moist, brown CLAY - 3" recovery, sample abandoned
3/19/19	ST-2	24/12	_6 <u>42.8</u> _ 10 		P U S H			12" Recovery (estimated 10 to 11 ft bgs), water drained from bottom of tube when extracted.
	S-5	24/12		5	3 3 2 4		СН	Moist to wet, medium stiff, orange-brown, CLAY
C LOGS.GPJ C	S-6	24/24	6 <u>37.8</u>	9	4 4 5			Moist to wet, stiff, orange-brown, CLAY , trace mica
HSAA SAA ARTR FR MRC JE D D D D D D D D D D D D D D D D D D D	 Hol Sol Hai Air Air Dua Foa Foa Foa Mu Rev Cal Jett Driv 	ETHODS: low Stem Augend Auger Rotary al Tube Rotary am Rotary d Rotary verse Circulat ble Tool ting	ger er Y	N OF A	AS CS BX NX GP HP SS ST WS OTHE AGS	LING TYPE - Auger/G - Californi - 1.5" Roc - 2.1" Roc - Geoprot - Split Spi - Split Spi - Shelby 1 - Wash S R: - Above (ES: irab Sample ia Sampler ik Core ik Core oe unch oon Fube	r Split spoon = 2 inches OD, 24 inches long WOH = Weight of hammer REC = Recovery RQD = Rock Quality Designation 24-hour water level reading for depth to initial water level

		ity of Cha ocation:	-					Project Name: Dupont Pump Station and Basin Improvements Project Number: 109746
Sample Type	Sample Number	Sample Adv/Rec (inches)	<u>Elev.</u> Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
SS	S-7	24/24		10	6 3 4 6		СН	Moist to wet, stiff, orange-brown, CLAY - Pockets of wet, gray/tan clay
SS	S-8	24/24	 	9	5 3 6 5			Moist to wet, stiff, brown, tan and black, CLAY - Pockets of wet, gray/tan clay
SS	S-9	18/18	 25 	4	1 2 2			Wet, soft, dark gray, CLAY , some fine to coarse sand, little mica
SS	S-10	5.5/2		>50	50/5.5"		SP	Wet, hard, dark gray, CLAY , some fine to coarse sand, little mica - Wood chips in tip. Auger refusal at 29.3 ft bgs.
			<u>-622.8</u> 					Sand encountered to 35.9 ft bgs. Casing flushed until competent rock was reached. Solid material observed 33.1 to 33.5 ft bgs.
			_ <u>617.8</u> _ 					Medium hard to hard, slightly weathered, blue-gray, fine grained LIMESTONE; primary joint set steep, close, rough, stepped, discolored, open.
NQ	C-1	52/33						REC = 63%, RQD = 52% 4" VOID encountered 37.6 to 37.9 ft bgs.

CDM Smith

		ity of Cha ocation:	-					Project Name: Dupont Pump Station and Basin Improvements Project Number: 109746			
Sample Type	Sample Number	Sample Adv/Rec (inches)	<u>Elev.</u> Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description			
NQ	C-2	60/56						 Medium hard to hard, slightly weathered, blue-gray, fine grained LIMESTONE; primary joint set shallow, close, rough, stepped, fresh, open. REC = 93%, RQD = 72% Very hard, highly fractured to slightly fractured, dark gray, FLINT encountered from 42.5 to 43.4 ft bgs and from 44.7 to 45.2 ft bgs. 			
NQ	C-3	60/59.5	_ <u>607.8</u> 					 Hard, fresh, blue-gray, fine grained LIMESTONE; primary joint set horizontal, close, rough, stepped, fresh, open. REC = 94%, RQD = 75% Several core pieces were approximately 3.5" in length. 			
NQ	C-4	60/60	. 50 . 					Hard, fresh, blue-gray, fine grained LIMESTONE; primary joint set horizontal, moderately close, rough, stepped, fresh to slightly discolored, partly open. REC = 100%, RQD = 98%			
NQ	C-5	60/60	_ <u>597.8</u> 					Hard, fresh, blue-gray, fine grained LIMESTONE; primary joint set horizontal, moderately closerough, planar, partly open. REC = 94%, RQD = 87% - Quartz inclusions 55.2 to 55.5 ft bgs.			
			 587.8					Boring terminated at 60.3 ft bgs.			

BOREHOLE LOG B-504

Client: City of Chattanooga, TN Project Location: Chattanooga, TN Project Name: Dupont Pump Station and Basin Improvements Project Number: 109746

Drilling Contractor: S&ME/Tri-State

Drilling Method/Rig: HSA/CME-550X

Drillers: Freeman

CDM Smith

Drilling Date: Start: 2/25/2019 End: 2/26/2019

Borehole Coordinates: See Boring Location Plan

Surface Elevation (ft.): 654.6

Total Depth (ft.): 55

Depth to Initial Water Level (ft-bgs): 3.0

Abandonment Method: Backfilled with grout.

Logged By: KNA

Sample Type	Sample Number	Sample Adv/Rec (inches)	<u>Elev.</u> Depth (ft.) 654.6	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation		Material Description
SS	S-1	24/20	0	4	2 2 2 3		CL	М	oist, soft, dark brown, CLAY & SILT, trace roots
SS	S-2	24/16		6	2 2 4 3			м	oist, medium stiff, dark brown, CLAY & SILT, trace roots oist, medium stiff, orange and white, CLAY, some fine to coarse
SS	S-3	24/24	6 <u>49.6</u> 5	13	1 5 8 10		СН		avel oist, stiff, dark brown and dark gray, CLAY
SS	S-4	24/20		15	4 7 8 9			M	oist, stiff, dark brown and dark gray, CLAY
SS	S-5	24/22	644.6	13	3 7 6 7				oist, stiff, brown, CLAY
SS 3/19/19	S-6	24/24	10 	13	4 6 7 8		CL	M	oist, stiff, orange-brown, CLAY
SS SS	S-7	24/24		12	3 5 7 8			- \	oist, stiff, brown, CLAY Wet, gray vertical seams
SS ROGS.GPJ	S-8	24/24	_ <u>639.6</u>	13	3 6 7			M	oist, stiff, brown and black, CLAY , trace mica
HSASHARTR MRCT JUD BONDONT B								rface	REMARKS Hammer weight = 140 pounds, drop height = 30 inches Split spoon = 2 inches OD, 24 inches long WOH = Weight of hammer REC = Recovery RQD = Rock Quality Designation 24-hour water level reading for depth to initial water level Reviewed by: EOT Date: 3-11-19

		ity of Cha			TN			Project Name: Dupont Pump Station and Basin Improvements Project Number: 109746
Pro		ocation:	Challan	looga,	<u> </u>			Project Number: 109746
Sample Type	Sample Number	Sample Adv/Rec (inches)	<u>Elev.</u> Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description
SS	S-9	24/24		10	7 4 4 6 7		CL	Moist, stiff, brown, CLAY
ST	ST-1	24/24	 <u>634.6</u> 20		P U S H			Moist, brown, CLAY
SS	S-10	18/18		6	2 2		SC	Moist, medium stiff, brown, tan and gray, CLAY Wet, loose, dark gray, fine to coarse SAND , some clay
	3-10	10/10	<u>629.6</u> 25 	0	4			- Water in S-11 spoon.
					1			Wet, loose, dark gray, fine to coarse SAND, some clay
SS	S-11	18/18	_6 <u>24.6</u>	25	13 12		GP	Wet, medium dense, white and gray, fine to coarse GRAVEL - Gravel is angular rock fragments. Auger refusal encountered at 30.4 ft bgs. Begin rock coring.
10		50/00					VOID	Medium hard, moderately weathered, blue-gray, fine grained LIMESTONE; primary joint set moderately dipping to steep, very close, rough, stepped, discolored to decomposed, open. REC = 57%, RQD = 21% VOID encountered 30.9 to 31.1 ft bgs. Appears to be filled with
NQ	C-1	56/32	 619.6				VOID	VOID encountered 33.4 to 33.5 ft bgs. Appears to be filled with clayey sand.
NQ	C-2	60/59	<u>- 35</u> 					Hard, fresh, blue-gray, fine grained LIMESTONE ; primary joint set horizontal, close to moderately close, rough, stepped, discolored to fresh, open. REC = 98%, RQD = 80% - Flint observed 39.5 to 39.7 ft bgs and 39.9 to 40.1 ft bgs.
			_6 <u>14.6</u> _					

CDM Smith

Sheet 3 of 3 BOREHOLE LOG B-504

		ity of Cha ocation:		ooga, T				Project Name: Dupont Pump Station and Basin Improvements Project Number: 109746		
Sample Type	Sample Number	Sample Adv/Rec (inches)	<u>Elev.</u> Depth (ft.)	N-Value	Blows per 6-in or Drilling Rate (min/ft)	Graphic Log	USCS Designation	Material Description		
NQ	C-3	60/60						 Hard, fresh, blue gray, fine grained LIMESTONE, primary joint set horizontal to shallow, moderately close, rough, planar and stepped, fresh, slightly open. REC = 100%, RQD = 100% - 6" seam of very hard, dark gray and white, FLINT encountered 41.6 to 42.1 ft bgs. 		
			_ <u>609.6</u> _ 45 -					Hard, fresh, blue gray, fine grained LIMESTONE, primary joint set horizontal to shallow, moderately close, rough, planar and undulating, fresh, slightly open to tight. REC = 98%, RQD = 98%		
NQ	C-4	60/58.5	 - <u>- 604.6</u>							
NQ	C-5	58/60	50 - 					Medium hard to hard, fresh, blue-gray, fine grained LIMESTONE ; primary joint set horizontal, close to moderately close, rough, undulating, fresh, partly open to tight. REC = 100%, RQD = 100%		
			6 55 					Boring terminated at 55.0 ft bgs.		
			 <u>594.6</u>							
			589.6							

This page intentionally left blank.

Appendix D

S&ME Geotechnical Laboratory Testing Report

This page intentionally left blank.

April 22, 2019

CDM Smith 4600 Park Road #240 Charlotte, North Carolina 28209

Attention: Mr. Erdem Onur Tastan, Ph.D., P.E.

Reference: Laboratory Testing Services Report DuPont WTP Chattanooga, Tennessee S&ME Project No. 1281-18-061

Dear Mr. Tastan:

S&ME, Inc. provided drilling and laboratory testing services at the above referenced project. Services were performed in general accordance with the scope of services outlined in the Standard Form of Agreement between Engineer and Subcontractor for Drilling Services dated February 18, 2019. Attached you will find laboratory reports documenting the laboratory testing services performed.

Should you have any questions regarding this information, or if we can be of any further assistance, please contact us at your convenience.

Sincerely,

S&ME, Inc. Tran

David Grass, PE Project Engineer

Attachments: Laboratory Testing Reports

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

		S&ME, Inc.	Chat	tanooga:	4291 Hi	ighway 58	8, Suite 1	01, Chatt	anooga, T	FN 37416		
Project #	#:	1281-18-06		0		 Log #: 19-			Report		3/27/20)19
roject N		Dupont WT	ΓP			5			Test Da		3/26/20	
lient Na		CDM Smith									-,,	
	ddress:	4600 Park F) Charlot		209			-			
oring #					ole #: S-1	205		Sam	anlo Dato	: 2/28/201	0	
				1				San			9	
ocation		ite Boring			ffset: N/A				Depth	: 3.5'-5'		
	Descriptio		trong B S&ME IE	rown Fat	Clay Cal Date:	τ		: <i>C</i> :;	C (xME ID #	Call	D = 4 = 1
•	Specificatio (0.01 g)		22533		9/17/2018		and Spec ving tool	ιμεαιιοη		33327	Cal L	/2019
Appara			22553		4/24/2018		ving tool			55521	2/12,	2019
ven	atus		22/30		9/26/2018		ving tool					
Pan #	#		22011		5/20/2010	Liquid				1	Plastic Limit	ŀ
i un .		т	are #:	97	21	11	Linit	1	T	D		
A	Tare Weig			15.40	15.13	13.60				80.57	80.61	
B		Neight + A		27.04	27.20	25.15				91.39	91.46	
		-										
С	Dry Soil Weight + A Water Weight (B-C)			23.00	22.94	21.03				89.42	89.48	
D				4.04	4.26	4.12				1.97	1.98	
E	Dry Soil V	Veight (C-A)		7.60	7.81	7.43				8.85	8.87	
F	% Moistu	re (D/E)*100		53.2%	54.5%	55.5%				22.3%	22.3%	
Ν	# OF DRC)PS		35	23	19				Moisture C	ontents dete	ermined
LL	LL	= F * Factor	२							A	STM D 221	6
Ave.		Average							-		22.3%	
	<u> </u>	_								One Point	Liquid Lim	it
6	^{55.0}							\rightarrow	Ν	Factor	Ν	Fact
			_						20	0.974	26	1.00
1 1 6	50.0								21	0.979	27	1.00
ure Content 2									22	0.985	28	1.01
Ŝ			_						23 24	0.99	29 30	1.01 1.02
ane 5	55.0		4						24	1.000	30	1.02
oist					◄					NP, Non-P	lastic	
% Moist 4										Liquid I		4
• 5	50.0		—							Plastic L		2
			1							Plastic Ir		2
4	15.0		<u> </u>							Group Syr		H
	10	15	20	25 30	35 40	# of D	rons	100	1	/ultipoint N		~
							- F			Dne-point N		
Not Dro	oparation	Dry [Preparati	ion 🗸	Air Drie	d 🗌				ne-point r	vietnou	
	eparation	References:	терагац		All Dile	u 🗋						
nes / D	/evialions/	nejerences.										
	4318 [.] Liauia	d Limit, Plastic	c Limit -	& Plastic II	ndex of Soil	5						
ר אד					MER OF SOIL	J						
STM D 4	io i ei Eigen											
STM D 4		Setzer			3/26/2019	<u>)</u>	Da	vid Grass	<u>s, PE</u>		<u>3/27</u>	/2019

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

	S&ME, Inc Cha	ttanooga:	: 4291 Hi	ighway 58	, Suite 1	01, Chatt	anooga, T	IN 37416		
Project #:	1281-18-061	j		Log #: 19-0		,	Report I		3/29/20)19
Project Name:	Dupont WTP			- 3			Test Da		3/25/20	
lient Name:	CDM Smith							()	-,,	
Client Address:	4600 Park Rd #24	0 Charlot	tte. NC 282	209			-			
Soring #: B-5			ole #: S-3			Sam	nple Date:	2/28/201	9	
5	site Boring	•	ffset: N/A					13.5'-15'	5	
ample Descripti	3	h Brown (Deptil.	15.5 15		
ype and Specificat			Cal Date:	Tvpe o	and Speci	fication	S8	xME ID #	Cal I	Date:
alance (0.01 g)	2253		9/17/2018		ring tool			33327		/2019
Apparatus	2273	8	4/24/2018		ring tool					
ven	2261	7	9/26/2018	Groov	ring tool					
Pan #				Liquid	Limit		-		Plastic Limi	t
	Tare #:	48	97	44				C	Х	
A Tare We	ight	13.75	15.41	13.68				81.65	81.65	
B Wet Soil	Weight + A	20.20	19.78	18.46				92.92	92.96	
C Dry Soil	Weight + A	18.31	18.46	16.98				91.12	91.13	
D Water W	/eight (B-C)	1.89	1.32	1.48				1.80	1.83	
E Dry Soil	Weight (C-A)	4.56	3.05	3.30				9.47	9.48	
F % Moist	ure (D/E)*100	41.4%	43.3%	44.8%				19.0%	19.3%	
N # OF DR	OPS	32	27	19		1		Moisture C	ontents dete	ermined
LL LI	_ = F * FACTOR								STM D 221	
Ave.	Average								19.2%	
								One Point	Liquid Lim	it
^{50.0}						\square	Ν	Factor	N	Facto
							20	0.974	26	1.00
1 1 45.0	-						21	0.979	27	1.00
		L.					22 23	0.985 0.99	28 29	1.01
45.0 Content Content 40.0 Content							24	0.995	30	1.01
							25	1.000		
Iois								NP, Non-P	lastic	
35.0								Liquid L	imit 4	3
								Plastic L	imit 1	9
								Plastic Ir	ndex 2	4
30.0 10	 				<u> </u>	100	(Group Syn	nbol C	L
10	15 20	25 30	35 40	# of D	rops	100	N	/lultipoint N	Nethod	~
							C	Dne-point N	Vethod	
Wet Preparation	Dry Preparat	ion 🗸	Air Drie	ed 🗌						
otes / Deviations	/ References:									
STM D 4318: Liqu	id Limit, Plastic Limit,	& Plastic II	ndex of Soil	s						
					Day		. DE		3/29/	/2010
Diele	Satzar		2//5//////							
	<u>Setzer</u> Sian Name	-	<u>3/25/2019</u> Date	<u>9</u>		vid Grass				12019 1te

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

		ASTM I			AASHTO			SHTO T 9				
		S&ME, Inc		anta: 4	350 River (Green Pai	rkway, Su	iite 200,				
Project		1281-18-06							Report		3/29/1	
Project		Dupont WT							Test Da	ate(s)	3/27-3/2	9/19
Client N		CDM Smith							_			
	ddress:	4600 Park R	load, #			28209						
Boring #	#: B-5	02			ole #: ST-1			Sar	nple Date			
ocation	n: N//	4		0	ffset: N/A				Elevation	: 19.5'-21.	5'	
	Descripti		irk yell	owish bro	own clay w				of mica			
•••	l Specificat	ion S	S&ME IE		Cal Date:		and Speci	fication	S8	ME ID #		Date:
	(0.01 g)		25128		4/4/2018		ving tool			26551	2/23,	/2019
L Appar	ratus		31336		2/23/2019		ving tool					
ven Pan	#		31332	2	2/21/2019	Groo Liquid	ving tool				Plastic Limit	
Full	#	Ta	are #:	1	2	3	4	5	6	7	8	9
A	Tare We		<i>ne "</i> .	14.95	15.19	15.41		5	0	15.71	16.00	
B		Weight + A		28.98	30.38	29.02				23.52	23.13	
ь С		-		25.26	26.26	25.14				23.52	23.13	
	-	Weight + A										
D	_	eight (B-C)		3.72	4.12	3.88				1.28	1.16	
E				10.31	11.07	9.73				6.53	5.97	
F		ure (D/E)*100		36.1%	37.2%	39.9%				19.6%	19.4%	
N				32	25	16					ontents dete	
LL	LL	. = F * FACTOR								4	STM D 221	5
Ave.		Average									19.5%	
(65.0 T		_							One Point		
	60.0								N 20	Factor 0.974	N 26	Factor 1.00
	55.0								20	0.979	27	1.00
ent									22	0.985	28	1.01
% Moisture Content	50.0								23	0.99	29	1.01
Le C	45.0								24	0.995	30	1.02
istu 7	40.0								25	1.000		
Wo S	35.0									NP, Non-P		
%	30.0									Liquid L		7
	25.0									Plastic L		0
	- E									Plastic Ir		7
2	20.0 – 10	15	20	25 30	35 40	+ +		→ 100		Group Syr		L
		15	20	25 30	35 40	# of D	rops		Ν	Aultipoint N	Vethod	J
										Dne-point N	/lethod	
	eparation		reparati	ion 🗆	Air Drie	ed ⊡						
otes / E	Deviations	/ References:										
	4318: Liqu	id Limit, Plastic	Limit, 8	& Plastic I	ndex of Soil	S						
STM D						_						
STM D	Jimmy	Hanson		-	3/29/2019)						
STM D	-	<u>Hanson</u> ian Name		2	<u>3/29/2019</u> Date	<u>)</u>	Techn	nical Respon	nsibility		Da	ite

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

	S&ME, Inc Chattanoo	oga: 4291 Higl	hway 58, Suite 101, Cha	attanooga, TN 3741	6
roject #:	1281-18-061	Lo	g #: 19-066	Report Date:	4/2/2019
roject Name:	Dupont WTP			Test Date(s)	3/29/2019
lient Name:	CDM Smith				
lient Address:	4600 Park Rd #240 Cha	arlotte, NC 2820	9	_	
oring #: B-5		ample #: S-7		ample Date: 2/26/2	019
-	site Boring	Offset: N/A		Depth: 25.5'-2	
ample Descripti		idy Silt		·	
ype and Specificat		Cal Date:	Type and Specification	S&ME ID #	Cal Date:
alance (0.01 g)	22533	9/17/2018	Grooving tool	33327	2/12/2019
L Apparatus	22738	4/24/2018	Grooving tool		
ven	22617	9/26/2018	Grooving tool	C	
Pan #			Liquid Limit		Plastic Limit
	Tare #:				
A Tare Wei	-				
B Wet Soil	Weight + A				
C Dry Soil	Weight + A				
D Water W	eight (B-C)				
E Dry Soil	Weight (C-A)				
F % Moistu	ure (D/E)*100				
N # OF DR	OPS			Moisture	e Contents determine
LL LL	. = F * FACTOR				ASTM D 2216
Ave.	Average				
				One Poir	nt Liquid Limit
55.0				N Facto	r N Fac
				20 0.974	26 1.0
50.0				21 0.979	
				22 0.985	
Content Content 45.0				23 0.99	29 1.0 30 1.0
≚ 45.0 -				24 0.995 25 1.000	
				NP, Non	
				Liquid	d Limit
40.0				-	d Limit
				Plasti	c Limit
40.0				Plasti Plastic	c Limit Index
	15 20 25	30 35 40		Plasti Plastic Group S	c Limit Index Symbol
tsioW % 40.0	15 20 25	30 35 40	# of Drops	Plasti Plastic Group S Multipoin	c Limit Index Symbol It Method
tsioW % 40.0 35.0			# of Drops	Plasti Plastic Group S	c Limit Index Symbol It Method
40.0 35.0 10 Wet Preparation	Dry Preparation	30 35 40	# of Drops 100	Plasti Plastic Group S Multipoin	c Limit Index Symbol It Method
40.0 35.0 10 Wet Preparation	Dry Preparation		# of Drops	Plasti Plastic Group S Multipoin	c Limit Index Symbol It Method
40.0 35.0 10 Wet Preparation	Dry Preparation		# of Drops	Plasti Plastic Group S Multipoin	c Limit Index Symbol It Method
40.0 35.0 10 Wet Preparation otes / Deviations ,	Dry Preparation / <i>References</i> :	✓ Air Dried	# of Drops 100	Plasti Plastic Group S Multipoin	c Limit Index Symbol It Method
40.0 35.0 10 Wet Preparation otes / Deviations ,	Dry Preparation	✓ Air Dried	# of Drops 100	Plasti Plastic Group S Multipoin	c Limit Index Symbol It Method
Wet Preparation otes / Deviations ,	Dry Preparation / <i>References</i> :	✓ Air Dried	# of Drops 100	Plasti Plastic Group S Multipoin One-poin	c Limit Index Symbol It Method

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

		-	TM D 4318		AASHTO			SHTO T 90				
.	И.		Inc Chat	tanooga:				01, Chatt	-		2 (20 (2)	210
Project		1281-18				Log #: 19 [.]	-066		Report		3/29/20	
	Name:	Dupont							Test Da	ate(s)	3/27/20)19
Client N		CDM Sm							_			
	Address:		rk Rd #240			209						
loring		503			ole #: S-2			San	•	: 3/1/2019)	
ocatio	n: Or	isite Boring	g	0	ffset: N/A				Depth	: 2'-4'		
	Descript		Yellowish		,							
	d Specifica	tion	S&ME IE		Cal Date:		and Speci	ification	SS	&ME ID #		Date:
	(0.01 g)		22533		9/17/2018		ving tool			33327	2/12	/2019
L Appa	ratus		22738		4/24/2018		ving tool					
ven <i>Pan</i>	#		22617	/	9/26/2018	Groc Liquic	ving tool				Plastic Limi	÷
Full	#		Tare #:	9	48	21				D		(
A	Tare We	iaht	Ture ".	15.05	13.75	15.13				80.57	80.61	
B		Weight + A	٨	26.32	25.42	27.27				91.56	91.43	
					21.78	23.30				91.30 89.64	89.54	
С		Dry Soil Weight + A Water Weight (B-C) Dry Soil Weight (C-A)		22.76								
D	-			3.56	3.64	3.97				1.92	1.89	
E	-	Dry Soil Weight (C-A)		7.71	8.03	8.17				9.07	8.93	
F		% Moisture (D/E)*100		46.2%	45.3%	48.6%				21.2%	21.2%	
Ν	# OF DR	.OPS		27	33	18					ontents det	
LL	L	L = F * FAC	TOR							A	STM D 221	6
Ave.		Average									21.2%	
	55.0 T									One Point		r
									N	Factor	N	Fact
	<u> </u>								20 21	0.974 0.979	26 27	1.00 1.00
b t	50.0			+ +					21	0.979	27	1.00
ure Content	-								23	0.99	29	1.01
Č									24	0.995	30	1.02
stur	45.0								25	1.000		
% Moist										NP, Non-P	lastic	
% N	40.0									Liquid I	_imit 4	7
I P										Plastic I	_imit 2	21
	_									Plastic Ir	ndex 2	26
	35.0			-			-			Group Syr	nbol (L
	10	15	20	25 30	35 40	# of I	Drops	100	١	Aultipoint N	Nethod	7
										Dne-point N		
Wet P	reparation	Di	ry Preparati	ion 🗸	Air Drie	ed 🗌				•		
		/ Reference.										
	1210. Lia	id Limit, Pla	astic Limit, a	& Plastic II	ndex of Soil	s						
STM D	4510. Liyu											
STM D		Cottor		-	, vor vor	า		uid Care -			2 /20	12010
STM D	Rick	<u>Setzer</u> cian Name		: 2	3/27/2019 Date	<u>9</u>		vid Grass				/2019 ate

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

	S&M	E, Inc Chat	tanooda:	: 4291 Hi	ighway 58. S	Suite 101	, Chatta	anooga, T	N 37416		
Project #		-18-061	tan e e gai		Log #: 19-06		,	Report [4/3/20	19
Project N		nt WTP		-				Test Da		4/1/20	
lient Na	•	Smith						1050 00	(0)	., .,	
lient Ad		Park Rd #240) Charlot	tte NC 282	209			-			
oring #:				ole #: ST-2			Sam	nle Date:	3/1/2019		
ocation:		ring	•	ffset: N/A			Jam	•	10'-11'		
	Description:	Yellowish						Deptii.	10-11		
	Specification	S&ME ID		Cal Date:	Type ar	nd Specific	ation	ናዶ	ME ID #	Cal I	Date [.]
alance (•	22533		9/17/2018	Groovir		utton		33327		/2019
Appara	-	22738		4/24/2018	Groovir					_, · _,	
ven		22617	,	9/26/2018	Groovir						
Pan #					Liquid Li	mit				Plastic Limi	t
		Tare #:	6	14	89				С	Х	
А	Tare Weight		15.31	13.69	15.25				81.66	81.65	
В	Wet Soil Weight	+ A	27.24	24.42	25.17				92.89	92.71	
С	Dry Soil Weight	+ A	23.45	20.92	21.84				90.89	90.78	
D	Water Weight (B	-C)	3.79	3.50	3.33				2.00	1.93	
Е	Dry Soil Weight ((C-A)	8.14	7.23	6.59				9.23	9.13	
F	% Moisture (D/E))*100	46.6%	48.4%	50.5%				21.7%	21.1%	
Ν	# OF DROPS		32	24	18				Moisture Co	ontents dete	ermined
LL	LL = F * F,	ACTOR								STM D 221	
Ave.	Avera									21.4%	
		5-							One Point I		it
60	^{).0}		<u> </u>					Ν	Factor	N	Facto
								20	0.974	26	1.00
1 55	5.0							21	0.979	27	1.00
laten								22	0.985	28	1.01
The Content 22							-	23	0.99	29 30	1.01
an 50	0.0							24 25	0.995 1.000	50	1.02
oist									NP, Non-Pl	astic	
% Moistu									Liquid L		8
	5.0								Plastic L		_
									Plastic Ir		7
40	0.0							(Group Syn		L
	10 15	5 20	25 30	35 40	# of Dro	ps	100		1ultipoint N		1
						لست			ne-point N		
Wet Pre	paration	Dry Preparati	on 🗸	Air Drie	bd 🗌					lethou	
	eviations / Referen										
		1003.									
STM D 4.	318: Liquid Limit,	Plastic Limit. &	& Plastic II	ndex of Soils	s						
	•										
	Rick Setzer		3	<u>3/24/2019</u>	9	Davic	d Grass	<u>, РЕ</u>		<u>3/27</u>	<u>2019/</u>
	Technician Nam	-	-	Date			al Respons				ite

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

		S&MF. In	c Chat	tanooga.	4291 Hi	ighway 58,	Suite 1	01. Chatt	anooga. T	N 37416		
Project	#·	1281-18-0		.tanooga.		Log #: 19-0			Report [3/27/20)19
	["] . Name:	Dupont W			L	Log ". 15 c	/00		Test Da		3/24/20	
lient N		CDM Smit							Test Da	110(3)	5/24/20	
	ddress:	4600 Park) Charlet	+0 NC 207	200			-			
oring #			KU #240		ole #: S-5	209		Sam	nla Data:	2/25/201	0	
		site Boring		•	ffset: N/A			Sall	Depth:		9	
ocatio		5	<u>/ - </u>						Depth:	8-10		
	Descripti Specificat		S&ME IE	n Brown F	Cal Date:	Tuno	nd Speci	fication	C &	ME ID #	Cal I	Data:
•	(0.01 g)	lon	22533		9/17/2018		ing tool	ματισπ		33327		/2019
Appar			22738		4/24/2018		ing tool			55521	<i>L</i> , 1 <i>L</i> ,	2015
ven			22617	-	9/26/2018		ing tool					
Pan	#					Liquid L	-				Plastic Limi	t
			Tare #:	13	21	91				L	М	
А	Tare We	ight		13.51	15.13	13.09				81.35	81.35	
В	Wet Soil	Weight + A		22.85	25.39	24.27				92.47	92.40	
С	Dry Soil	Weight + A		19.71	21.93	20.46				90.49	90.48	
D	Water Weight (B-C)			3.14	3.46	3.81				1.98	1.92	
Е	Dry Soil Weight (C-A)			6.20	6.80	7.37				9.14	9.13	
F	% Moist	ure (D/E)*100)	50.6%	50.9%	51.7%				21.7%	21.0%	
N	# OF DR			28	21	18				Moisture C	ontents dete	prmined
LL	_	_ = F * FACTC)R	-		-					STM D 221	
Ave.		Average									21.4%	
(65.0 1			1 1						One Point I		
				_					N 20	Factor 0.974	N 26	Fact
									20	0.974	20	1.00
ent	60.0								22	0.985	28	1.01
Cont									23	0.99	29	1.01
ure Content	55.0								24	0.995	30	1.02
									25	1.000		_
% Moist										NP, Non-Pl		
8	50.0									Liquid L		1
	<u> </u>									Plastic L		1
2	45.0									Plastic Ir		0
_	10	15	20	25 30	35 40	# of Dr	ong	100		Group Syn		H
						# 01 D1	ops			Iultipoint N		~
Not Dr	eparation		Droparat	ion (Air Drie	d 🗌			Ĺ	ne-point N	lethod	
		/ References:	Preparati	ion 🔽	All Drie	u 🗌						
Jies / L		nejerences.										
STM D	4318: Liqu	id Limit, Plast	tic Limit, a	& Plastic Ir	ndex of Soils	S						
	1-						_				.	
					1/11/10010		D				2/27	10010
		<u>Setzer</u> tian Name		-	<u>3/24/2019</u> Date	<u>J</u>		vid Grass ical Respon				/ <u>2019</u> nte

LIQUID LIMIT, PLASTIC LIMIT, & PLASTIC INDEX

		-	D 4318		AASHTO			SHTO T 90		TNI 27/16		
Project	# •	S&ME, Inc 1281-18-06		.tanooya.		Log #: 19		01, Chatt	-		3/29/20	110
2		Dupont W				LOY #. 19 [.]	-000		Report		3/28/20	
	Name:								Test D	ate(s)	3/28/20	119
lient N		CDM Smith							_			
	ddress:	4600 Park	Rd #240			209					_	
oring 7				1	ole #: S-9			San		: 2/25/201	9	
ocatio	n: On	site Boring		0.	ffset: N/A				Depth	: 16'-18'		
	Descripti			wn Lean	,							
•	d Specificat	ion	S&ME IE		Cal Date:		and Speci	ification	Sa	&ME ID #		Date:
	(0.01 g)		22533		9/17/2018		ving tool			33327	2/12,	/2019
L Appar	ratus		22738		4/24/2018		ving tool					
ven	"		22617	7	9/26/2018		ving tool			-	DI .: I	
Pan	#	-		0.4	24		l Limit		1		Plastic Limi	t
	T \A/-		Tare #:	94	24	89				M		
A	Tare We	2		15.59	15.33	15.23				81.35	81.35	
В	_	Weight + A		26.86	29.93	28.81			 	88.73	87.61	
С	-	Weight + A		23.42	25.38	24.54				87.37	86.48	
D	Water W	Water Weight (B-C)		3.44	4.55	4.27				1.36	1.13	
Е	Dry Soil	Dry Soil Weight (C-A)		7.83	10.05	9.31				6.02	5.13	
F	% Moisture (D/E)*100			43.9%	45.3%	45.9%				22.6%	22.0%	
Ν	# OF DR	OPS		32	23	19				Moisture C	ontents det	ermined
LL	LI	. = F * Facto	R							-	STM D 221	
Ave.		Average									22.3%	
		, it ci age							1	One Point		it
:	55.0								N	Factor	N	Fact
									20	0.974	26	1.00
E A	50.0								21	0.979	27	1.00
ten					_				22	0.985	28	1.01
Col	-								23	0.99	29	1.01
ure Content	45.0								24 25	0.995	30	1.02
oist									23	NP, Non-P	lastic	
% Moist										Liquid L		15
8	40.0		_							Plastic I		22
			_							Plastic Ir		23
	35.0									Group Syr		
	10	15	20	25 30	35 40	# of I	Drops	100		Multipoint N		
						<i>"</i> 01	1042					1
Not Dr	eparation	Devi	Preparat	ion 🗸	Air Drie					One-point N	vietnou	
		/ References:	reparat			.u 🔟						
		הכובו בוונבז.										
01007 2												
		id Limit Dlasti	ic Limit, «	& Plastic II	ndex of Soil	s						
	4318: Liqu	a Linii, Piasii										
				-	0 100 1001	h		uid Crai			2 (20	12010
	Tyler T	hompson ian Name			8/28/2019 Date	<u>9</u>		vid Grass				/2019 ate

PARTICLE SIZE ANALYSIS OF SOIL

Form No. TR-D422-3 Revision No. 2 Revision Date: 08/29/17

ASTM D 6913 & D 7928

8N	1E Project #:	1281-18-061			Report Date:	4/2/2019
	ect Name:	Dupont WTP			Test Date(s):	3/28 - 4/1/2019
-	nt Name:	CDM Smith				0,20 1,1,2010
	ress:		#240 Charlotte, NC 2	3209	-	
	ng #:	B-501	Sample #:		Sample [Date: 2/28/2019
	tion:	Onsite Boring	Offset:	N/A	•	epth: 3.5'-5'
	ple Description:	0	ng Brown Fat Clay	,,,,		
			<u> </u>	#40 #60 #100 #200	1	
	100%	· • • • •	• · · • • · · •	• • • • • • • • • • • • • • • • • • •		
	000/					
	90%					
	80%				N	
					\	
	70%					
ng	60%					
Percent Passing						
nt P	50%					
rcel	400/					
Pe	40%					
	30%					
	20%					
	10%					
	10 %					
	0%			•		
	100	10	1 Desetiale	0.1	0.01	0.001
			Particle	Size (mm)		
	Cobbles	< 300 mr	n (12") and > 75 mm (3")	Fine Sand	< 0.425 n	nm and > 0.075 mm (#20
	Gravel		m and > 4.75 mm (#4)	Silt	< 0	.075 and > 0.005 mm
	Coarse Sand		nm and >2.00 mm (#10)	Clay		< 0.005 mm
	Medium Sand Maximum Pa		m and > 0.425 mm (#40) ±100	Colloids Gravel: 0.0	0%	<pre>< 0.001 mm Silt 48.0%</pre>
c	ilt & Clay (% Pass				4%	Clay 50.6%
5	Apparent Relati	0	.650		-70	
		,		actic Limit	22 Plas	tic Index 22
		iquid Limit barse Sand: (stic Index 32
						ine Sand: 1.2%
	iption of Sand and G		ded Angular	Hard & Durable	Soft	Weathered & Friable
	anical Stirring Appara rences / Comments		ersion Period: 1 min.	Dispersing Agent:	Sodium Hexametapl	nosphate: 5.04g
	irent Relative Dens		AASTM D 4318, D 2487			
		ity is assumed.				
	David Gras	ss, PE		Pro	<u>ject Engineer</u>	<u>4/2/2019</u>

SIEVE ANALYSIS OF SOIL

81-18-0		- Chatt	anoos	σa·	120	4 TT.														
81-18-0				5 ^{u.}	429	I Hig	hwa	y 58,	Sui	te 1	101,	Chat	tanoo	ga, [ΓN	374	16			
Dupo						0	og #:							0			ord D	ate:	3/29/	201
	ont WTF	>					5													
	Smith																			
D. Gra					Samp	oled b	y: D	rillers	5						Da	ate S	Samp	led:	2/28/	201
ite Bori	ing																			
	-							Туре	e: S	SS							De	pth: 2	26'-28'	
n: E	Brownisł	h Gray S	andy C	Clay														-		
3" 2"	1.5" 1	" 3/4"	3/8"		#4	#	¢10		#20		#40	#60	#100		#2	00				_
											-	-								-1
												-	\mathbf{h}				-			
										+				\mathbf{h}						-
												_			Y					-1
										+		_								
												_					_			-
												-								-
										-		_					_			-
0			10.00		Milli	imeter	♦ s I	1.0	0		•			0.1	0					0.01
					-															
	< 300) mm (12	2") anc	d > 7	75 mr	n (3")			F			d			< 0.4	425	mm a	and >	0.075	mm
						-				_					<	0.07				m
							n: M	loict		Col	loid		porcio	D Dr	0.00		< 0.0			
m Part				cann	ing of	Jecini			se Sa	and	ł		•				ne Sa	-)%
in i ui u																				
Liau															P			-		
						Ru														
-		-						-							70		•			
							atu		10131			111								*1
											<u>Pr</u>	-	-	neer				4		<u>19</u>
Responsi	bility			2	Signati	ure						Ро	sition						Date	
	B-501	B-501 / S-7 : Brownisi 3" 2" 1.5" 1 3" 2" 1.5" 1 3" 2" 1.5" 1 3 2 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	B-501 / S-7 : Brownish Gray S 3" 2" 1.5" 1" 3/4" 2 2" 1.5" 1" 3/4" 3 3 4 3 4 4 4 4 5 5 a 5 Crass, PE Responsibility	B-501 / S-7 Brownish Gray Sandy (C) 3^{*} 2^{*} 1.5^{*} 1^{*} $3/4^{*}$ $3/8^$	B-501 / S-7 Brownish Gray Sandy Clay 3° 2° 15° 1° $3/8^{\circ}$ 3° 2° 15° 1° $3/8^{\circ}$ 3° 2° 15° 1° $3/8^{\circ}$ 3° 10° 10° 10° 10° 3° 10° 10° 10° 10° 10° 3° 10° 10	B-501 / S-7 Brownish Gray Sandy Clay 3^{*} 2" 1.5" 1" 3/4" 3/8" #4 3^{*} 4 3^{*} 7 3^{*} 4 3^{*} 7 3^{*} 7 $3^{$	B-501 / S-7 : Brownish Gray Sandy Clay 3" 2" 1.5" 1" 3/4" 3/8" #4 # 4 4 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B-501 / S-7 Brownish Gray Sandy Clay 3 2 1.5 1 3/4 3/8 #4 #10 4 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Type Brownish Gray Sandy Clay 3' 2' 15' 1' 3/8' #4 #10 3' 2' 15' 1' 3/8' #4 #10 3' 2' 15' 1' 3/8' #4 #10 3' 2' 15' 1' 3/8' #4 #10 3' 2' 15' 1' 3/8' #4 #10 3' 2' 15' 1' 3/8' #4 #10 3' 3' 4' 4' 10' 10' 10' 3' 1' 1' 1' 1' 1' 1' 4' 1' 1' 1' 1' 1' 1' 4' 1' 1' 1' 1' 1' 1' 4' 1' 1' 1' 1' 1' 1' 4' 1' 1' 1' 1' 1' 1' 4' 1' 1' 1' 1' 1' 1'	Type: 5 Brownish Gray Sandy Clay 3 2* 15* 1* 3/4* 3/8* #4 #10 #20 4 #10 #20 1 5* 1* 3/4* 3/8* #4 #10 #20 0 10 0 10 0 10 0 10 0 10 0 10 0 0 0 0 0	B-501 / S-7 Type: SS Brownish Gray Sandy Clay 3 2* 15* 1* 3/4* 3/8* #4 #10 #20 100 #20 100 #20 100 #20 Millimeters 1.00 Millimeters 1.00 Millimeters 1.00 Colspan="2">Colspan="2">Millimeters Colspan="2">Colspan="2"Colspan="2">Colspan="2"Colspa	B-501/S-7 Type: SS Brownish Gray Sandy Clay 3' 2' 15' 1' 3/4' 3/8' #4 #10 #20 #40 3' 2' 15' 1' 3/4' 3/8' #4 #10 #20 #40 4 4 4 10 #20 #40 4 4 75 mm and > 2.00 mm (#10) Clay Coarse Sand Gravel 0% Medium Sand Liquid Limit 50 Plastic Limit m Particle Size #10 Coarse Sand Gravel 0% Medium Sand Liquid Limit 50 Plastic Limit m Dry Density TNP Bulk Gravity (C127) mum Moisture TNP Natural Moisture / References: Signature	B-501 / S-7 Type: SS Brownish Gray Sandy Clay 3 2 15 1 34 3/6 4 #10 #20 #40 #60 4 4 #10 4 20 #40 #60 4 4 #10 4 20 #40 #60 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	B-501 / S-7 Type: SS Brownish Gray Sandy Clay Type: SS Brownish Gray Sandy Clay Type: SS Type: SS T	B-501/S-7 Type: SS Brownish Gray Sandy Clay Type: SS Brownish Gray Sandy Clay Type: SS Type: SS Typ	B-501/S-7 Type: SS Brownish Gray Sandy Clay Type: SS Type: SS	B-501/S-7 Type: SS Brownish Gray Sandy Clay Type: SS Type: SS	B-501/S-7 Type: SS De Brownish Gray Sandy Clay 3/8" 44 +10 +20 +40 +60 +100 +200 1	B-501 / S-7 Type: SS Dept: 2 Brownish Gray Sandy Clay Type: SS Dept: 2 Brownish Gray Sandy Clay B-501 / S-7 Type: SS Dept: 2 Brownish Gray Sandy Clay B-501 / S-7 Type: SS Dept: 2 Brownish Gray Sandy Clay B-501 / S-7 Type: SS Dept: 2 Brownish Gray Sandy Clay B-501 / S-7 Type: SS Dept: 2 Brownish Gray Sandy Clay B-501 / S-7 Type: SS Dept: 2 Brownish Gray Sandy Clay B-501 / S-7 Type: SS Dept: 2 B-501 / S-7 B-701	B-501 / S-7 Type: SS Depth: 26'-28' Brownish Gray Sandy Clay 3' 2' 15' 1' 34' 34' 4 *10 *00 *40 *40 *40 *100 *200 0 10.00 Millimeters 1.00 0.10 300 mm (12") and > 75 mm (3") Fine Sand < 0.425 mm and > 0.075 < 300 mm (12") and > 75 mm (3") Fine Sand < 0.425 mm and > 0.075 < 75 mm and > 4.75 mm (44) Silt < 0.005 mm

SIEVE ANALYSIS OF SOIL

Single sieve set	t							ASTN	И D69	13													
U		ME, Inc.	- Cha	ittano	ooga	a:	4291	High	way 5	58, 5	Suit	e 1	01, C	Chatt	anoo	gа, Т	ſN	374	416				
Project #:	1281-18-	-061			0			Log	g #: 19	9-06	66							Rec	ord	Date	e:	3/29/2	.019
Project Name:	Dup	ont WTF)																				
Client Name:	CDN	A Smith																					
Received By:	D. G	rass				S	amp	led by:	: Drill	ers							D	ate	San	npled	l:	2/26/2	.019
Location: (Onsite Bo	ring																					
Boring/Sample I	ld. B-50	2/S-2							Ту	/pe:	S	S							[Depth	n: 8'-	·9.5'	
Sample Descript	tion:	Yellowis	h Brow	n Fat	Cla	y																	
	3" 2	2" 1.5" 1	" 3/4"		3/8"	#	ŧ4	#1	0	#2	0		#40	#60	#100		#2	200					
100%		₽ _ ₽ _	-				•	-					•	-	-		-						ור
90%																							
		+															-						-
80%																							
്) ല്ല 70%		<u> </u>											_					_		_			-
Percent Passing (%) %09 %09 %00 %00 %00 %00 %00 %00 %00 %00	_																						
at Pa										_													-
190 50%																							
<u>40%</u>		<u> </u>																					-
30%																							
50%																							
20%																							-
10%																							
		++++																					-
0%	00.00			10.0	00		Milli	meters		1.00			•			0.10	,					(0.01
Cobbles	s	< 30) mm ((12") a	and	> 75	5 mm	า (3")			F	ine	Sand			<	: 0.	425	mr	n anc	d > ().075 r	nm
Gravel	-	1	75 mm										ilt									05 mn	
Coarse Sa			75 mm										ay							0.005			
Medium Sa			0 mm .								(Coll	oids						<	0.001			
	A mum Pai		cedure	e tor #10	obta	iinin	g Sp	ecimei		st arse		۳d		Dis 0%	persio	n Pro	oce		ina	ہ Sanc	-	ation	,
IVIdXII	mum Par	Grave		#10 0%					Med					0%						Sanc L Clay		2% 98%	
	Lio	quid Limi		51						astic				21			P			Index		30	
Maxi	mum Dr	•		TNP				Bulk	Grav					TN	5					ptior		TN	
	ptimum	-	-	TNP					atural	-				TN			70		501	CBF		TN	
Notes / Deviatio	-		-					14	acurul											201	•		
TNP - Test Not F											_	_					_	_	_				
Dav	id Grass,	<u>, PE</u>											<u>P</u> ro	o <u>je</u> ct	Engir	<u>neer</u>					<u>4</u> /	1/201	9
	cal Respons			_		Si	gnatu	ire						-	sition							Date	-
		This repo	ort shall	not be	e rep	rodu	ced, e	except in	n full, w	vithou	it th	e w	ritten	appro	oval of	S&ME	E, In	IC.					

Form No: TR-D422-WH-1Gb Revision No. 1 Revision Date: 8/10/17

		8
	_	5
4.1		

ASTM	D	6913
AJIN		0515

	S&MF	, Inc At	lanta.	Δ	.350 F		TM D 6 Green F		, Suit	te 200	Duluth	GA	<u>م</u>	009	6			
roject #:	1281-1			-				ann ag	,		port Da							
roject Name	e: Dupon	t WTP									est Date					/19		
lient Name:	CDM S	mith																
lient Addres	s: 4600 Pa	ark Road,	#240	, Ch	arlott	e, NC	28209											
ample Id.	B-502				T	ype: l	J.D.				Samp	le D)ate	e: N	/A			
ocation:	N/A					nple: S							tior	n: 19	9.5'-	21.5'		
ample Desci	ription:	Dark ye	ellowis	sh bi	rown	clay w	vith so	me sano	d and	l a trac	e of mi	са						
1000/		5" 1"3/4"	3/8	8''	#4	#	#10	#20	#4() #60	#100	#2	200					
100%			-															
90%																		
000/												N	•				_	
80%																		
Percent Passing (%)																	_	
%00 Bas																		
50%																	_	
Pero																	_	
40%																		
30%																		
														_			_	
20%																		
10%																		
																	_	
0% 1	00.00		10.0)0	•		+	1.00	•		0	.10			<u> </u>		0.0	, 01
	*				0				7	* 17				a•1.	1	01		1
	<u>*</u>	Gravel		*	Coa	rse San		edium Sa			ine Sand	*		Silts	and (Clays	>>	
							Millin	neters (1	nm)									
Maximun	n Particle Siz	e 2m	m				Coarse	Sand	0	.0%				Fine	e Sa	nd	17.5	%
	Grave						ledium			.9%					& CI		81.5	
	Liquid Lim							: Limit		20					: Ind	-	17	
	·																	
	Coarse San	d 0.0	%			Μ	ledium	Sand	0	.9%				Fine	e Sa	nd	17.5	%
	scription of S		ravel	Parti	cles:			Roun	ded					ngul				
ŀ	lard & Dural	ble				Soft				V	/eather	ed 8	ፄ F	riab	le			
otes / Deviat	ions / Referenc	ces:																
lar	ob T. Davic	4							۲t	aff Pro	ofessio	nal	11			⊿/1	17/201	19
					Sian				<u></u>		osition		<u></u>			7/	Date	
Tech	nical Responsibility	Y			Sign	ature				r i	ostiton						Dule	

PARTICLE SIZE ANALYSIS OF SOIL

Form No. TR-D422-3 Revision No. 2 Revision Date: 08/29/17

ASTM D 6913 & D 7928

	S	&ME, Inc (Chattanooga:	4291 Highw	ay 58, Suite 101, 4	Chattanooga, TN 37	7416
	IE Project #:	1281-18-				Report Date:	4/3/2019
-	ect Name:	Dupont V				Test Date(s):	3/28 - 4/1/2019
	t Name:	CDM Smi					
٨ddr	ess:	4600 Parl	k Rd #240 Cha	irlotte, NC 28	209		
Borir	ng #:	B-502		Sample #:	S-7	Sample	Date: 2/26/2019
	tion:	Onsite Bo	oring	Offset:	N/A	D	epth: 25.5'-27.5'
Samp	ole Description:		Dark Gray San	dy Silt			
		' 1'' 3/4'' 1/2'' 3	8/8'' #4 #10	0 #20 #4	40 #60 #100 #20	0	
	100%						
	90%				$+ \mathbf{X} + +$		
					├ 		
	80%						
	70%				↓ 		
50			+ + + + + + +		┼╎╎│		
Percent Passing	60%				<u> </u>		
Pas	50%						
ent	30 %						
erc	40%						
-							+++++
	30%						
	20%						
	20 / 0						
	10%						
	0% 100	10	, ,	1	0.1	0.01	0.001
				Particle S	ize (mm)		
	Cobbles	< 3	800 mm (12") and :	> 75 mm (3")	Fine Sanc	< 0.425 г	mm and > 0.075 mm (#20
	Gravel		< 75 mm and > 4.7	()	Silt		0.075 and > 0.005 mm
	Coarse Sand		4.75 mm and >2.0		Clay		< 0.005 mm
	Medium Sand Maximum Pa		2.00 mm and > 0.4 #10	25 mm (#40)	Colloids Gravel: 0	.0%	< 0.001 mmSilt 29.4%
ci	It & Clay (% Pas		51.6%	То		3.4%	Clay 22.2%
51	-	0	2.650	10		0.470	
	Apparent Relat	-		DIa			atia haalan ND
		iquid Limit	NP				stic Index NP
Jocori		barse Sand:	0.3%				Fine Sand: 45.6% Weathered & Friable
	ption of Sand and G anical Stirring Appar		Rounded Dispersion Perio	Angular 🗵 od: 1 min.	Hard & Durable Dispersing Agent:	Sodium Hexametap	
	ences / Comments		· ·	4318, D 2487	Dispersing Agent.	Souluin Hexametap	
	rent Relative Dens			1310, D 2407			
1.19.01		,					
	David Gra	ss. PE			Pre	<u>oject Engineer</u>	<u>4/3/2019</u>
	Technical Respo			Signature		Position	Date

PARTICLE SIZE ANALYSIS OF SOIL

Form No. TR-D422-3 Revision No. 2 Revision Date: 08/29/17

ASTM D 6913 & D 7928

&N	1E Project #:	128	1-18-061							Report	Date:	4/	/3/2019
	ect Name:		ont WTP							Test Da			- 4/1/2019
	nt Name:		1 Smith								()		
	ress:) Park Ro	#240 (Charlot	tte, NC	28209	9					
	ng #:	B-50				mple #					ample D	ate:	3/1/2019
	tion:	Ons	ite Borin	a		Offset:					•	oth:	2'-4'
	ple Descriptio			owish B									
		1.5" 1" 3/4"		#4	#10	#20	#40	#60 #100	#200				
	100%	• • •	•					• •	•				
	90%												
	90%												
	80%									+			
	70%												
ing	60%												
assi												\mathbf{N}	
ntF	50%												
Percent Passing	40%												
Å	40 / 0												
	30%												
	20%												
	10%												
	0% ••••		10		+	1			0.1		0.01		0.001
						- Particl	e Size						
								()					
	Cobbles			nm (12") a)	Fir	ne Sand		< 0.425 m	m and > 0	.075 mm (#20
	Gravel Coarse Sand			mm and > mm and		. ,			Silt Clay		< 0.0)75 and > < 0.005	
	Medium Sand			mm and >					olloids			< 0.005	
	Maximum			#20				- Gravel:	0.0)%		Silt	
S	ilt & Clay (% P	assing #2	200):	93.0%			Total	Sand:	7.0)%		Clay	54.5%
	Apparent Re	lative Dei		2.650									
		Liquid L	-	47			Plastic	: Limit	2	1	Plas	tic Index	26
		Coarse S		1.7%				Sand:	1.0			ne Sand:	
escr	iption of Sand an			inded 🛛	And	gular 🗵		Hard & Du		⊠ Sof			d & Friable
	' anical Stirring Ap			spersion F		, 1 mir		Dispersing A			exametaph	osphate:	5.06
	ences / Comme			AASTM		3, D 248	7	1 3	5				
	rent Relative De												
		-											
	<u>David G</u>								<u>Proj</u>	ject Engine	<u>eer</u>		<u>4/2/2019</u>
	Technical Re	sponsibility			Sign	ature				Position			Date

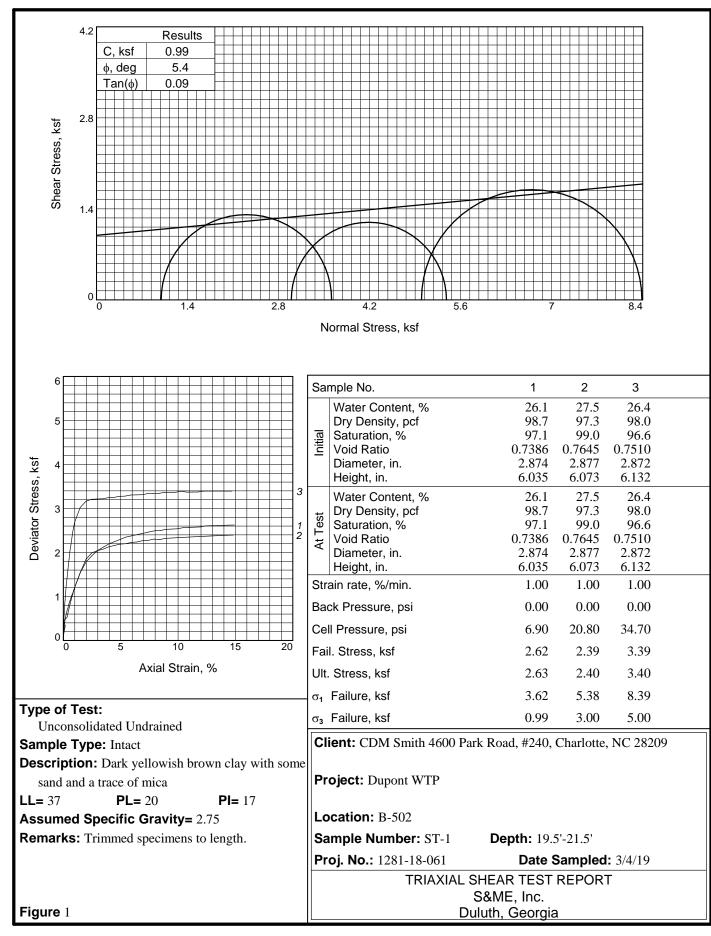
SIEVE ANALYSIS OF SOIL

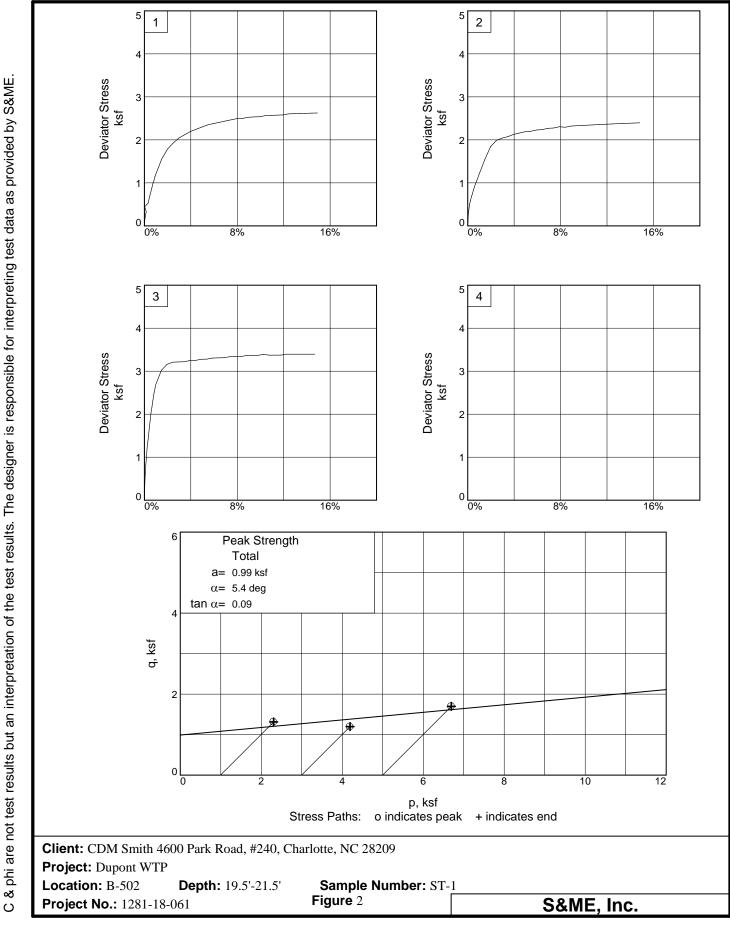
Single s	ieve set								A	ASTN	1 D69	13													
		S&I	ME, Inc.	- Cha	attan	.008	ga:	42	291 H	High	way 5	58, 5	Suite	e 10)1 <i>,</i> (Chat	tanoo	ga, '	ΤN	374	416				
Project	#: 1	281-18-	-061							Log	g #: 19	9-06	66							Rec	ord	Dat	e:	4/3/2	2019
Project	Name:	Dup	ont WT)																					
Client N	lame:	CDN	/ Smith																						
Received	d By:	D. Gr	rass					Sar	nple	d by:	Drill	ers							D	ate	San	nple	d:	3/1/2	2019
ocation	n: C	Onsite Bo	ring																						
Boring/S	Sample I	d. B-50	3 / ST-2								Ту	/pe:	U	D							[Dept	h: 1()'-11'	
Sample I	Descript	ion:	Yellowis	h Brov	vn Le	an (Clay	/																	
	100%	3" 2	." 1.5" 1	" 3/4"		3/8"	·	#4		#1	0	#2	0	#	40	#60	#100		#	200					_
	100,0					_		_											-						-
	90 %																								
	80%																								
Percent Passing (%)						$\left \right $	+	+				+		+	+	-			+	+					
ing	70 %																								
ass	60%							_						_	_	_									-
ntH	F00/														_	-									
erce	50%																								
Ā	40 %													+					+						-
	30%																								
	3070						+	_						_											-
	20%																								
	10%																								
								_																	
	0% 10	0.00			10.	.00		M	illim	eters		1.00			¢'		1	0.1	0						0.01
											J														
	Cobbles	;	< 300) mm	(12")	and	<	75 r	nm (3")			Fi	ne S	Sand				< 0.	.425	mr	n an	d >	0.075	mm
	Gravel			75 mm						, 	_			Si	-				<	0.0)05 m	m
	barse Sa			75 mn					-	-	_			Cla	-							0.00	-		
Meth	edium Sa od: A			0 mm ocedur							v: Moi	ct	C	0110	oids	Dic	persio	n Dr	000		<	0.00		n ation	
weth		num Par			#10		call	my	sher	el			Sai	nd		0%	•	11 F I	UCE		ine	San		29 29	%
	TTUAL		Grave		<i>"</i> 10						Med					0%						ι Cla		98	
		Lio	uid Limi		48								: Lin			21			ſ			Inde	-	2	
	Maxi	mum Dr	•		TNF	5				Bulk	Grav					TN						ptio		TN	
		ptimum	-	-	TNF						atural	•				TN			70		301	CB		TN	
Intes / I		ns / Refer		C	1111					INC	aturai	IVIC	1310	Te		1111						CD			NI
		Performed																							
141 - 10		enonnet	4																						
	Dav	id Grass,	DE												Dro		Engir						1	′1/20 [°]	19
		al Respons			-			Sian	ature						<u></u>		sition		-				<u>+/</u>	Date	1.5
			-					5			.						oval of								

SIEVE ANALYSIS OF SOIL

Single sieve se	t			ASTM	I D6913			
	S&	ME, Inc	Chattanooga	a: 4291 High	way 58, Suite 1	01, Chattanoo	ga, TN 37416	
Project #:	1281-18	-061		Log	#: 19-066		Record Date:	3/29/2019
roject Name:	Dup	ont WTP						
Client Name:	CDN	A Smith						
eceived By:	D. G	rass		Sampled by:	Drillers		Date Sampled:	2/25/2019
ocation:	Onsite Bo	oring						
oring/Sample	Id. B-50)4 / S-5			Type: SS		Depth:	8'-10'
ample Descrip	tion:	Yellowish I	Brown Fat Clay	/				
						# 40	"222	
100%	3" 2	2" 1.5" 1" 3 • • • • •	3/4" 3/8" •	#4 #10) #20	#40 #60 #100	#200	
000								
90 %	=							
80%								
ം) മ 70%	_							
sing								
Percent Passing (%) %09 %09 %04								
50%	=							
erc								
40%								
30%								
20%								
10%								
0%								
	00.00		10.00	Millimeters	1.00	•	0.10	0.01
Cobble	S	< 300 r	nm (12") and	> 75 mm (3")	Fine	Sand	< 0.425 mm and	> 0.075 mm
Gravel		1	mm and > 4.7		-	ilt	< 0.075 and > (
Coarse Sa			mm and >2.0	()		ay	< 0.005 r	
Medium S Method:	and A		mm and > 0.4	25 mm (#40) ining Specimen		oids Disporsio	< 0.001 rn Process: Ac	nm gitation
		rticle Size	#10	ming specifier	Coarse Sand	0%	Fine Sand	1%
IVIDAI	inum i a	Gravel	#10 0%		Medium Sand	0%	Silt & Clay	98%
	Lie	quid Limit	51		Plastic Limit		Plastic Index	30
Mavi		y Density	TNP	Rulk	Gravity (C127)	TNP	% Absorption	TNP
		Moisture	TNP		atural Moisture	TNP	CBR	TNP
lotes / Deviatio	-		1111	INC		1111	CDIX	(111
NP - Test Not								
 Dav	vid Grass	PF				Project Engir	beer	4/1/2019
				<i>c</i> : <i>i</i>				Date
Techni	cal Respon	SIDIIITV		Signature		Position		Dule

PARTICLE SIZE ANALYSIS OF SOIL


Form No. TR-D422-3 Revision No. 2 Revision Date: 08/29/17


ASTM D 6913 & D 7928

&N	ИE Pr	ojeo	ct #	:		12	281	-18	3-01	61															Re	eport	Date	e:		4	/2/2	2019	
	ect N			-				ont																		est Da						/1/20	19
	nt Na							l Sn																			(-)			-,	-,	.,==	
	ress:		-								#2	40	Ch	arlo	otte	. N	C	282	09					-									
	ng #:						-50								am	-								1		S	amp	ole D	ate	:	2/2	5/201	9
	ation							te E	Bor	ina						ffse			N/A										pth			6'-18'	
	nple [rip	tio	n:	-						ow	n L	ean					-,												-		
_	1		- 1-			1"3	3/4''	1/2''			#4	-		10		#20		#40) #	¹ 60 i	#100		#20	00									_
	100%	, L⊥		_	-	•	•	-			-			•				_		•	-												1
	000/																																
	90%	' ∏																							\backslash								
	80%	5		_																						\mathbf{N}				_			-
		H							++																								
	70%	• +							++																		\mathbf{h}						
ng	60%	, II																															
assi		+							++																			N					
Percent Passing	50%	• -		-					+++										-						_								
erce	40%																																
P	40 /0	' ⊥																															
	30%	, ⊢							++		_																					•	-
		H							++																_					-			
	20%																																
	10%	, -																															
		+		-					+++		_								_											_			-
	0%	, ∟ 100	•	_	_				10		•			•	1							0.1	⊥ e 1				0	.01				0	↓ 001
		100															cle	Siz	ze (mn	n)	0.1	-				Ŭ	.01					
															14						,												
		Со	bble	es				<	30	0 m	m ('	2")	and	> 7	5 m	m (3")				F	ine	Sand	d			< 0.4	25 m	ım a	nd >	0.075	i mm (#20
			rave											.75 n		• •						Si						< 0.)5 mm	
		Coars Aediu												.00 n 425 i								Cla Colle	ay oids							0.005			_
		Лахі				ticl	e S				#2		- 0.	ILS I		1 ("	10)		Gr	ave		com).09	%					Sil		47.7	%
S	Silt &	Cla	y (%	6 P	ass	ing	#2	.00)):	ç	96.2	2%					1	Fot	al S	and	d:		3	8.89	%					Cla	v	48.5	
		pare									2.6																				,		
	1-1							imi			45						Р	last	tic l	im	it			22				Plas	tic	Inde	x	23	
						•		and			0.0					Ν			m S).19						Sand		3.79	
esci	riptior	of S	and]	An	gula		×				& Di	urab			×	Sof	t					Friable	
	nanical												Peri		-	1 n					sing					lium He						5.0	
	rences							tior						431							5	5											
	arent														-																		
																																_	_
					ras		_												_				Pr	oje		ngine	<u>eer</u>				<u>4/</u>	2/201	<u>9</u>
		Teci	hnico	ıl Re	spon	sibili	ty							Sigr	natu	re									Posit	tion						Date	

phi are not test results but an interpretation of the test results. The designer is responsible for interpreting test data as provided by S&ME. ∞ C

Tested By: Jimmy Hanson

Tested By: Jimmy Hanson

Form No: TR-D49	972-1						= &
Revision No. 0			nU of S	ail			
Revision Date: 0	7/10/08	_	pH of S	OII			$m \equiv$
Sample Log No	: 43-2830	A	ASHTO T	289		Quality	Assurance
		S&ME, Inc., 1413 7	opside Ro	ad, Louisville,	TN 37777		
Project #:	1281-18	8-061			Report Date:	4/1	0/2019
Project Name:	Dupont '	WTP			Test Date(s):	4/9	/2019
Client Name:	CDM Sr	nith					
Client Address:	4600 Pa	rk Road #240, Charlotte,	NC 28209				
Sample ID: B	-501	Sample N	No: S-4				
					Dep	oth: 18	.5 - 20.5 ft
Sample Descrip	otion:	Light yellowish brown c	lay				
Equipment:							
Balance		S&ME ID#	18435	Cal. Date:	4/2/2019	Due:	4/2/2020
Sieve:	#10	S&ME ID#	2481	Cal. Date:	1/29/2019	Due:	7/29/2019

pH Meter Calibration

pH Meter:

Buffer Solution	Results
pH buffer <u>4.0</u>	4.01
pH buffer <u>7.0</u>	7.00
pH buffer <u>10.0</u>	10.10
Buffer Temperature ⁰ C	23.6°C

16576

Cal. Date:

4/9/2019

Staff Professional

Position

S&ME ID#

Measuring pH of Soil

	Beaker #:	6
Measurements		
Weight of Air Dry Soil (g)	30.0	
Distilled Water (ml)	30.0	
Temperature ⁰ C	23.5°C	
pH Reading	4.6	

Notes / Deviations / References: AASHTO T 289 Determining pH of Soil for Use in Corrosion Testing

<u>Tori Igoe</u> Technician Name <u>4/9/2019</u> Date

Michael D. Kelso, E.I. Technical Responsibility

Signature

<u>4/10/2019</u> Date

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Form No: TR-D497	2-1						8
Revision No. 0			nU of S	a:I			
Revision Date: 07/	/10/08	_	pH of S	UII			$m \equiv$
Sample Log No.: 4	43-2830		AASHTO T2	289		Quality	Assurance
		S&ME, Inc., 1413	Topside Roa	ad, Louisville	, TN 37777		
Project #:	1281-18	3-061			Report Date:	4/1	0/2019
Project Name:	Dupont V	WTP			Test Date(s):	4/9	/2019
Client Name:	CDM Sr	nith					
Client Address:	4600 Par	k Road #240, Charlott	e, NC 28209				
Sample ID: B-	504	Sample	e No: S-3				
					Dep	th:	4 - 6 ft
Sample Descript	ion:	Light yellowish brown	n clay				
Equipment:							
Balance		S&ME ID#	18435	Cal. Date:	4/2/2019	Due:	4/2/2020

Cal. Date:

Cal. Date:

1/29/2019

4/9/2019

Staff Professional

Position

pH Meter Calibration

#10

Sieve:

pH Meter:

Buffer Solution	Results
pH buffer <u>4.0</u>	4.01
pH buffer <u>7.0</u>	7.00
pH buffer <u>10.0</u>	10.10
Buffer Temperature ⁰ C	23.6°C

2481

16576

S&ME ID#

S&ME ID#

Measuring pH of Soil

	Beaker #: 6
Measurements	
Weight of Air Dry Soil (g)	30.0
Distilled Water (ml)	30.0
Temperature ⁰ C	23.5°C
pH Reading	4.8

Notes / Deviations / References: AASHTO T 289 Determining pH of Soil for Use in Corrosion Testing

<u>Tori Igoe</u> Technician Name <u>4/9/2019</u> Date

Michael D. Kelso, E.I. Technical Responsibility

66 Signature

4/10/2019 Date

7/29/2019

Due:

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

Microbac Laboratories, Inc., Maryville

CERTIFICATE OF ANALYSIS

1904972

S & ME, Inc.

Project Name: 1281-18-061

Michael Kelso	Project / PO Number: N/A
1413 Topside Rd.	Received: 04/02/2019
Louisville, TN 37777	Reported: 04/09/2019

Analytical Testing Parameters

Chloride

B-501							
Soil				Collected By:	Clien	t	
1904972-01				Collection Date:	02/28	3/2019 12:00	
	Analyses Subcontra	cted to: Test/	America Nasl	nville			
ography Soluble	Result	RL	Units	Note P	epared	Analyzed	Analyst
	<10.1	10.1	mg/Kg	н		04/05/19 1759	SW1
	10.3	10.1	ma/Ka	н		04/05/19 1759	SW1
	Soil 1904972-01	Soil 1904972-01 Analyses Subcontra ography Soluble Result	Soil 1904972-01 Analyses Subcontracted to: Test/ ography Soluble Result RL <10.1	Soil 1904972-01 Analyses Subcontracted to: TestAmerica Nash ography Soluble Result RL Units <10.1	Soil Collected By: 1904972-01 Collection Date: Analyses Subcontracted to: TestAmerica Nashville ography Soluble Result RL Units Note Pr <10.1	Soil 1904972-01 Collected By: Collection Date: Clien 02/28 Analyses Subcontracted to: TestAmerica Nashville ography Soluble Result RL Units Note Prepared <10.1	Soil 1904972-01 Collected By: Collection Date: Client 02/28/2019 Analyses Subcontracted to: TestAmerica Nashville ography Soluble Result RL Units Note Prepared Analyzed <10.1

Anions, Ion Chromat	ography Soluble	Result	RL	Units	Note	Prepared	Analyzed	Analyst
		Analyses Subcontrac						
Lab Sample ID:	1904972-02				Collection Dat	e: 02/25	/2019 12:00	
Sample Matrix:	Soil				Collected By:	Client		
Client Sample ID:	B-504							

Sulfate		15.1	9.85	mg/Kg	н	04/05/19 1815 SW1
Definitions						
H:	Sample was prepped or ana	alyzed beyond the spec	ified holding	ime		
MDL:	Minimum Detection Limit					
RL:	Reporting Limit					

9.85

mg/Kg

н

04/05/19 1815

SW1

<9.85

UNCONFINED COMPRESSION (ASTM D7012 Method C)

S&ME, Inc. - Knoxville 1413 Topside Road, Louisville, TN 3777

Project Name: Dupont WTP Project Number: 1281-18-061

Report Date: April 5, 2019 Reviewed By: Jason B. Burgess

Doring No.	Sample	Donth (#)	Dimens	Dimensions, in.	Shape	Area	Unit Weight	Loading Rate	Maximum	Strength	Moisture
	No		Length	Diameter	(See Key)	(in^2)	(Ibs/ft ³)	(psi/sec)	Load (Ibs)	(isd)	(%)
B-501	RC	36.25 - 36.60	4.21	1.87	A	2.75	171.5	111	96,333	35,030	0.1
B-501	RC	47.00 - 47.40	4.16	1.87	A	2.75	174.9	108	94,426	34,337	0.1
B-502	RC	31.85 - 32.20	4.07	1.87	A	2.75	166.8	105	68,489	24,905	0.3
B-502	RC	38.80 - 39.15	4.19	1.87	A	2.75	170.1	102	78,679	28,611	0.1
B-503	RC	37.35 - 37.70	4.26	1.86	A	2.72	175.2	112	113,293	41,652	0.1

NOTES: Effective (as received) unit weight as determined by RTH 109-93.

Loading rates were selected to target reaching failure between 2 and 15 minutes.

Test results for specimens not meeting the requirements of ASTM D4543-08^{c1} may differ from a test specimen that meets the requirements of ASTM D4543.

SHAPE KEY

ASTM D4543-08^{et} Standard Practice for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerance Section 1.2 - "Rock is a complex engineering material that can vary greatly as a function of lithology, stress history, weathering, moisture content and chemistry, and other natural geologic processes. As such, it is not always possible to obtain or prepare rock core specimens that satisfy the desirable tolerances given in this practice. Most commonly, this situation presents itself with weaker, more porous, and poorly cemented rock types and rock types containing significant or weak (or both) structural been determined by trial that this is not possible, prepare the rock specimen to the closest tolerances practicable and consider this to be the best effort and report it as such and if allowable or necessary for the intended test, features. For these and other rock types which are difficult to prepare, all reasonable efforts shall be made to prepare a specimen in accordance with this practice and for the intended test procedure. However, when it has capping the ends of the specimen as discussed in this practice is permitted."

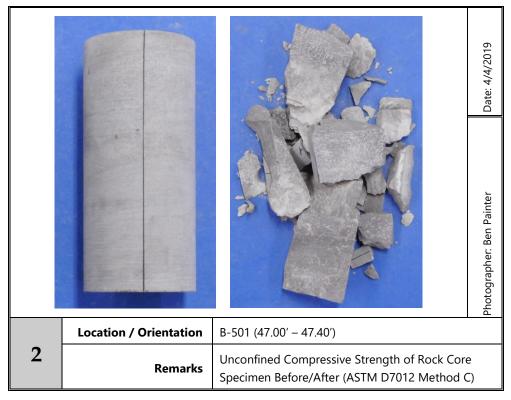
- Test specimen measurements met the desired shape tolerances of ASTM D4543-08⁶¹ (side straightness, end flatness & parallelism, and end perpendicularity to axis) ∢
- Test specimen measurements met the desired shape tolerances of ASTM D4543-08⁶¹ for end flatness & parallelism, and end perpendicularity to axis. Specimen did not meet the desired tolerance for side straightness. Specimen prepared to closest tolerances practicable. ш
- Test specimen measurements met the desired shape tolerances of ASTM D4543-08⁶¹ for end flatness & parallelism. Specimen did not meet the desired tolerances for side straightness and end perpendicularity to axis. Specimen prepared to closest tolerances practicable. ပ
- Test specimen measurements met the desired shape tolerances of ASTM D4543-08⁶¹ for end flatness. Specimen did not meet the desired tolerances for side straightness, parallelism and end perpendicularity to axis. Specimen prepared to closest tolerances practicable Δ
- Test specimen measurements met the desired shape tolerances of ASTM D4543-08⁶¹ for end flatness and end perpendicularity to axis. Specimen did not meet the desired tolerance for side straightness and parallelism. Specimen prepared to closest tolerances practicable. ш

This report shall not be reproduced, except in full, without the written approval of S&ME, Inc.

			1413 Top	oside Road, L	ouisville, TN	37777			
Project:	Dupont WTP			Diameter (in):	1.87		Date:	4/3/2019	
Project No.:	1281-18-061			Length (in):			Tested by:	VLI	
Boring Id:	B-501			it Weight (pcf):			Reviewed by:	BKP	
Sample No.:	RC		Moistur	re Content (%):	0.1				
Depth (ft):	36.25 - 36.60								
Deviation From									
	n Straightness (n gap ≤ 0.02 in.?	• •		Straightness To	olerance Met?			YES	
<u></u>	- <u> </u>						. <u> </u>		-
End Flatness a	and Parallelism	Readings (Pro	cedure FP1)		•				
Position	End 1	End 1(90)	End 2	End 2(90)		0.0040	End 1 Diameter 1	y = -0.0004	x - 0.0000
- 7/8	0.0007	0.0028	0.0011	0.0011	2 D	0.0030			
- 6/8	0.0002	0.0020	0.0008	0.0006	ead).0010 + 🛌			
- 5/8	0.0001	0.0016	0.0006	0.0004	je K				
- 4/8	0.0001	0.0015	0.0006	0.0002	0 Ca c	0.0020			
- 3/8	0.0000	0.0008	0.0005	0.0000	Dial		0.75 -0.50 -0.25 0	0.00 0.25 0.50	0.75 1.00
- 2/8	0.0000	0.0003	0.0004	0.0000			Diamete		
- 1/8	0.0000	0.0000	0.0001	0.0000			Diamete	a (III)	
0	0.0000	0.0000	0.0000	0.0000	·				0.0004
1/8	0.0000	0.0000	0.0000	0.0000	o).0040	End 1 Diameter 2	y = -0.0030	ix - 0.0001
2/8	0.0000	-0.0002	0.0000	0.0000	ding 0	0.0030			
3/8	0.0000	-0.0007	0.0000	0.0000	eac				
4/8	0.0000	-0.0012	-0.0001	-0.0004	(in) ge	0.0010	•		•
5/8	-0.0002	-0.0018	-0.0003	-0.0007	o cai	0.0030			N.
6/8 7/8	-0.0004	-0.0026	-0.0005	-0.0010	Dial		0.75 -0.50 -0.25 0	0.00 0.25 0.50	0.75 1.00
170	-0.0006	-0.0033	-0.0008	-0.0013]		Diamete		
	et when the diffe n points and a vi			smooth curve	0	0.0040 0.0030 0.0020 0.0010	End 2 Diameter 1		9x + 0.0002
		isual best fit lin		smooth curve	age Reading (in)	0.0040 0.0030 0.0020 0.0010 0.0010 0.0020 0.0020 0.0020 0.0030		y = -0.000	*
	n points and a vi	isual best fit lin			Gage Reading (in)	0.0040 0.0030 0.0020 0.0010 0.0010 0.0020 0.0020 0.0020 0.0030	End 2 Diameter 1	y = -0.000	0.75 1.00
	n points and a vi	isual best fit lin			Dial Gage Reading	0.0040 0.0030 0.0020 0.0010 0.0000 0.0010 0.0020 0.0020 0.0020 0.0040 -1.00 -1	End 2 Diameter 1	y = -0.000	*
	n points and a vi	isual best fit lin			Dial Gage Reading	0.0040 0.0030 0.0020 0.0010 0.0000 0.0020 0.0020 	End 2 Diameter 1	y = -0.000	0.75 1.00
	n points and a vi	isual best fit lin			Dial Gage Reading	0.0040 0.0030 0.0020 0.0010 0.0000 0.0010 0.0020 0.0040 -1.00 -1 0.0040 0.0030 0.0020 0.0010	End 2 Diameter 1	y = -0.000	0.75 1.00
drawn through	n points and a vi	isual best fit lin	ne is ≤ 0.001 in.	YES	Dial Gage Reading	0.0040 0.0030 0.0020 0.0010 0.0000 0.0010 0.0020 0.0020 0.0020 0.0040 -1.00 -1 0.0040 0.0020 0.0000 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000 0.00000000	End 2 Diameter 1	y = -0.000	0.75 1.00
drawn through	n points and a vi Flatness Toler Flatness Toler Met when the ar	isual best fit lin	ne is ≤ 0.001 in.	YES	Dial Gage Reading	0.0040 0.0030 0.0020 0.0010 0.0000 0.0010 0.0030 0.0030 0.0040 -1.00 -1 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0030 0.0020 0.0040 0.0020 0.0040 0.00	End 2 Diameter 1	y = -0.000 0.00 0.25 0.50 er (in) y = -0.001	0.75 1.00 0x - 0.0001
drawn through Parallelism is i	n points and a vi Flatness Toler Flatness Toler Met when the ar	isual best fit lin ance Met? ngular differenc	ne is ≤ 0.001 in.	YES	age Reading Dial Gage Reading (in) (in)	0.0040 0.0030 0.0020 0.0010 0.0000 0.0010 0.0030 0.0030 0.0040 -1.00 -1 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0030 0.0020 0.0040 0.0020 0.0040 0.00	End 2 Diameter 1	y = -0.000 0.00 0.25 0.50 er (in) y = -0.001	0.75 1.00 0x - 0.0001
Irawn through Parallelism is i	Flatness Toler, Flatness Toler, met when the ars is $\leq 0.25^{\circ}$.	isual best fit lin ance Met? ngular differend Diameter 1	ne is ≤ 0.001 in.	YES	Dial Gage Reading	0.0040 0.0030 0.0020 0.0010 0.0000 0.0010 0.0030 0.0030 0.0040 -1.00 -1 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0030 0.0020 0.0040 0.0020 0.0040 0.00	End 2 Diameter 1	y = -0.000 y = -0.000 y = -0.001 y = -0.001	0.75 1.00 0x - 0.0001
Parallelism is i	n points and a vi Flatness Toler Met when the ar s is ≤ 0.25°. Parrallelism	isual best fit lin ance Met? ngular differend Diameter 1 Tit Line:	ne is ≤ 0.001 in. ce between be:	YES	Dial Gage Reading	0.0040 0.0030 0.0020 0.0010 0.0000 0.0010 0.0030 0.0030 0.0040 -1.00 -1 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0030 0.0020 0.0040 0.0020 0.0040 0.00	End 2 Diameter 1	y = -0.000 y = -0.000 y = -0.001 y = -0.001	0.75 1.00 0x - 0.0001
Parallelism is i	n points and a vi Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F	isual best fit lin ance Met? ngular difference Diameter 1 Tit Line: Tit Line:	ne is ≤ 0.001 in. ce between be: -0.00042	YES	Dial Gage Reading (in) (in) (in)	0.0040 0.0030 0.0020 0.0010 0.0020 0.0010 0.0020 0.0020 0.0020 0.0020 0.0040 -1.00 -1 0.0040 0.0020 0.0020 0.0020 0.0020 -1.00 -1 -1.00 -1 -1.00 -1	End 2 Diameter 1	y = -0.000 .00 0.25 0.50 er (in) y = -0.001 .00 0.25 0.50 er (in)	0.75 1.00 0x - 0.0001
Parallelism is i pposing ends End 1:	n points and a vi Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F	isual best fit lin ance Met? ngular differend Diameter 1 Tit Line: Tit Line: Tit Line:	ne is ≤ 0.001 in. ce between bes -0.00042 -0.02390	YES	Dial Gage Reading Dial Gage Reading (in) Dial Gage Reading (in) Dial Gage Reading (in) Dial Gage Reading Dial Gage Reading	0.0040 0.0030 0.0010 0.0000 0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.0040 0.0020 0.0040 0.0020	End 2 Diameter 1	y = -0.000 .00 0.25 0.50 er (in) y = -0.001 .00 0.25 0.50 er (in) hen the different	0.75 1.00 0x - 0.0001 0.75 1.00 0.75 1.00
Parallelism is i pposing ends End 1:	met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F	isual best fit lin ance Met? ngular differend Diameter 1 Fit Line: Fit Line: Fit Line: Fit Line:	te is ≤ 0.001 in. ce between bes -0.00042 -0.02390 -0.00088	YES	Dial Gage Reading Dial Gage Reading (in) (in) Dial Gage Reading (in) Dial Gage Reading	0.0040 0.0030 0.0010 0.0000 0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.0040 0.0020 0.0040 0.0020	End 2 Diameter 1	y = -0.000 .00 0.25 0.50 er (in) y = -0.001 .00 0.25 0.50 er (in) hen the different	0.75 1.00 0x - 0.0001 0.75 1.00 0.75 1.00
Parallelism is i pposing ends End 1:	n points and a vi Flatness Toler. Flatness Toler. met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di	isual best fit lin ance Met? ngular differend Diameter 1 Tit Line: Tit Line: Tit Line: Tit Line: Tit Line:	ne is ≤ 0.001 in. ce between bes -0.00042 -0.02390 -0.00088 -0.05042	YES	Dial Gage Reading Dial Gage Reading (in) Dial Gage Reading (in) Dial Gage Reading (in) Dial Gage Reading Dial Gage Reading	0.0040 0.0030 0.0010 0.0000 0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.0040 0.0020 0.0040 0.0020	End 2 Diameter 1	y = -0.000 y = -0.001 y = -0.001	0.75 1.00 0x - 0.0001
arallelism is i pposing ends End 1: End 2:	Flatness Toler. Flatness Toler. Flatness Toler. met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism	isual best fit lin ance Met? ngular differend Diameter 1 Tit Line: Tit Line:	te is ≤ 0.001 in. ce between bes -0.00042 -0.02390 -0.00088 -0.05042 0.03	YES	Dial Gage Reading Dial Gage Reading (in) Dial Gage Reading (in) Dial Gage Reading (in) Dial Gage Reading Dial Gage Reading	0.0040 0.0030 0.0010 0.0000 0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.0040 0.0020 0.0040 0.0020	End 2 Diameter 1	y = -0.000 y = -0.000 y = -0.001 y = -0.001 y = -0.001 0.00 0.25 0.50 er (in) 0.00 0.25 0.50 er (in) hen the different vided by the dia Divide by	0.75 1.00 0x - 0.0001 0.75 1.00 0.75 1.00 0.75 1.00 0.75 Meets
Parallelism is i pposing ends End 1:	Flatness Toler Flatness Toler Flatness Toler Sis ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F	isual best fit lin ance Met? ngular difference Diameter 1 Tit Line: Tit Line:	ne is ≤ 0.001 in. ce between bes -0.00042 -0.02390 -0.00088 -0.05042 0.03 -0.00296	YES	Dial Gage Reading Dial Gage Reading Dial Gage Reading Dial Cage Reading Dial Cage Reading Dial Cage Reading Dial Cage Reading Concorrection Perpendicula	0.0040 0.0030 0.0020 0.0010 0.0020 0.0010 0.0020 0.0020 0.0020 0.0040 -1.00 -1 0.0020 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.00	End 2 Diameter 1	y = -0.000 y = -0.000 y = -0.001 y = -0	0.75 1.00 0x - 0.0001 0.75 1.00 0.75 1.00 0.75 1.00 0.75 T.00 0.75 T.00 0.75 T.00
Parallelism is i pposing ends End 1: End 2: End 1:	The points and a vision points and a vision points and a vision of the price of th	isual best fit lin ance Met? ngular difference Diameter 1 Tit Line: Tit Line:	te is ≤ 0.001 in. ce between bes -0.00042 -0.02390 -0.00088 -0.05042 0.03 -0.00296 -0.16960	YES	Dial Gage Reading Dial Cage R	0.0040 0.0030 0.0020 0.0010 0.0020 0.0010 0.0020	End 2 Diameter 1 0.75 -0.50 -0.25 0 Diameter End 2 Diameter 2 0.75 -0.50 -0.25 0 Diameter 0.75 -0.50 -0.25 0 Diameter dure P1) is met wla along each line div Difference b/w max & min 0.0013	y = -0.000 .00 0.25 0.50 er (in) y = -0.001 .00 0.25 0.50 er (in) hen the different vided by the dia Divide by Diameter 0.0007	0.75 1.00 0x - 0.0001 0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00
Parallelism is i poposing ends End 1: End 2:	The points and a vision points and a vision points and a vision of the price of th	isual best fit lin ance Met? ngular differend Diameter 1 Tit Line: Tit Line:	te is ≤ 0.001 in. ce between bes -0.00042 -0.02390 -0.00088 -0.05042 0.03 -0.00296 -0.16960 -0.16960 -0.00098	YES	Dial Gage Reading Dial Gage Reading Dial Gage Reading Dial Gage Reading Perpendicula max and min ≤ 0.0043. End 1 D End 1 D End 1 D	0.0040 0.0030 0.0000 0.0010 0.0020 0.0010 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0030 0.0020 0.0010 0.0020	End 2 Diameter 1	y = -0.000 .00 0.25 0.50 er (in) y = -0.001 .00 0.25 0.50 er (in) hen the different vided by the dia Divide by Diameter 0.0007 0.0033	0.75 1.00 0x - 0.0001 0.75 1.00 0.75 1.00 0.75 1.00 nce between ameter is Meets Tolerance YES YES
Parallelism is i pposing ends End 1: End 2: End 1:	The points and a vision points and a vision points and a vision of a vision of the price of the	isual best fit lin ance Met? ngular differend Diameter 1 Tit Line: Tit Line:	te is ≤ 0.001 in. -0.00042 -0.02390 -0.00088 -0.05042 0.03 -0.00296 -0.16960 -0.16960 -0.00098 -0.05615	YES	Perpendicula Max and minu Send 1 D Part Cade Keading Dial Cade Keading Dial Cade Keading Perpendicula max and minu Send 1 D End 1 D End 1 D End 1 D End 1 D End 2 D	0.0040 0.0030 0.0020 0.0010 0.0000 0.0010 0.0020 0.0030 0.0020 0.0030 0.0040 -1.00 -4 0.0040 0.0030 0.0040 -1.00 -4 0.0040 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0020 -1.00 -4 0.0010 0.0010 0.0020 0.0030 0.0020 0.0030 0.0020 0.0030 0.0010 0.0020 0.0030 0.0020 0.0010 0.0020 0.0030 0.0010 0.0020 0.0030 0.0010 0.0020 0.0030 0.0010 0.0010 0.0020 0.0010 0.0020 0.0030 0.0010 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0020 0.0040 0.0020 0.0010 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0040 0.0020 0.0040	End 2 Diameter 1	y = -0.000 y = -0.000 y = -0.001 y = -0.001 y = -0.001 y = -0.001 y = -0.001 y = -0.001 ben the different vided by the dia Divide by Diameter 0.0007 0.0033 0.0010	0.75 1.00 0x - 0.0001 0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00
Parallelism is i pposing ends End 1: End 2: End 1:	The points and a vision points and a vision points and a vision of the price of th	isual best fit lin ance Met? ngular differend Diameter 1 Tit Line: Tit Line:	te is ≤ 0.001 in. ce between bes -0.00042 -0.02390 -0.00088 -0.05042 0.03 -0.00296 -0.16960 -0.16960 -0.00098	YES	Dial Gage Reading Dial Gage Reading Dial Gage Reading Dial Gage Reading Perpendicula max and min ≤ 0.0043. End 1 D End 1 D End 1 D	0.0040 0.0030 0.0020 0.0010 0.0000 0.0010 0.0020 0.0030 0.0020 0.0030 0.0040 -1.00 -4 0.0040 0.0030 0.0040 -1.00 -4 0.0040 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0020 -1.00 -4 0.0010 0.0010 0.0020 0.0030 0.0020 0.0030 0.0020 0.0030 0.0010 0.0020 0.0030 0.0020 0.0010 0.0020 0.0030 0.0010 0.0020 0.0030 0.0010 0.0020 0.0030 0.0010 0.0010 0.0020 0.0010 0.0020 0.0030 0.0010 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0010 0.0020 0.0020 0.0040 0.0020 0.0010 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0020 0.0040 0.0040 0.0020 0.0040	End 2 Diameter 1	y = -0.000 .00 0.25 0.50 er (in) y = -0.001 .00 0.25 0.50 er (in) hen the different vided by the dia Divide by Diameter 0.0007 0.0033	0.75 1.00 0x - 0.0001 0.75 1.00 0.75 1.00 0.75 1.00 nce between ameter is Meets Tolerance YES YES

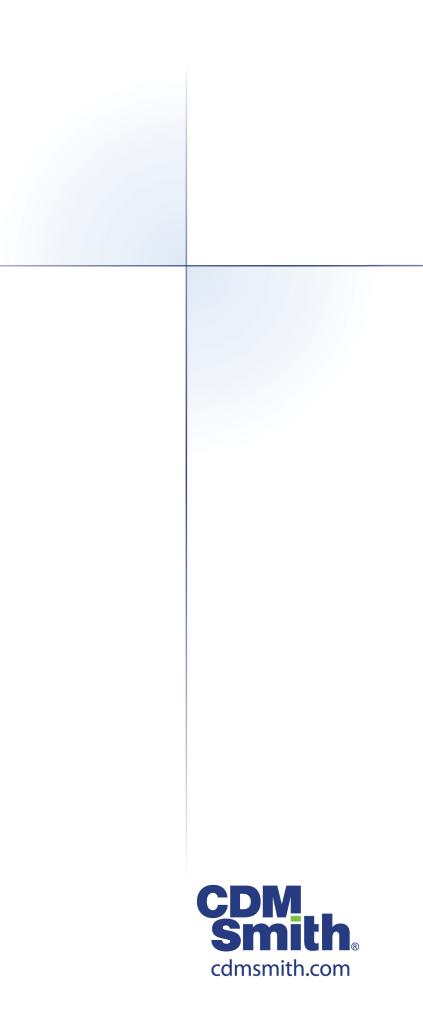
	Dument March		1410 10	oside Road, L			Deta	4/0/0040	
Project:	Dupont WTP			Diameter (in):			Date: Tested by:	4/3/2019	
roject No.:	1281-18-061		Lin	Length (in):			-	VLI	
oring Id: ample No.:	B-501 RC			it Weight (pcf): re Content (%):			Reviewed by:	DNP	
epth (ft):	47.00 - 47.40		WOIStu	le content (76).	0.1				
	41.00 41.40								
Deviation From	m Straightness ((Procedure S1)							
s the maximur	m gap ≤ 0.02 in.?	YES		Straightness To	olerance Me	et?		YES	-
nd Flatness	and Parallelism	Readings (Proc							
Position	End 1	End 1(90)	End 2	End 2(90)]		End 1 Diameter 1	y = -0.0000	x + 0.0000
- 7/8	0.0001	0.0012	0.0004	0.0025	De	0.0040			
- 6/8	0.0000	0.0008	0.0004	0.0021	Gage Reading (in)	0.0030			
- 5/8	0.0000	0.0004	0.0004	0.0015) Re	0.0000	• • • • • • • •	• • • • •	→→→
- 4/8	0.0000	0.0002	0.0002	0.0012	age (ir	-0.0020			
- 3/8	0.0000	0.0000	0.0002	0.0007	a C	0.0010	1 1 1	 	
- 2/8	0.0000	-0.0002	0.0000	0.0003	Dial	-1.00	-0.75 -0.50 -0.25 0	0.00 0.25 0.50	0.75 1.00
- 1/8	0.0000	-0.0002	0.0000	0.0000	1		Diamete	er (in)	
0	0.0000	0.0000	0.0000	0.0000	1 -				
1/8	0.0000	0.0000	0.0000	0.0000	1		End 1 Diameter 2	y = -0.0011	x - 0.0001
2/8	0.0000	0.0000	0.0000	-0.0002	Ď	0.0040			
3/8	0.0000	-0.0001	0.0000	-0.0005	Gage Reading (in)	0.0020	~		
4/8	0.0000	-0.0004	0.0000	-0.0009	, Reć				
5/8	0.0000	-0.0007	0.0000	-0.0017	in (in	-0.0010			~
6/8	0.0000	-0.0010	0.0000	-0.0022	Ö	-0.0030	1 1 1		
7/8	0.0000	-0.0015	-0.0001	-0.0025	Dial	-1.00	-0.75 -0.50 -0.25 0	0.00 0.25 0.50	0.75 1.00
	et when the diffe h points and a v	••		smooth curve		0.0040 0.0030 0.0020 0.0010	End 2 Diameter 1	y = -0.000	3x + 0.0001
		isual best fit lin		smooth curve	Dial Gage Reading (in)	0.0030 0.0020 0.0010 0.0000 -0.0010 -0.0020 -0.0030 -0.0040		y = -0.000	+ + +
irawn througi	h points and a v Flatness Toler met when the a	isual best fit lin ance Met? ngular differenc	e is ≤ 0.001 in.	YES	- Gage Reading (in)	0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0030 -0.0040 -0.0040 -1.00 0.0020 -1.00 0.0020 -0.0040 0.0020 0.0010 0.0020 -0.0020	End 2 Diameter 1	y = -0.000 0.00 0.25 0.50 or (in) y = -0.00257	0.75 1.00
rawn througl arallelism is	h points and a v Flatness Toler met when the an is is ≤ 0.25°.	isual best fit lin ance Met? ngular differenc Diameter 1	e is ≤ 0.001 in.	YES		0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0030 -0.0040 -0.0040 -1.00 0.0020 -1.00 0.0020 -0.0040 0.0020 0.0010 0.0020 -0.0020	End 2 Diameter 1	y = -0.000 0.00 0.25 0.50 y = -0.00257 y = -0.00257 0.00 0.25 0.50	0.75 1.00
arallelism is pposing end	h points and a v Flatness Toler met when the an Is is ≤ 0.25°. Parrallelism	isual best fit lin ance Met? ngular differenc Diameter 1 it Line:	e is ≤ 0.001 in. se between be	YES		0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0030 -0.0040 -0.0040 -1.00 0.0020 -1.00 0.0020 -0.0040 0.0020 0.0010 0.0020 -0.0020	End 2 Diameter 1	y = -0.000 0.00 0.25 0.50 y = -0.00257 y = -0.00257 0.00 0.25 0.50	0.75 1.00
rawn througl arallelism is pposing end	h points and a v Flatness Toler met when the an ls is ≤ 0.25°. Parrallelism Slope of Best F	isual best fit lin ance Met? ngular differenc Diameter 1 Tit Line: Tit Line:	e is ≤ 0.001 in. e between be -0.00002	YES	Dial Gage Reading Dial Gage Reading (in) (in)	0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0030 -0.0040 -1.00 0.0040 0.0030 -1.00 0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.00 -1.00	End 2 Diameter 1	y = -0.000 .000 0.25 0.50 er (in) y = -0.00257 .000 0.25 0.50 er (in)	0.75 1.00
arallelism is pposing end End 1:	h points and a v Flatness Toler met when the an s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F	isual best fit lin ance Met? ngular differenc Diameter 1 Tit Line: Tit Line: Tit Line:	e is ≤ 0.001 in. re between be -0.00002 -0.00115	YES	Dial Gage Reading (in) (in) (in)	0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0030 -0.0040 -0.0040 -1.00 0.0040 0.0020 -1.00 0.0020 -0.0040 -1.00 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -1.00 -0.0010 -0.0010 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -1.00 -0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.00 -0.0020 -0.0	End 2 Diameter 1	y = -0.000 .000 0.25 0.50 er (in) y = -0.00257; .000 0.25 0.50 er (in) hen the differer	0.75 1.00 (+ 0.00002 0.75 1.00 0.75 1.00
arallelism is oposing end End 1:	h points and a v Flatness Toler Met when the at is is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F	isual best fit lin ance Met? ngular differenc Diameter 1 fit Line: fit Line: fit Line: fit Line:	e is ≤ 0.001 in. e between be -0.00002 -0.00115 -0.00027	YES	Dial Gage Reading (in) (in) (in)	0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0030 -0.0040 -0.0040 -1.00 0.0040 0.0020 -1.00 0.0020 -0.0040 -1.00 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -1.00 -0.0010 -0.0010 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.00 -0.0020 -0	End 2 Diameter 1	y = -0.000 .000 0.25 0.50 er (in) y = -0.00257; .000 0.25 0.50 er (in) hen the differer	0.75 1.00 (+ 0.00002 0.75 1.00 0.75 1.00
arallelism is pposing end End 1:	h points and a v Flatness Toler Met when the at is is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F Angle of Best F	isual best fit lin ance Met? ngular differenc Diameter 1 Tit Line: Tit Line: Tit Line: Tit Line: Tit Line: Tit Line:	e is ≤ 0.001 in. e between be -0.00002 -0.00115 -0.00027 -0.01522	YES	Dial Gage Reading (in) (in) (in)	0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0030 -0.0040 -0.0040 -1.00 0.0040 0.0020 -1.00 0.0020 -0.0040 -1.00 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -1.00 -0.0010 -0.0010 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.00 -0.0020 -0	End 2 Diameter 1	y = -0.000 .000 0.25 0.50 er (in) y = -0.00257; .000 0.25 0.50 er (in) hen the differer	0.75 1.00 (+ 0.00002 0.75 1.00 0.75 1.00
arallelism is pposing end End 1:	h points and a v Flatness Toler Met when the at is is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F Angle of Best F Angle of Best F Max Angular Di	isual best fit lin ance Met? ngular differenc Diameter 1 fit Line: fit Line: fit Line: fference: Diameter 2	e is ≤ 0.001 in. e between be -0.00002 -0.00115 -0.00027 -0.01522	YES	Dial Gage Reading (in) (in) (in)	0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0030 -0.0040 -0.0040 -1.00 0.0040 0.0020 -1.00 0.0020 -0.0040 -1.00 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -1.00 -0.0010 -0.0010 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.00 -0.0020 -0	End 2 Diameter 1 -0.75 -0.50 -0.25 0 Diameter End 2 Diameter 2 -0.75 -0.50 -0.25 0 Diameter cedure P1) is met will s along each line div	y = -0.000 y = -0.00257) y = -0.002570 y = -0.002500 y = -0.0025000 y = -0.0025000 y = -0.0025000 y = -0.0025000000000000000000000000000000000	0.75 1.00 (+ 0.00002 0.75 1.00 0.75 1.00 0.75 1.00 0.75 Meets
arallelism is pposing end End 1: End 2:	h points and a v Flatness Toler The state of the state is is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F	isual best fit lin ance Met? ngular difference Diameter 1 fit Line: fit Line: fit Line: fit Line: fference: Diameter 2 fit Line:	e is ≤ 0.001 in. e between be -0.00002 -0.00115 -0.00027 -0.01522 0.01	YES	Dial Gage Reading (in) (in) (in) (in) (in)	0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0030 -0.0040 -0.0040 -1.00 0.0040 0.0020 -1.00 0.0020 -0.0040 -1.00 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -1.00 -0.0010 -0.0010 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.00 -0.0020 -0	End 2 Diameter 1 -0.75 -0.50 -0.25 0 Diameter End 2 Diameter 2 -0.75 -0.50 -0.25 0 Diameter cedure P1) is met will s along each line div Difference	y = -0.000 y = -0.00257) y = -0.002570 y = -0.002500 y = -0.0025000 y = -0.0025000 y = -0.0025000 y = -0.0025000000000000000000000000000000000	0.75 1.00 (+ 0.00002 0.75 1.00 0.75 1.00 0.75 1.00 0.75 Meets
arallelism is pposing end End 1: End 2:	h points and a v Flatness Toler Flatness Toler met when the an is is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F	isual best fit lin ance Met? ngular difference Diameter 1 fit Line: fit Line:	e is ≤ 0.001 in. e between be -0.00002 -0.00115 -0.0027 -0.01522 0.01 -0.0107	YES	Dial Gage Reading Dial Gage Reading Dial Gage Reading (in) Eud Eud	0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0030 -0.0040 -0.0040 -1.00 0.0040 0.0020 -1.00 0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.00 -1.00 -1.00 -1.00	End 2 Diameter 1 -0.75 -0.50 -0.25 0 Diameter End 2 Diameter 2 -0.75 -0.50 -0.25 0 Diameter cedure P1) is met will s along each line div Difference b/w max & min	y = -0.000 ,000 0.25 0.50 er (in) y = -0.00257; ,000 0.25 0.50 er (in) hen the differer vided by the dia Divide by Diameter 0.0001	0.75 1.00 (+ 0.00002 0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00
arallelism is pposing end End 1: End 2: End 1:	h points and a v Flatness Toler Flatness Toler met when the al is is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F Angle of Best F Slope of Best F Angle of Best F Slope of Best F Slope of Best F	isual best fit lin ance Met? ngular difference Diameter 1 fit Line: fit Line:	e is ≤ 0.001 in. e between be -0.00002 -0.00115 -0.00027 -0.01522 0.01 -0.00107 -0.00107 -0.00107 -0.00106 -0.00257	YES	Dial Gage Reading Dial Gage Reading (in) Dial Gage Reading (in) Eud Eud	0.0030 0.0020 0.0010 0.0010 0.0010 0.0020 -0.0030 -0.0040 0.0020 -1.00 0.0020 0.0010 0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.00 -0.0020 -0.0020 -1.0	End 2 Diameter 1	y = -0.000 .00 0.25 0.50 r (in) y = -0.00257 .00 0.25 0.50 r (in) hen the different vided by the dia Divide by Diameter 0.0001 0.0014	0.75 1.00 (+ 0.00002 0.75 1.00 0.75 1.00 0.75 1.00 0.75 T.00 0.75 T.00 0.75 T.00 0.75 T.00 0.75 T.00
arallelism is pposing end End 1: End 2: End 1:	h points and a v Flatness Toler Teleform Flatness Toler Met when the all is is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F Angle of Best F Angle of Best F Slope of Best F Angle of Best F	isual best fit lin ance Met? ngular difference Diameter 1 fit Line: fit Line: fit Line: fiference: Diameter 2 fit Line: fit Line:	e is ≤ 0.001 in. = between be -0.00002 -0.00115 -0.00027 -0.01522 0.01 -0.00107 -0.00107 -0.006106 -0.00257 -0.14700	YES	Dial Gage Reading Dial Gage Reading Dia Gage Reading Dial Gage Reading Dial Gage Re	0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0030 -0.0040 -0.0040 -0.0040 -0.0040 -1.00 0.0020 -0.0040 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.00	End 2 Diameter 1	y = -0.000 y = -0.00257 y = -0.002577 y = -0.00277 y = -0.002777 y	0.75 1.00 (+ 0.00002 0.75 1.00 0.75 1.00 0.75 1.00 0.75 T.00 0.75 T.00 0.75 T.00
arallelism is pposing end End 1: End 2: End 1:	h points and a v Flatness Toler Flatness Toler met when the al is is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F Angle of Best F Slope of Best F Angle of Best F Slope of Best F Slope of Best F	isual best fit lin ance Met? ngular difference Diameter 1 fit Line: fit Line: fit Line: fiference: Diameter 2 fit Line: fit Line:	e is ≤ 0.001 in. e between be -0.00002 -0.00115 -0.00027 -0.01522 0.01 -0.00107 -0.00107 -0.00107 -0.00106 -0.00257	YES	Dial Gage Reading Dial Gage Reading Dia Gage Reading Dial Gage Reading Dial Gage Re	0.0030 0.0020 0.0010 0.0010 0.0010 0.0020 -0.0030 -0.0040 0.0020 -1.00 0.0020 0.0010 0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.00 -0.0020 -0.0020 -1.0	End 2 Diameter 1	y = -0.000 .00 0.25 0.50 r (in) y = -0.00257 .00 0.25 0.50 r (in) hen the different vided by the dia Divide by Diameter 0.0001 0.0014	0.75 1.00 (+ 0.00002 0.75 1.00 0.75 1.00 0.75 1.00 0.75 T.00 0.75 T.00 0.75 T.00 0.75 T.00 0.75 T.00

			1413 Top	oside Road, L	ouisville,	TN 3777	77			
Project:	Dupont WTP			Diameter (in):	1.87		Date:	4	4/3/2019	
Project No.:	1281-18-061			Length (in):			Tested by	/: \	VLI	
Boring Id:	B-502			it Weight (pcf):			Reviewed	lby: E	ЗКР	
Sample No.:	RC		Moistur	e Content (%):	0.3					
Depth (ft):	31.85 - 32.20									
Peviation From	n Straightness (Procedure S1)								
	n gap ≤ 0.02 in.?	. ,		Straightness To	olerance M	et?		_	YES	_
End Flatness a	and Parallelism	Readings (Proc	edure FP1)							
Position	End 1	End 1(90)	End 2	End 2(90)			End 1 Diamete	er 1	y = -0.0001	x + 0.0000
- 7/8	0.0002	0.0013	0.0000	0.0018	Бu	0.0040				
- 6/8	0.0002	0.0007	0.0000	0.0014	Gage Reading (in)	0.0020 - 0.0010 -				
- 5/8	0.0000	0.0005	0.0000	0.0013	e Re	0.0000 -	••••••	• • •	• • • • •	• • •
- 4/8	0.0000	0.0003	0.0000	0.0010	age (ir	-0.0010 - -0.0020 - -0.0030 -				
- 3/8	0.0000	0.0002	0.0000	0.0007	- C	-0.0040 -	1 1	1	, <u>, , , , , , , , , , , , , , , , , , </u>	
- 2/8	0.0000	0.0000	0.0000	0.0001	Dial	-1.	00 -0.75 -0.50 -0	0.25 0.0	00 0.25 0.50	0.75 1.00
- 1/8	0.0000	0.0000	0.0000	0.0000			D	iameter	(in)	
0	0.0000	0.0000	0.0000	0.0000	1 📜					
1/8	0.0000	0.0000	0.0000	0.0000			End 1 Diamete	or 2	y = -0.0006	x + 0.0002
2/8	0.0000	0.0000	0.0000	-0.0003	ō	0.0040		. 2		
3/8	0.0000	0.0000	0.0000	-0.0006	l Gage Reading (in)	0.0020 -				
4/8	0.0000	0.0000	0.0000	-0.0012	, Re	0.0010 - 0.0000 -		+-+		* *
5/8	0.0000	0.0000	0.0000	-0.0017	(in age	-0.0010 - -0.0020 - -0.0030 -				
6/8	0.0000	0.0000	0.0000	-0.0019	Ö	-0.0030 -		T	I I I	
7/8	0.0000	-0.0004	0.0000	-0.0022	Dial	-1.	00 -0.75 -0.50 -0	0.25 0.	00 0.25 0.50	0.75 1.00
	et when the diffe n points and a vi			smooth curve		0.0040 - 0.0030 - 0.0020 - 0.0010 -	End 2 Diamete	iameter er 1	(in)	y = 0
		isual best fit lin		smooth curve YES	- Dial Gage Reading (in)	0.0030 - 0.0020 - 0.0010 - 0.0000 - -0.0010 - -0.0020 - -0.0030 - -0.0040 -	End 2 Diamete	er 1 • • •	00 0.25 0.50	· · · · ·
Irawn through	n points and a vi Flatness Toler met when the an	isual best fit lin ance Met? ngular differenc	e is ≤ 0.001 in.	YES	- Gage Reading (in)	0.0030 - 0.0010 - 0.0010 - -0.0010 - -0.0020 - -0.0020 - -0.0030 - -0.0040 - -1. 0.0030 - 0.0020 - 0.0010 - 0.0020 - -0.0040 - -0.0020 - -0.0030 - -0.0020 - -0.0030 - -0.0030 - -0.0020 - -0.0030 - -0.0040 - -0.0030 -	End 2 Diamete	er 1 	y = -0.002	0.75 1.00
rawn through arallelism is	n points and a vi Flatness Toler met when the an s is ≤ 0.25°.	isual best fit lin ance Met? ngular differenc Diameter 1	e is ≤ 0.001 in.	YES		0.0030 - 0.0010 - 0.0010 - -0.0010 - -0.0020 - -0.0020 - -0.0030 - -0.0040 - -1. 0.0030 - 0.0020 - 0.0010 - 0.0020 - -0.0040 - -0.0020 - -0.0030 - -0.0020 - -0.0030 - -0.0030 - -0.0020 - -0.0030 - -0.0040 - -0.0030 -	End 2 Diamete	er 1 	y = -0.002	0.75 1.00
rawn through arallelism is pposing ends	n points and a vi Flatness Toler met when the an s is ≤ 0.25°. Parrallelism	isual best fit lin ance Met? ngular difference Diameter 1 ït Line:	e is ≤ 0.001 in. :e between be:	YES		0.0030 - 0.0010 - 0.0010 - -0.0010 - -0.0020 - -0.0020 - -0.0030 - -0.0040 - -1. 0.0030 - 0.0020 - 0.0010 - 0.0020 - -0.0040 - -0.0020 - -0.0030 - -0.0020 - -0.0030 - -0.0030 - -0.0020 - -0.0030 - -0.0040 - -0.0030 -	End 2 Diamete	er 1 0.25 0.1 iameter er 2 0.25 0.1	y = -0.002	0.75 1.00
rawn through arallelism is pposing ends	n points and a vi Flatness Toler met when the an s is ≤ 0.25°. Parrallelism Slope of Best F	isual best fit lin ance Met? ngular difference Diameter 1 it Line: it Line:	e is ≤ 0.001 in. :e between be: -0.00007	YES	Dial Gage Reading (in) (in)	0.0030 - 0.0010 - 0.0010 - -0.0020 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0040 - -1. 0.0020 - -0.0020 - -0.0020 - -0.0030 - -0.0040 - -0.0030 - -0.0040 - -0.0020 - -0.0040 - -0.0020 - -0.0030 - -0.0040 - -0.0030 - -0.0040 - -0.0030 - -0.0040 -	End 2 Diamete	er 1 .25 0.1 iiameter .25 0.1 .25 0.1 iiameter net wh	y = -0.002 (in) y = -0.002 00 0.25 0.50 (in) en the different	0.75 1.00 22x - 0.0001 0.75 1.00
arallelism is pposing ends End 1:	n points and a vi Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F	isual best fit lin ance Met? ngular differenc Diameter 1 iit Line: iit Line: iit Line:	e is ≤ 0.001 in. e between be -0.00007 -0.00426	YES	Dial Gage Reading (in) (in)	0.0030 - 0.0010 - 0.0010 - -0.0020 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0040 - -1. 0.0020 - -0.0020 - -0.0020 - -0.0030 - -0.0040 - -0.0030 - -0.0040 - -0.0020 - -0.0040 - -0.0020 - -0.0030 - -0.0040 - -0.0030 - -0.0040 - -0.0030 - -0.0040 -	End 2 Diamete	er 1 .25 0.1 iiameter .25 0.1 .25 0.1 iiameter net wh	y = -0.002 (in) y = -0.002 00 0.25 0.50 (in) en the different	0.75 1.00 22x - 0.0001 0.75 1.00
arallelism is pposing ends End 1:	n points and a vi Flatness Toler met when the ai s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F	isual best fit lin ance Met? ngular differenc Diameter 1 it Line: it Line: it Line: it Line:	e is ≤ 0.001 in. e between bes -0.00007 -0.00426 0.00000	YES	Dial Gage Reading (in) (in)	0.0030 - 0.0010 - 0.0010 - -0.0020 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0040 - -1. 0.0020 - -0.0020 - -0.0020 - -0.0030 - -0.0040 - -0.0030 - -0.0040 - -0.0020 - -0.0040 - -0.0020 - -0.0030 - -0.0040 - -0.0030 - -0.0040 - -0.0030 - -0.0040 -	End 2 Diamete	er 1 .25 0.1 iiameter .25 0.1 .25 0.1 iiameter net wh	y = -0.002 (in) y = -0.002 00 0.25 0.50 (in) en the different	0.75 1.00 22x - 0.0001 0.75 1.00
rawn through arallelism is pposing ends End 1:	n points and a vi Flatness Toler Flatness Toler met when the an s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F Angle of Best F	isual best fit lin ance Met? ngular differenc Diameter 1 Tit Line: Tit Line: Tit Line: Tit Line: Tit Line: Tit Line:	e is ≤ 0.001 in. e between bes -0.00007 -0.00426 0.00000 0.00000	YES	Dial Gage Reading (in) (in) (in)	0.0030 - 0.0010 - 0.0010 - -0.0020 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0040 - -1. 0.0020 - -0.0020 - -0.0020 - -0.0030 - -0.0040 - -0.0030 - -0.0040 - -0.0020 - -0.0040 - -0.0020 - -0.0030 - -0.0040 - -0.0030 - -0.0040 - -0.0030 - -0.0040 -	End 2 Diamete	er 1	y = -0.002 (in) y = -0.002 00 0.25 0.50 (in) en the different	0.75 1.00 22x - 0.0001 0.75 1.00
rawn through arallelism is pposing ends End 1:	n points and a vi Flatness Toler Flatness Toler met when the at s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di	isual best fit lin ance Met? ngular difference Diameter 1 fit Line: fit Line: fference: Diameter 2	e is ≤ 0.001 in. e between bes -0.00007 -0.00426 0.00000 0.00000	YES st fit lines on	Dial Gage Reading (in) (in) (in)	0.0030 - 0.0010 - 0.0010 - -0.0020 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0040 - -1. 0.0020 - -0.0020 - -0.0020 - -0.0030 - -0.0040 - -0.0030 - -0.0040 - -0.0020 - -0.0040 - -0.0020 - -0.0030 - -0.0040 - -0.0030 - -0.0040 - -0.0030 - -0.0040 -	End 2 Diamete	er 1	y = -0.002 (in) y = -0.002 00 0.25 0.50 (in) en the differen ided by the dia	0.75 1.00 22x - 0.0001 0.75 1.00 0.75 1.00 nce between ameter is
arallelism is pposing ends End 1: End 2:	The points and a vision points and a vision points and a vision points and a vision point of the point of th	isual best fit lin ance Met? ngular difference Diameter 1 fit Line: fit Line: fit Line: fference: Diameter 2 fit Line:	e is ≤ 0.001 in. e between be: -0.00007 -0.00426 0.00000 0.00000 0.00000 0.000	YES	Dial Gage Reading Dial Gage Reading Herbeudic (in) (in) (in)	0.0030 - 0.0010 - 0.0010 - -0.0020 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0040 - -1. 0.0020 - -0.0020 - -0.0020 - -0.0030 - -0.0040 - -0.0030 - -0.0040 - -0.0020 - -0.0040 - -0.0020 - -0.0030 - -0.0040 - -0.0030 - -0.0040 -	End 2 Diamete	er 1	y = -0.002 (in) y = -0.002 00 0.25 0.50 (in) en the different ided by the dia Divide by	0.75 1.00 22x - 0.0001 0.75 1.00 0.75 1.00 nce between ameter is Meets
arallelism is pposing ends End 1: End 2:	The points and a vision points and a vision points and a vision points and a vision point of the point of th	isual best fit lin ance Met? ngular difference Diameter 1 iit Line: iit Line: iit Line: iit Line: fference: Diameter 2 iit Line: iit Line: iit Line:	e is ≤ 0.001 in. e between be: -0.00007 -0.00426 0.00000 0.00000 0.00000 0.00059	YES	Dial Gage Reading Dial Gage Reading Dial Gage Reading Dial Gage Reading (in) Eud	0.0030 - 0.0010 - 0.0010 - -0.0020 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0030 - -0.0030 - -0.0030 - -0.0030 - -0.0030 - -0.0040 - -1.	End 2 Diamete	er 1	y = -0.002 (in) y = -0.002 (in) 00 0.25 0.50 (in) en the different ided by the dia Divide by Diameter	0.75 1.00 22x - 0.0001 0.75 1.00 0.75 1.00 0.75 1.00 0.75 T.00 0.75 T.00
rawn through pposing ends End 1: End 2: End 1:	The points and a vision points and a vision points and a vision of a vision of the price of the	isual best fit lin ance Met? Diameter 1 Tit Line: Tit Line:	e is ≤ 0.001 in. e between bes -0.00007 -0.00426 0.00000 0.00000 0.0000 0.0000 0.00059 -0.03379	YES	Dial Gage Reading Dial Gage Reading Dial Gage Reading Dial Gage Reading (in) End End End	0.0030 - 0.0010 - 0.0010 - -0.0010 - -0.0020 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0040 - 0.0020 - -0.0020 - -0.0020 - -0.0020 - -0.0030 - -0.0040 - -0.0030 - -0.0040 - -0.0030 - -0.0040 - -1.	End 2 Diamete 00 -0.75 -0.50 -0 D End 2 Diamete 00 -0.75 -0.50 -0 D rocedure P1) is m ngs along each li Differer b/w max & 0.000	er 1	y = -0.002 (in) y = -0.002 (in) 00 0.25 0.50 (in) en the different ded by the dia Divide by Diameter 0.0001	0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00 0.75 1.00
rawn through pposing ends End 1: End 2: End 1:	The points and a vision of points and a vision of the points and a vision of the point of the p	isual best fit lin ance Met? ngular difference Diameter 1 it Line: it Line: it Line: it Line: fference: Diameter 2 it Line: it Line:	e is ≤ 0.001 in. ce between bes -0.00007 -0.00426 0.00000 0.00000 0.00000 0.0000 0.00059 -0.00379 -0.00218	YES	Dial Gage Reading Dial Gage Reading Dia Gage Reading Dial Gage Reading Dial Gage Re	0.0030 - 0.0010 - 0.0010 - -0.0010 - -0.0020 - -0.0030 - -0.0040 - -1. 0.0040 - -1. 0.0040 - -1. 0.0020 - -0.0030 - -0.0020 - -0.0030 - -0.0040 - -0.0040 - -0.0040 - -0.0040 - -0.0040 - -0.0040 - -0.0040 - -1. - cularity (P nin readir 1 Diam 1 1 Diam 1	End 2 Diamete 00 -0.75 -0.50 -0 D End 2 Diamete 00 -0.75 -0.50 -0 D rocedure P1) is m ngs along each li Differer b/w max & 0.000 0.001	er 1 .25 0.0 .25 0.	y = -0.002 (in) y = -0.002 00 0.25 0.50 (in) en the different ded by the dia Divide by Diameter 0.0001 0.0009	0.75 1.00 22x - 0.0001 0.75 1.00 0.75 1.00 nce between ameter is Meets Tolerance YES YES YES


In a la ct-					ouisville,		11		
Project:	Dupont WTP			Diameter (in):	1.87		Date:	4/3/2019	
roject No.:	1281-18-061			Length (in):	4.19		Tested by:	VLI	
oring Id:	B-502		Un	it Weight (pcf):	170.1		Reviewed by:	BKP	
ample No.:	RC		Moistu	re Content (%):	0.1				
epth (ft):	38.80 - 39.15								
eviation From	n Straightness (Procedure S1)						· · — · — · — ·	
	n gap ≤ 0.02 in.?			Straightness To	olerance Me	et?		YES	_
nd Flatness a	and Parallelism	Readings (Proc	edure FP1)						
Position	End 1	End 1(90)	End 2	End 2(90)			End 1 Diameter 1		y = 0.0000
- 7/8	0.0000	0.0002	0.0000	0.0011	Б <u>г</u>	0.0040 0.0030			
- 6/8	0.0000	0.0000	0.0000	0.0009	adii	0.0020 0.0010			
- 5/8	0.0000	0.0000	0.0000	0.0005	e Re	0.0000 -0.0010		• • • • •	• • • •
- 4/8	0.0000	0.0000	0.0000	0.0003	Gage Reading (in)	-0.0020			
- 3/8	0.0000	0.0000	0.0000	0.0002	Ö	-0.0030 -0.0040	<u> </u>		
- 2/8	0.0000	0.0000	0.0000	0.0001	Dial	-1	.00 -0.75 -0.50 -0.25	0.00 0.25 0.50	0 0.75 1.00
- 1/8	0.0000	0.0000	0.0000	0.0000			Diame	ter (in)	
0	0.0000	0.0000	0.0000	0.0000					
1/8	0.0000	0.0000	0.0000	0.0000				y = -0.00004>	x + 0 00001
2/8	0.0000	0.0000	0.0000	-0.0001		0.0040	End 1 Diameter 2	, = 0.000047	
3/8	0.0000	0.0000	0.0000	-0.0001	Dial Gage Reading (in)	0.0030 0.0020			
4/8	0.0000	0.0000	0.0000		Sea	0.0010 0.0000	••••••	• • • • • •	
	-			-0.0001	(i) ge F	-0 0010			
5/8	0.0000	0.0000	0.0000	-0.0001	Ğ	-0.0020 -0.0030 -0.0040			
6/8	0.0000	0.0000	0.0000	-0.0001	Dial		.00 -0.75 -0.50 -0.25	0.00 0.25 0.50	0 0.75 1.00
7/8	0.0000	0.0000	0.0000	-0.0003				ter (in)	
	et when the diffe n points and a vi	••		smooth curve	ading	0.0040 0.0030 0.0020 0.0010	End 2 Diameter 1		y = 0
		sual best fit lin		smooth curve	ial Gage Reading (in)	0.0030 0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0040	End 2 Diameter 1		· · · ·
	n points and a vi	sual best fit lin			Dial Gage Reading (in)	0.0030 0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0040	End 2 Diameter 1		· · · ·
	n points and a vi	sual best fit lin			Dial	0.0030 0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 -1	End 2 Diameter 1	• • • • • • 0.00 0.25 0.5(ter (in)	· · · ·
	n points and a vi	sual best fit lin			Dial	0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0030 -0.0040 -1 0.0040 0.0030	End 2 Diameter 1	• • • • • • 0.00 0.25 0.5(ter (in)	0 0.75 1.00
	n points and a vi	sual best fit lin			Dial	0.0030 0.0020 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 -1 -1 0.0040 0.0030 0.0020 0.0020	End 2 Diameter 1	• • • • • • 0.00 0.25 0.5(ter (in)	0 0.75 1.00
rawn through	n points and a vi	ance Met?	e is ≤ 0.001 in.	YES	Dial	0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0020 -0.0030 -0.0040 0.0030 0.0040 0.0030 0.0020 0.0020 0.0010	End 2 Diameter 1	• • • • • • 0.00 0.25 0.5(ter (in)	0 0.75 1.00
rawn through arallelism is	n points and a vi Flatness Toler Toler Toler Toler	ance Met?	e is ≤ 0.001 in.	YES	Dial	0.0030 0.0020 0.0010 0.0000 -0.0010 -0.0020 -0.0030 -0.0040 0.0030 0.0040 0.0030 0.0020 0.0010 0.0020 0.0010 0.0000 -0.0010	End 2 Diameter 1	• • • • • • 0.00 0.25 0.5(ter (in)	0 0.75 1.00
rawn through	n points and a vi Flatness Toler Flatness Toler net when the ar s is ≤ 0.25°.	ance Met? ance Met? ngular differenc	e is ≤ 0.001 in.	YES	Gage Reading (in)	0.0030 0.0020 0.0010 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 0.0030 0.0040 0.0030 0.0010 0.0010 0.0010 -0.0010 -0.0020 -0.0020 -0.0020	End 2 Diameter 1	0.00 0.25 0.50 ter (in) y = -0.000	0 0.75 1.00
arallelism is	n points and a vi Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism	sual best fit lin ance Met? ngular differenc Diameter 1	e is ≤ 0.001 in. :e between be	YES	Dial	0.0030 0.0020 0.0010 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 0.0030 0.0040 0.0030 0.0010 0.0010 0.0010 -0.0010 -0.0020 -0.0020 -0.0020	End 2 Diameter 1	0.00 0.25 0.50 ter (in) y = -0.000 0.00 0.25 0.50	0 0.75 1.00 D6x + 0.0002
rawn through arallelism is	n points and a vi Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F	ance Met? ngular differenc Diameter 1 it Line:	e is ≤ 0.001 in. 	YES	Gage Reading (in)	0.0030 0.0020 0.0010 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 0.0030 0.0040 0.0030 0.0010 0.0010 0.0010 -0.0010 -0.0020 -0.0020 -0.0020	End 2 Diameter 1	0.00 0.25 0.50 ter (in) y = -0.000	0 0.75 1.00 D6x + 0.0002
arallelism is pposing ends End 1:	n points and a vi Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F	isual best fit lin ance Met? ngular differenc Diameter 1 it Line: it Line:	e is ≤ 0.001 in. :e between be 0.00000 0.00000	YES	Dial Gage Reading (in)	0.0030 0.0020 0.0010 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 0.0030 0.0030 0.0020 0.0010 0.0010 -0.0020 -0.0040 -0.0010 -0.0020 -0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.0020 -0.0020 -0.0020 -1.0020 -0.0020 -0.0020 -1.0020 -0.0020 -1.0020 -0.0020 -0.0020 -1.0020 -0.0020 -1.0020 -0.0020 -1.0020 -0.0020 -0.0020 -1.0020 -0.0020 -1.0020 -1.0020 -1.0020 -0.0020 -1.0020	End 2 Diameter 1	• • • • • • • • • • • • • • • • • • •	0 0.75 1.00 06x + 0.0002
rawn through arallelism is oposing ends	n points and a vi Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F	ance Met? ance Met? Diameter 1 it Line: it Line: it Line:	e is ≤ 0.001 in. 	YES	Dial Gage Reading (in)	0.0030 0.0020 0.0010 0.0000 -0.0010 -0.0020 -0.0030 -0.0040 0.0030 0.0020 0.0010 0.0010 -0.0020 -0.0040 0.0020 0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0020 -0.0020 -0.0010 -0.0020 -0.0040 0.0020 -0.0040 0.0020 -0.0040 0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.	End 2 Diameter 1	0.00 0.25 0.50 ter (in) y = -0.000 0.00 0.25 0.50 ter (in) vhen the differe	0 0.75 1.00 0 0.75 1.00 0 0.75 1.00 0 0.75 1.00 0 0.75 1.00
awn through arallelism is oposing ends End 1:	n points and a vi Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F	ance Met? ance Met? Diameter 1 it Line: it Line: it Line:	e is ≤ 0.001 in. :e between be 0.00000 0.00000	YES	Dial Gage Reading (in) (in)	0.0030 0.0020 0.0010 0.0000 -0.0010 -0.0020 -0.0030 -0.0040 0.0030 0.0020 0.0010 0.0010 -0.0020 -0.0040 0.0020 0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0020 -0.0020 -0.0010 -0.0020 -0.0040 0.0020 -0.0040 0.0020 -0.0040 0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.	End 2 Diameter 1	0.00 0.25 0.50 ter (in) y = -0.000 0.00 0.25 0.50 ter (in) vhen the differe	0 0.75 1.00 0 0.75 1.00 0 0.75 1.00 0 0.75 1.00 0 0.75 1.00
awn through arallelism is oposing ends End 1:	n points and a vi Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F	ance Met? ance Met? ngular differenc Diameter 1 it Line: it Line: it Line: it Line:	e is ≤ 0.001 in.	YES	Dial Gage Reading (in)	0.0030 0.0020 0.0010 0.0000 -0.0010 -0.0020 -0.0030 -0.0040 0.0030 0.0020 0.0010 0.0010 -0.0020 -0.0040 0.0020 0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0020 -0.0020 -0.0010 -0.0020 -0.0040 0.0020 -0.0040 0.0020 -0.0040 0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.	End 2 Diameter 1	0.00 0.25 0.50 ter (in) y = -0.000 0.00 0.25 0.50 ter (in) vhen the differe	0 0.75 1.00 0 0.75 1.00 0 0.75 1.00 0 0.75 1.00 0 0.75 1.00
arallelism is pposing ends End 1:	n points and a vi Flatness Toler Met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F Angle of Best F	ance Met? ance Met? ngular differenc Diameter 1 it Line: it Line: it Line: it Line: fference:	e is ≤ 0.001 in. e between be 0.00000 0.00000 0.00000 0.00000	YES	Dial Gage Reading (in) (in)	0.0030 0.0020 0.0010 0.0000 -0.0010 -0.0020 -0.0030 -0.0040 0.0030 0.0020 0.0010 0.0010 -0.0020 -0.0040 0.0020 0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0020 -0.0020 -0.0010 -0.0020 -0.0040 0.0020 -0.0040 0.0020 -0.0040 0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.	End 2 Diameter 1	0.00 0.25 0.50 ter (in) y = -0.000 0.00 0.25 0.50 ter (in) vhen the differe	0 0.75 1.00 0 0.75 1.00 0 0.75 1.00 0 0.75 1.00 0 0.75 1.00
arallelism is pposing ends End 1:	n points and a vi Flatness Toler Met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F Angle of Best F Angle of Best F Max Angular Di	isual best fit lin ance Met? ngular difference Diameter 1 it Line: it Line: it Line: it Line: fference: Diameter 2	e is ≤ 0.001 in. e between be 0.00000 0.00000 0.00000 0.00000	YES st fit lines on	Dial Gage Reading (in) (in)	0.0030 0.0020 0.0010 0.0000 -0.0010 -0.0020 -0.0030 -0.0040 0.0030 0.0020 0.0010 0.0010 -0.0020 -0.0040 0.0020 0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0020 -0.0020 -0.0010 -0.0020 -0.0040 0.0020 -0.0040 0.0020 -0.0040 0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.	End 2 Diameter 1	0.00 0.25 0.50 ter (in) y = -0.000 0.00 0.25 0.50 ter (in) vhen the differe ivided by the di Divide by	0 0.75 1.00 0 0.75 1.00
awn through arallelism is oposing ends End 1: End 2:	n points and a vi Flatness Toler Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F	ance Met? ance Met? Diameter 1 it Line: it Line: it Line: it Line: fference: Diameter 2 it Line:	e is ≤ 0.001 in. E between be 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	YES	Dial Gage Reading Dial Gage Reading Perpendic (in) ≤ 0.0043.	0.0030 0.0020 0.0010 0.0000 -0.0010 -0.0020 -0.0030 -0.0040 0.0030 0.0020 0.0010 0.0010 -0.0020 -0.0040 0.0020 0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0020 -0.0020 -0.0010 -0.0020 -0.0040 0.0020 -0.0040 0.0020 -0.0040 0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.	End 2 Diameter 1	0.00 0.25 0.50 ter (in) y = -0.000 0.00 0.25 0.50 ter (in) vhen the differe ivided by the di Divide by	0 0.75 1.00 0 0.75 1.00
awn through arallelism is oposing ends End 1: End 2: End 1:	n points and a vi Flatness Toler. Flatness Toler. The second sec	isual best fit lin ance Met? Diameter 1 it Line: it Line: it Line: it Line: fference: Diameter 2 it Line: it Line: it Line:	e is ≤ 0.001 in. e between be 0.00000 0.00000 0.00000 0.00000 0.00000 0.00004 -0.00229	YES	Perpendic max and n ≤ 0.0043.	0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0030 -0.0040 0.0030 0.0040 0.0030 0.0020 0.0010 -0.0020 -0.0040 0.0020 -0.0040 -0.0010 -0.0010 -0.0010 -0.0020 -0.0040 -0.0010 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0020 -0.0020 -0.0020 -0.0040 -0.0020	End 2 Diameter 1	0.00 0.25 0.50 ter (in) y = -0.000 vier (in) vier (in) vier (in) vier (in) vier (in) vier by the different ivided by the di Divide by Diameter 0.0000	0 0.75 1.00 0 0.75 1.00
awn through arallelism is oposing ends End 1: End 2:	The points and a vision points and a vision points and a vision of a vision of the price of the	isual best fit lin ance Met? Diameter 1 it Line: it Line:	e is ≤ 0.001 in. :e between be 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00004 -0.000229 -0.00062	YES	Perpendic max and n ≤ 0.0043. End 1 End 1	0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0030 -0.0040 0.0030 0.0040 0.0030 0.0020 0.0010 -0.0010 -0.0010 -0.0010 -0.0020 -1.0020	End 2 Diameter 1	• • • • • • 0.00 0.25 0.50 ter (in) y = -0.000 • • • • • • 0.00 0.25 0.50 ter (in) vhen the difference ivided by the di Divide by n Diameter 0.0000 0.0001	0 0.75 1.00 0 0.75 1.00
awn through posing ends End 1: End 2: End 1:	The points and a vision points and a vision points and a vision of a vision of the provided at the provided a	ance Met? ance Met? Diameter 1 it Line: it Line:	e is ≤ 0.001 in. e between be 0.00000 0.00000 0.00000 0.00000 0.00000 0.00004 -0.00229	YES	End ¹ End ¹ End ¹	0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0030 -0.0040 0.0030 0.0040 0.0030 0.0020 0.0010 -0.0020 -0.0040 0.0020 -0.0040 -0.0010 -0.0010 -0.0010 -0.0020 -0.0040 -0.0010 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0020 -0.0040 -0.0020 -0.0040 -0.0020 -0.0020 -0.0020 -0.0020 -0.0040 -0.0020	End 2 Diameter 1	0.00 0.25 0.50 ter (in) y = -0.000 vier (in) vier (in) vier (in) vier (in) vier (in) vier by the different ivided by the di Divide by Diameter 0.0000	0 0.75 1.00 0 0.75 1.00
arallelism is oposing ends End 1: End 2: End 1:	The points and a vision points and a vision points and a vision of a vision of the price of the	ance Met? ance Met? Diameter 1 it Line: it Line:	e is ≤ 0.001 in. = between be 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00002 -0.00022 -0.00062 -0.03552	YES	End ¹ End ¹ End ¹	0.0030 0.0020 0.0010 0.0000 -0.0020 -0.0030 -0.0040 0.0030 0.0040 0.0030 0.0020 0.0010 -0.0020 -1.0020	End 2 Diameter 1	• • • • • • 0.00 0.25 0.50 ter (in) y = -0.000 • • • • • • 0.00 0.25 0.50 ter (in) vhen the differe ivided by the di Divide by n Diameter 0.0000 0.0001 0.0000	0 0.75 1.00 0 0.75 1.00

roject:	Dupont WTP			side Road, Lo			Date:	4/3/2019	
roject: roject No.:	1281-18-062			Length (in):			Tested by:	4/3/2019 VLI	
oring Id:	B-503		Uni	t Weight (pcf):			Reviewed by:		
ample No.:	RC			e Content (%):			neviewed by:	BIN	
epth (ft):	37.35 - 37.40								
,									
	n Straightness (• •							
the maximun	n gap ≤ 0.02 in.?	YES		Straightness To	lerance Me	et?		YES	_
nd Elatness	and Parallelism								
Position	End 1	End 1(90)	End 2	End 2(90)			End 1 Diameter 1		y = 0.0000
- 7/8	0.0000	0.0011	0.0009	0.0033	þ	0.0040	End i Diameter i		
- 6/8	0.0000	0.0008	0.0009	0.0026	Gage Reading (in)	0.0020 + 0.0010 +			
- 5/8	0.0000	0.0004	0.0009	0.0025	e Re	0.0000 +	• • • • • • • • • • • • • • • • • • •	• • • • •	• • •
- 4/8	0.0000	0.0003	0.0004	0.0018	(ir age	-0.0020 +			
- 3/8	0.0000	0.0002	0.0002	0.0009	0	-0.0030 -0.0040	1 1 1	1 1 1	
- 2/8	0.0000	0.0000	0.0002	0.0002	Dial	-1.0	00 -0.75 -0.50 -0.25	0.00 0.25 0.50	0 0.75 1.00
- 1/8	0.0000	0.0000	0.0000	0.0001			Diame	ter (in)	
0	0.0000	0.0000	0.0000	0.0000					
1/8	0.0000	0.0000	0.0000	0.0000			End 1 Diameter 2	y = -0.001	0x - 0.0000
2/8	0.0000	0.0000	0.0000	-0.0002	D	0.0040 0.0030 			
3/8	0.0000	0.0000	0.0000	-0.0011	l Gage Reading (in)	0.0020 +	•		
4/8	0.0000	-0.0004	-0.0006	-0.0015) Re	0.0010 + 0.0000 +		+ + + + +	
5/8	0.0000	-0.0006	-0.0006	-0.0025	in (in	-0.0010 -0.0020 -0.0030			
6/8	0.0000	-0.0010	-0.0006	-0.0033	Ö	-0.0030 +			
7/8	0.0000	-0.0010	-0.0012	-0.0040	Dial	-1.0	0 -0.75 -0.50 -0.25	0.00 0.25 0.50	0.75 1.00
	et when the diffe n points and a vi	••		smooth curve	ading	0.0040 0.0030 0.0020 0.0010	End 2 Diameter 1	y = -0.00	10x + 0.0000
		isual best fit lin		smooth curve YES	Dial Gage Reading (in)	0.0030 0.0020 0.0010 0.0000 -0.0010 -0.0020 -0.0030 -0.0040	0 -0.75 -0.50 -0.25	0.00 0.25 0.50	
awn through	n points and a vi Flatness Toler met when the an	isual best fit lin rance Met? ngular differenc	e is ≤ 0.001 in.	YES	Dial Gage Reading (in) (in)	0.0030 0.0020 0.0010 -0.0010 -0.0020 -0.0020 -0.0020 -0.0040 -1.0 0.0020 0.0020 0.0020 0.0020 0.0020 0.0010 0.0020 0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0010 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020	• • • • • • • • • • • • • • • • • • •	0.00 0.25 0.50 ter (in) y = -0.00	0 0.75 1.00 38x - 0.0001
rawn through	n points and a vi Flatness Toler met when the an s is ≤ 0.25°.	isual best fit lin ance Met? ngular differenc	e is ≤ 0.001 in. :e between bes	YES	Gage Reading (in)	0.0030 0.0020 0.0010 -0.0010 -0.0020 -0.0020 -0.0020 -0.0040 -1.0 0.0020 0.0020 0.0020 0.0020 0.0020 0.0010 0.0020 0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0010 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020	00 -0.75 -0.50 -0.25 Diamet End 2 Diameter 2	0.00 0.25 0.50 ter (in) y = -0.00 0.00 0.25 0.50	0 0.75 1.00 38x - 0.0001
awn through arallelism is oposing ends	n points and a vi Flatness Toler met when the an s is ≤ 0.25°. Parrallelism	isual best fit lin ance Met? ngular difference Diameter 1 it Line:	e is ≤ 0.001 in.	YES	Gage Reading (in)	0.0030 0.0020 0.0010 -0.0010 -0.0020 -0.0020 -0.0020 -0.0040 -1.0 0.0020 0.0020 0.0020 0.0020 0.0020 0.0010 0.0020 0.0010 -0.0010 -0.0010 -0.0010 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0010 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020 -0.0010 -0.0020	00 -0.75 -0.50 -0.25 Diameter 2 00 -0.75 -0.50 -0.25	0.00 0.25 0.50 ter (in) y = -0.00 0.00 0.25 0.50	0 0.75 1.00 38x - 0.0001
awn through arallelism is oposing ends	n points and a vi Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F	isual best fit lin ance Met? ngular difference Diameter 1 Tit Line: Tit Line:	e is ≤ 0.001 in. :e between bes 0.00000	YES	Dial Gage Reading (in)	0.0030 0.0010 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 -0.0040 -1.0 0.0020 0.0010 0.0020 -0.0030 0.0010 0.0010 -0.0020 -0.0030 -0.0030 -0.0020 -0.0030 -0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.0 -0.0020 -0.0020 -0.0020 -0.0020 -1.0 -0.0020 -0.0020 -0.0020 -1.0 -0.0020 -0.0020 -0.0020 -1.0 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.0 -0.0020 -0	00 -0.75 -0.50 -0.25 Diameter 2 00 -0.75 -0.50 -0.25	0.00 0.25 0.50 ter (in) y = -0.00 0.00 0.25 0.50 ter (in)	0 0.75 1.00 38x - 0.0001
awn through arallelism is oposing end End 1:	n points and a vi Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F	isual best fit lin ance Met? ngular difference Diameter 1 Fit Line: Fit Line: Fit Line:	e is ≤ 0.001 in. ce between bes 0.00000 0.00000	YES	Dial Gage Reading (in)	0.0030 0.0010 0.0010 -0.0010 -0.0020 -0.0030 -0.0030 -1.0 0.0040 0.0030 0.0020 0.0010 0.0020 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.0 -0.0020 -0.0020 -0.0020 -0.0030 -1.0 -0.0020 -0.0020 -0.0030 -1.0 -0.0020 -0.0030 -0.0030 -1.0 -0.0020 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0020 -0.0030 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0040 -0.0030 -0.0030 -0.0040 -0.0030 -0.0040 -0.0040 -0.0020 -0.0040	00 -0.75 -0.50 -0.25 Diameter 2 00 -0.75 -0.50 -0.25 Diameter 2 00 -0.75 -0.50 -0.25 Diameter 2	0.00 0.25 0.50 ter (in) y = -0.00 0.00 0.25 0.50 ter (in) vhen the difference	0 0.75 1.00 38x - 0.0001 0 0.75 1.00 ence betweer
awn through arallelism is oposing end End 1:	n points and a vi Flatness Toler met when the ai s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F	isual best fit lin ance Met? ngular difference Diameter 1 fit Line: fit Line: fit Line: fit Line:	e is ≤ 0.001 in.	YES	Dial Gage Reading (in)	0.0030 0.0010 0.0010 -0.0010 -0.0020 -0.0030 -0.0030 -1.0 0.0040 0.0030 0.0020 0.0010 0.0020 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.0 -0.0020 -0.0020 -0.0020 -0.0030 -1.0 -0.0020 -0.0020 -0.0030 -1.0 -0.0020 -0.0030 -0.0030 -1.0 -0.0020 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0020 -0.0030 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0040 -0.0030 -0.0030 -0.0040 -0.0030 -0.0040 -0.0040 -0.0020 -0.0040	00 -0.75 -0.50 -0.25 Diameter 2 00 -0.75 -0.50 -0.25 Diameter 2 00 -0.75 -0.50 -0.25 Diameter 2	0.00 0.25 0.50 ter (in) y = -0.00 0.00 0.25 0.50 ter (in) vhen the difference	0 0.75 1.00 38x - 0.0001 0 0.75 1.00 ence betweer
awn through arallelism is oposing end End 1:	n points and a vi Flatness Toler Met when the an s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F Angle of Best F Angle of Best F	isual best fit lin ance Met? ngular difference Diameter 1 Tit Line: Tit Line: Tit Line: Tit Line: Tit Line:	e is ≤ 0.001 in.	YES	Dial Cage Reading (in) (in)	0.0030 0.0010 0.0010 -0.0010 -0.0020 -0.0030 -0.0030 -1.0 0.0040 0.0030 0.0020 0.0010 0.0020 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.0 -0.0020 -0.0020 -0.0020 -0.0030 -1.0 -0.0020 -0.0020 -0.0030 -1.0 -0.0020 -0.0030 -0.0030 -1.0 -0.0020 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0020 -0.0030 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0040 -0.0030 -0.0030 -0.0040 -0.0030 -0.0040 -0.0040 -0.0020 -0.0040	00 -0.75 -0.50 -0.25 Diameter 2 00 -0.75 -0.50 -0.25 Diameter 2 00 -0.75 -0.50 -0.25 Diameter 2	0.00 0.25 0.50 ter (in) y = -0.00 0.00 0.25 0.50 ter (in) vhen the difference	0 0.75 1.00 38x - 0.0001 0 0.75 1.00 ence betweer
arallelism is pposing end: End 1:	n points and a vi Flatness Toler Flatness Toler met when the at s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F Angle of Best F Angle of Best F Max Angular Di	isual best fit lin rance Met? ngular difference Diameter 1 fit Line: fit Line: fit Line: fit Line: fit Line: fit Line: fit Line: fit Line: fit Line:	e is ≤ 0.001 in.	YES	Dial Cage Reading (in) (in)	0.0030 0.0010 0.0010 -0.0010 -0.0020 -0.0030 -0.0030 -1.0 0.0040 0.0030 0.0020 0.0010 0.0020 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0010 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.0 -0.0020 -0.0020 -0.0020 -0.0030 -1.0 -0.0020 -0.0020 -0.0030 -1.0 -0.0020 -0.0030 -0.0030 -1.0 -0.0020 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0020 -0.0030 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0020 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0040 -0.0030 -0.0030 -0.0040 -0.0030 -0.0040 -0.0040 -0.0020 -0.0040	0 -0.75 -0.50 -0.25 Diameter 2 Diameter 2 Di	0.00 0.25 0.50 ter (in) y = -0.00 0.00 0.25 0.50 ter (in) vhen the differe ivided by the di Divide by	0 0.75 1.00 38x - 0.0001 38x - 0.0001 0 0.75 1.00 ence betweer iameter is Meets
awn through arallelism is oposing end: End 1: End 2:	n points and a vi Flatness Toler Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F	isual best fit lin rance Met? ngular difference Diameter 1 Tit Line: Tit Line: Tit Line: Tit Line: Tit Line: Tit Line: Tit Line: Tit Line: Tit Line: Tit Line:	e is ≤ 0.001 in. = between bes 0.00000 0.00000 -0.00103 -0.05926 0.06	YES	Dial Cage Reading Dial Cage Reading (in) 2 (in) 2 (in)	0.0030 0.0010 0.0010 -0.0010 -0.0020 -0.0030 -0.0030 -1.0 0.0040 0.0030 0.0020 0.0010 0.0020 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0030 -0.0030 -0.0030 -0.0030 -0.0020 -0.0030 -0.0030 -0.0020 -0.0020 -0.0030 -1.0 -0.0010 -0.0020 -0.0030 -0.0030 -1.0 -0.0020 -0.0030 -0.0030 -1.0 -0.0020 -0.0030 -0.0030 -1.0 -0.0020 -0.0030	End 2 Diameter 2 0 -0.75 -0.50 -0.25 Diameter 2 0 -0.75 -0.50 -0.25 Diameter Difference	0.00 0.25 0.50 ter (in) y = -0.00 0.00 0.25 0.50 ter (in) vhen the differe ivided by the di Divide by	0 0.75 1.00 38x - 0.0001 38x - 0.0001 0 0.75 1.00 ence betweer iameter is Meets
arallelism is pposing end: End 1: End 2:	n points and a vi Flatness Toler Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Slope of Best F Angle of Best F Max Angular Di Parrallelism	isual best fit lin ance Met? ngular difference Diameter 1 Tit Line: Tit Line:	e is ≤ 0.001 in. = between bes 0.00000 0.00000 -0.00103 -0.05926 0.06 -0.00097	YES	Dial Cage Berpendic max and r ≤ 0.0043. End	0.0030 0.0010 0.0010 -0.0010 -0.0020 -0.0030 -0.0030 -0.0040 -0.0040 -0.0030 -1.0 0.0010 0.0020 -0.0030 -0.0030 -0.0020 -0.0030 -0.0030 -0.0030 -0.0040 -0.0020 -0.0030 -0.0030 -0.0040 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -0.0020 -1.0 -0.0020 -0.0020 -0.0020 -0.0030 -0.0020 -0.0020 -0.0030 -1.0 -0.0020 -0.0020 -0.0030 -0.0020 -0.0020 -0.0030 -0.0020 -0.0020 -0.0030 -0.0020 -0.0020 -0.0020 -0.0030 -0.0020 -0.0030 -1.0 -1.0	0 -0.75 -0.50 -0.25 Diameter 2 Diameter 2 Difference b/w max & mir	0.00 0.25 0.50 ter (in) y = -0.00 0.00 0.25 0.50 ter (in) vhen the difference ivided by the di Divide by Divide by Diameter	0 0.75 1.00 38x - 0.0001 38x - 0.0001 0 0.75 1.00 ence between iameter is Meets Tolerance
arallelism is oposing end: End 1: End 2: End 1:	met when the air Flatness Toler Flatness Toler met when the air s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F Angle of Best F Max Di Best F Slope of Best F	isual best fit lin ance Met? ngular difference Diameter 1 Fit Line: Fit Line:	e is ≤ 0.001 in. ce between bes 0.00000 0.00000 -0.00103 -0.05926 0.06 -0.00097 -0.05550	YES	Perpendic max and r ≤ 0.0043. End End	0.0030 0.0010 0.0010 -0.0010 -0.0020 -0.0030 -0.0040 -0.0040 -0.0040 -0.0030 -1.0 0.0020 0.0010 0.0020 -0.0020 -0.0030 -0.0040 -0.0020 -0.0030 -0.0040 -0.0020 -0.0030 -0.0040 -0.0040 -0.0020 -1.	00 -0.75 -0.50 -0.25 Diameter 2 00 -0.75 -0.50 -0.25 Diameter 2 00 -0.75 -0.50 -0.25 Diameter pocedure P1) is met w gs along each line di Difference b/w max & mir 0.0000	0.00 0.25 0.50 ter (in) y = -0.00 0.00 0.25 0.50 ter (in) vhen the difference ivided by the di Divide by Diameter 0.0000 0.0011	0 0.75 1.00 38x - 0.0001 38x - 0.0001 0 0.75 1.00 ence betweer iameter is Meets Tolerance YES
arallelism is oposing end: End 1: End 2: End 1:	n points and a vi Flatness Toler Flatness Toler met when the ar s is ≤ 0.25°. Parrallelism Slope of Best F Angle of Best F Angle of Best F Max Angular Di Parrallelism Slope of Best F Angle of Best F Angle of Best F Angle of Best F	isual best fit lin ance Met? ngular difference Diameter 1 Fit Line: Fit Line:	e is ≤ 0.001 in. ce between bes 0.00000 0.00000 -0.00103 -0.05926 0.06 -0.00097 -0.05550 -0.00376	YES	End End End End End End	0.0030 0.0010 0.0010 -0.0010 -0.0020 -0.0020 -0.0040 -0.0040 -0.0040 -0.0040 -0.0020 -1.0	00 -0.75 -0.50 -0.25 Diameter 2 00 -0.75 -0.50 -0.25 Diameter 2 00 -0.75 -0.50 -0.25 Diameter 2 00 -0.75 -0.50 -0.25 Diameter 2 Difference b/w max & mir 0.0000 0.0021	0.00 0.25 0.50 ter (in) y = -0.00 0.00 0.25 0.50 ter (in) vhen the difference ivided by the di Divide by Diameter 0.0000	0 0.75 1.00 38x - 0.0001 38x - 0.0001 38x - 0.0001 0 0.75 1.00 ence betweer iameter is Meets Tolerance YES YES YES

		Photographer: Ben Painter
	Location / Orientation	B-501 (36.25' – 36.60')
1	Remarks	Unconfined Compressive Strength of Rock Core Specimen Before/After (ASTM D7012 Method C)


		Photographer: Ben Painter
	Location / Orientation	B-502 (31.85' – 32.20')
3	Remarks	Unconfined Compressive Strength of Rock Core Specimen Before/After (ASTM D7012 Method C)

		Date: 4/4/2019
		Photographer: Ben Painter
5	Location / Orientation	B-503 (37.35' – 37.70')
	Remarks	Unconfined Compressive Strength of Rock Core Specimen Before/After (ASTM D7012 Method C)

This page intentionally left blank.

