ADDENDUM NUMBER TWO

DUPONT PUMP STATION AND BASIN IMPROVEMENTS – PHASE 2 W-12-026-202

CITY OF CHATTANOOGA, TENNESSEE

The following changes shall be made to the Contract Documents, Specifications, and Drawings:

I. CONTRACT DOCUMENT

- Inclusion of Perry Fiberglass Products as an approved vendor for the FRP ductwork and odor control systems was requested. This inclusion has been disallowed by the Engineer.
- Inclusion of ECS Environmental Solutions as an approved vendor for the odor control systems was requested. This inclusion is acceptable.
- On Drawing ED-1, Detail A, delete note 1.
- The grounding ring shown on Drawing E-13 shall remain but shall not be connected to the tank as shown.
- The attached Section 00 45 47 is added to the specifications.
- Paragraph 2.11 of Section 40 05 50 shall be replaced with the following:

2.11 BACKFLOW PREVENTERS

- A. The backflow preventer shall operate on the reduced pressure principle to safeguard potable water supplies against the hazards of cross-connection. The device shall have ductile iron body (ASTM A536) or heavy-duty steel, OS&Y resilient wedge gate valves meeting AWWA C509 specifications, stainless steel spring and flanged end connections. The assembly shall be designed for the same working pressure as the pipeline to which it connects or 175 psi, whichever is greater. All components of the device shall be furnished by a single manufacturer. The device shall be by FEBCO, AMES Fire and Waterworks, Hersey, Cla-Val, Watts, or equal which operates on the reduced pressure principle. Devices classified as double-check type units are not acceptable. All above ground components of the assembly shall be covered by a heated, insulated enclosure as described below.
- B. Upon installation and prior to putting the line in service, the unit shall be tested by a registered tester and the results approved by the Owner.
- C. All above-ground backflow prevention assemblies shall be covered by an insulated pre-fabricated enclosure. The enclosure shall provide minimum 6.5R factor insulation. Enclosure shall be provided with an internal heater to be powered by a 208-volt, 3-phase supply. Enclosure shall be prefabricated fiberglass or aluminum as manufactured by Hot Box Enclosures or equal.

II. Q&A/COMMENTS

- Note: Duplicate questions were provided by several potential bidders. While wording varied slightly, duplicates have been removed.
 - 1. A copy of the sign-in sheet from the Pre-Bid meeting on May 18, 2017 is attached.
 - 2. A copy of the rendering presented at the Pre-Bid meeting is attached.
 - 3. The following specification was missing from the table of contents: 26 36 23 Electrical Automatic Transfer Switches.

Response: This was an error on the Table of Contents. This specification does not apply to this project.

4. Is there any cathodic protection for the storage tank for this project?

Response: No.

- 5. Can you provide us with a copy of any subsurface investigation report(s) and any drawings of the existing facilities that may be available?
 - Response: The Geotechnical Engineering Report prepared by Terracon is attached. Contractors may rely on the data presented in this report. However, reliance on any interpretations of such data, including those interpretations made by Terracon, are at the Contractor's sole risk.

Any available drawings for the existing facilities will be made available to the successful bidder.

6. An Iran Divestment Act Compliance Certification is required to be submitted with the Bid according to Sections 00 21 13 Article 15.01.G and 00 41 00 Article 7.01D. We have not been able to locate a form for such certification within the Bid Documents. Can you provide us with this form?

Response: See attached Section 00 45 47.

7. The Davis Bacon wage determination document included with Section 00 80 00 Employment Requirements is not the most current for Decision TN146. Can you provide the bidders with the most current wage determination?

Response: The latest wage rates are attached.

 Refer to Drawing ED-1, Detail A for Underground Ductbank. Note 1 indicates that the ductbank is pile supported and references Drawing SZ-10, which is not included with the Bid Documents. Please provide specifications and details for piles required for support of ductbank.

Response: See Contract Document change above.

- 9. Section 01 22 00 Measurement and Payment mentions unit price work for several items: conflicts with utilities (1.05.A); trench stabilization (1.05.G); concrete encasement (1.05.N); and manholes (1.06.A). These unit prices are not included on the Bid Form. Please clarify how the above work will be paid for.
 - Response: Unit price work is not applicable to this project, and related portions of Section 01 22 00 do not apply. The lump sum bid item is to be inclusive of all materials, equipment, and labor to construct the project as shown in the design documents.

May 19, 2017

Justin C Holland, Administrator City of Chattanooga

DuPont Phase 2 - Pre-Bid Meeting Sign-In Sheet

18-May-17 MBWWTP - Training Center

Name	Company	E-mail	
MIKE POWERS	CROWDER CONSTR. CU	MPOWERS CROWDERUSA. COM	1
Chris Stampfli	Triad Electric	estamptic tried-elec.com	
JAMES YOUNY,	HCCI	COSBORNE @ HAREN (ONSTRUCTION	on.co
WES GASKINS	HCCI	"	
MARK TROENLER	Callon p.S	M TROCHLER CANDE PUMPS, COM	
Scott Heard	Global Pump	Scott, He Ard a 640bal Rump. C.	om
Chad Freund	Xylen/Godwin Pumps	chad. Freund @xyleninc.Com	
ANDERN JERONÉ	J. CUMBY CONSTRUCTION	ASEROME @ JOUMBY CONSTRUCTION. C	on
BEN WILLIAMS	JUDY CONST COMPANY	builliams@judyconstructionco.com	
Marcy Cole	Southeast Th Dev.	mcole@sedev.org	
William Combs	P.F. Moon	dcombs@ptmoon.com	
Kevin Conkey	Reynolds Construction	A Kevin.conkey@.reynoldscon.com	
RANON TATLOR	Chattoworga	retaylovechetmuga.gov.	
Talmadge Mincay	crom	Home cromcorp.com	
Todd Thomasson	TRI STATE ELECTRIC	TODOTO TRISTOTEEC. COM	
Robbie Bearden	Tri State Electrical	Robbieb@ tristateec.com	1
Jesse Sutphin	John Bouchard sons	Jesse Sutphinal Bouchard.	om
ERIC BROOKS	CITY	EBROOKS @ CHAWANOOCA. COV	
DENNIS MALONE	NPW-ENC	Imalone C chuttanooya.god	
BONNIE DODSON	PW-ENG	BMUMPOWERQ CHATTLUDGA. COL	/
MIKE PATRICK	CITY		
Chris Palmar	Jacobs	Chris. palmer Q jacobs.com	
Debbie IGILey	City	altalley & chattinesof. 900	
Andrew Romanet	CD4 Smith	romanekap@ cdm smith.com	
а.			

DuPont Pumping Station and Tank Chattanooga, Hamilton County, Tennessee

October 17, 2016 Terracon Project No. E2165009

Prepared for: CDM Smith Chattanooga, Tennessee

Prepared by: Terracon Consultants, Inc. Chattanooga, Tennessee

October 17, 2016

CDM Smith 651 East 4th Street, Suite 100 Chattanooga, Tennessee 37403

- Attn: Mr. Andrew Romanek, P.E. P: [423] 771 4495 M: [404] 374 8728 E: romanekap@cdmsmith.com
- Re: Geotechnical Engineering Report DuPont Pumping Station and Tank 1615 Memphis Drive Chattanooga, Tennessee Terracon Project No. E2165009

Mr. Romanek:

Terracon Consultants, Inc. (Terracon) has completed the geotechnical engineering services for the above referenced project. This study was performed in general accordance with our proposal number PE2165009R2, dated September 25, 2016. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of foundations for the proposed tank and other equipment planned at the site.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely, Terracon Consultants, Inc.

George Malouf, P.E. Project Geotechnical Engineer Tennessee P.E. No. 118439

Enclosures cc: 1 – Client (PDF) 1 – File Derek L. Hodnett, P.E., P.G. Chattanooga Office Manager Tennessee P.E. No. 23205

Terracon Consultants, Inc. 51 Lost Mound Drive, Suite 135 Chattanooga, TN 37406 P [423] 499 6111 F [423] 499 8099 terracon.com

TABLE OF CONTENTS

				Page
EXE	CUTIVE	SUMMA	ARY	اا
1.0				1
2.0			TRMATION	۲۲
	2.1	Site	Description	۱۲
20				 د
3.0	2 1			∠ າ
	3.1 2.2	Geolog	yy	 د
	3.Z	Croup	ductor	 ۱
4 0	ა.ა BECOM			4 5
4.0		Gooto	chnical Considerations	5
	4.1	Geole		
	4.2		Site Propagation	0
		4.2.1	Sile Fleparation	0 6
		4.2.2	Fill Placement and Compaction Poquirements	0
		4.2.3	I till Flacement and Compaction Requirements	7
		4.2.4	Grading and Drainage	،۲ ع
		4.2.5	Construction Considerations	0o
	13	4.2.0 Found		٥٥
	4.5		Shallow Equindation Design Recommendations	9
		4.3.1	Doop Foundation Design Recommondations	
	1 1	Floor 9	Slabe	10
	4.4		Elaar Slab Design Recommendations	12
		4.4.1	Floor Slab Construction Considerations	12
	4 5	4.4.2 Soicm	ic Considerations	12
	4.5	Latora	I Farth Proceurae	13 12
50	4.0		MMENTS	۲۵ ۲۵
J.U	OLINER			

TABLE OF CONTENTS (continued)

APPENDIX A – FIELD EXPLORATION

Exhibit A-1	Site Location Map
Exhibit A-2	Exploration Plan
Exhibit A-3	Field Exploration Description
Exhibit A-3	Subsurface Profile
Exhibits A-5 to A-19	Soil Boring Logs
Exhibits A-20 to A-21	Shear Wave Velocity Profiles

APPENDIX B – SUPPORTING INFORMATION

Exhibit B-1	Laboratory Testing
Exhibits B-2 to B-3	Grain Size Distribution
Exhibit B-4	Unconfined Compression Testing
Exhibits B-5 to B-6	Consolidation Test Report

APPENDIX C – SUPPORTING DOCUMENTS

Exhibit C-1	General Notes
Exhibit C-2	Unified Soil Classification System
Exhibit C-3	Description of Rock Properties

DuPont Pumping Station and Tank
Chattanooga, Tennessee
October 17, 2016
Terracon Project No. E2165009

EXECUTIVE SUMMARY

A geotechnical exploration has been performed for the proposed DuPont Pumping Station and Tank to be located near 1615 Memphis Drive in Chattanooga, Hamilton County, Tennessee. This report addresses foundation recommendations for the proposed tank and other equipment, along general earthwork recommendations applicable to the project.

Based on the information obtained from our exploration, the following geotechnical considerations were identified:

- Soil borings generally encountered relatively stiff soil in the upper 20 to 40 feet of the soil column; however, zones of relatively soft soil were encountered beneath these depths in the majority of the borings. The results of rock coring in the proposed storage tank area indicated the presence of pinnacled bedrock. The bedrock surface was found to be irregular and sloping in localized areas at depths of about 50 to 80 feet below existing grade.
- In our opinion, the proposed wet weather pump station and other proposed equipment to be located in the northern portion of the site may be supported on shallow foundation systems bearing on the stiff native soil encountered. Equipment pits varying in depth from 10 to 24 feet below final grade will be constructed in this area. Based on groundwater readings at the site, a need for dewatering should be anticipated during excavation and pit construction.
- Based on the subsurface conditions, anticipated loading, and settlement tolerances, we recommend supporting the proposed storage tank on deep foundations bearing in the underlying bedrock. This report provides design recommendations for steel H-Piles and closed-end pipe piles filled with concrete. Other systems, such as drilled piers and micropiles, were also considered. Based on the subsurface conditions, the contractor should anticipate hard driving conditions prior to refusal. We recommend the use of driving points to reduce damage to the pile.
- Various pile sections are provided in Section 4.3.2 of this report as options. Once a pile type, hammer, and design capacity are selected, Terracon should be retained to develop refusal criteria and to observe installation. Based on the varying subsurface conditions encountered at the site, we recommend performing two pile load tests in the field to insure actual capacities are in line with the design capacities.
- According to the 2012 International Building Code, the seismic classification at this site is Site Class C.

This summary should be used in conjunction with the entire report for design purposes. It should be recognized that details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled **GENERAL COMMENTS** should be read for an understanding of the report limitations.

GEOTECHNICAL ENGINEERING REPORT DUPONT PUMPING STATION AND TANK 1615 MEMPHIS DRIVE CHATTANOOGA, HAMILTON COUNTY, TENNESSEE Terracon Project No. E2165009 October 17, 2016

1.0 INTRODUCTION

This geotechnical engineering report has been completed for the proposed DuPont Pumping Station and Tank to be located near 1615 Memphis Drive in Chattanooga, Hamilton County, Tennessee. For the purposes of this investigation, 15 soil borings were drilled at the site to depths ranging from approximately 30 to 84½ feet below the existing ground surface (bgs). Rock cores were obtained in seven of the borings. Logs of the borings along with a Site Location Map (Exhibit A-1) and Exploration Plan (Exhibit A-2) are included in Appendix A of this report.

The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- subsurface soil and rock conditions
- groundwater conditions
- earthwork

- lateral earth pressures
- seismic considerations
- foundation design and construction

2.0 **PROJECT INFORMATION**

2.1 **Project Description**

Item	Description
Site layout	See Appendix A, Exhibit A-2: Exploration Plan.
	The project will include a circular, prestressed concrete, 7.5 MG water storage tank, approximately 210 feet in diameter and about 30 feet high.
Structure	A 5 MGD wet-weather pumping station (upgradable to 8.25 MGD), roughly 80 feet by 80 feet in plan dimensions will also be constructed. The pumping station will include a wet-well, electrical room, pumps, and other equipment. The building will be a split-faced CMU with pitched metal roof.
Finished floor elevation	661 feet above MSL, per Site Layout and Grading Plan, Sheet C-3, dated April. 2016.

DuPont Pumping Station and Tank
Chattanooga, Tennessee
October 17, 2016
Terracon Project No. E2165009

ltem	Description		
	Water Storage Tank: 2,000 psf (assumed)		
Maximum loads	Pumping Station: 50 kips per column, 3 kips per linear foot for structural wall loads (assumed)		
Grading	Based on the Site Layout and Grading Plan, Sheet C-3, dated April, 2016, approximately 3 to 8 feet of new fill will be required to bring the tank area to final grade.		
Cut and fill slopes	No steeper than 3H:1V		
	Structure:	Interior Depth (ft):	
	Wet Weather Pump Station	24	
	Flow Splitter Box	21	
Below grade areas	Diversion Structure	21	
	Valve Vault	~10	
	Flow Return Meter Vault	~10	

2.2 Site Location and Description

Item	Description
Location	This project is located near 1615 Memphis Drive in Chattanooga, Hamilton County, Tennessee. The proposed tank will be located southwest of the existing pumping station.
Existing improvements	Existing pumping station located in the northeast portion of the site. The proposed tank area is undeveloped.
Current ground cover	Heavily wooded
Existing topography	Based on provided topographic drawings, the site slopes gently downwards from northeast to southwest, from approximately 660 to 650 feet above MSL.

3.0 SUBSURFACE CONDITIONS

3.1 Geology

The project site is located within the Valley and Ridge Physiographic Province, which is comprised of sedimentary sequences that were deposited during the Paleozoic Era. According to the geologic mapping of the area, the project site is underlain by the Ordovician-aged Knox Group, which includes the Newala, Kingsport, Mascot Dolomite, Longview Dolomite, and Chepultepec Dolomite Formations. This geology consists of cherty dolomite and limestone and often displays erosional unconformity.

It should be noted that the site is underlain by a carbonate formation, which may be susceptible to dissolution along joints and bedding planes in the rock mass. This results in voids and solution channels within the rock strata and a highly irregular bedrock surface. The weathering of the bedrock and subsequent collapse or erosion of the overburden into these openings results in what is referred to as karst topography, if there is an abundance of voids and solution channels. Any construction in karst topography is accompanied by some degree of risk for future internal soil erosion and ground subsidence that could affect the stability of the proposed structure.

3.2 Typical Profile

For the purposes of this study, 11 soil borings, designated Borings B-1 through B-11, were drilled within the proposed tank and pump station areas. Supplemental exploration to further characterize the underlying bedrock at the site, additional borings B-4a, B-5a, B-6a, and B-9a were drilled and cored after preliminary evaluation of the initial exploration and laboratory results. Approximate locations of the borings can be seen on the attached Exploration Plan, Exhibit A-2.

Soil Borings B-1, B-2, and B-3 were drilled at the location of the wet weather pump station, flow splitter box, and diversion structure, respectively. The borings generally encountered a mixture of stiff to very stiff fat clays and medium dense to dense clayey sand with gravel (angular rock fragments) to the boring termination depths of 35 to 50 feet below the ground surface. Medium stiff fat clay was encountered near a depth of 50 feet in Boring B-1 and in the upper 3 feet in Boring B-2.

Borings B-4 through B-11, B-4a, B-5a, B-6a, and B-9a were located in the vicinity of the proposed storage tank. The borings generally encountered stiff to very stiff fat clay with varying angular rock content in the upper 20 to 40 feet of the soil column. However, zones of soft to medium stiff soil were encountered at depth in 11 of the 12 borings drilled in the area of the proposed storage tank, with Standard Penetration Test (SPT) N-values as low as zero to two blows per foot at some locations. The soft to medium stiff zones varied in thickness from 5 feet to as thick as 40 feet in Boring B-7. The following table displays the auger refusal depths of the tank-area borings.

Location	Auger Refusal Depth, feet	Location	Auger Refusal Depth, feet
B-4	>30*	B-7	67.3
B-4a	56.8	B-8	30.4
B-5	>30*	B-9	>30*
B-5a	63.0	B-9a	40.5
B-6	>30*	B-10	30.4
B-6a	59.1	B-11	54.8
* Borings terminated prior to auger refusal			

Rock coring was performed in Borings B-4a, B-5a, B-6a, B-7, B-9a, B-10, and B-11 beneath the depth of auger refusal. The rock cores predominately encountered limestone interbedded with dolomite and clay seams. Rock recovery and Rock Quality Designation (RQD) were observed to be variable. In four of the seven locations cored, little to no rock was recovered in zones varying in thickness from 5 to 20 feet, indicative of clay seams and pinnacled bedrock. Coring was terminated in Boring B-6a and B-9a at depths of 84.3 and 67.5 feet, respectively, due to the core barrel angling off too severely on pinnacled rock. Higher rock recovery was observed in the remaining core locations.

Specific conditions encountered at each boring location are indicated on the individual boring logs. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in situ, the transition between materials may be gradual. Details for each of the borings can be found on the boring logs in Appendix A.

3.3 Groundwater

Location	Depth to Water, feet
B-1	44
B-4	24
B-4a	39
B-5a	48
B-6a	321/2
B-11	25

Groundwater was encountered at the following locations and depths during drilling:

Additionally, temporary monitoring wells were installed at Boring Locations B-1 and B-2. In April, 2016, water levels of approximately 18 feet and 13¹/₂ feet below existing grade were recorded in Borings B-1 and B-2, respectively.

Groundwater was not evident in the remaining boreholes during drilling operations; however, this does not necessarily mean these borings terminated above groundwater. Due to the low permeability of the soils encountered in the borings, a relatively long period of time may be necessary for a groundwater level to develop and stabilize in a borehole in these materials. Long term observations in piezometers or observation wells sealed from the influence of surface water are often required to define groundwater levels in materials of this type.

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff, and other factors not evident at the time the borings were performed. Therefore, groundwater levels during construction or at other times in the life of the structure may be higher or lower than

the levels indicated on the boring logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project. During periods of wet weather, water can become perched in the softer soils near the surface.

4.0 **RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION**

4.1 Geotechnical Considerations

The subsurface investigation generally encountered stiff clay in the upper 20 to 40 feet of the soil column. Zones of relatively soft soil were encountered at depth in the majority of the borings. Based on the anticipated net loading conditions and footing dimensions, the proposed wet weather pump station and additional equipment to be located in the northern portion of the site (flow splitter box, diversion structure, valve vault, and flow return meter vault) can be supported on shallow foundations bearing on the stiff and medium dense native soil encountered at the site. Additional shallow foundation design information is provided in Section 4.3.1 of this report.

Equipment pits varying in depth from about 10 to 24 feet are planned for the equipment mentioned above. Based on the groundwater levels encountered in the borings during drilling, groundwater readings from the temporary wells installed at Locations B-1 and B-2, and the proximity to the Nickajack Lake (Tennessee River), a need for dewatering should be anticipated during equipment pit construction. Tailwater elevations below Chickamauga Dam fluctuate, but is currently reported between 633 and 634 feet. A combination of fat clay and clayey sand with gravel was encountered in the vicinity of the proposed pits. Granular materials encountered in the pit excavations will be more susceptible to water infiltration.

The results of our settlement calculations for the proposed storage tank indicate that total consolidation settlement on the order of 7 to 14 inches may occur if the tank is supported on shallow foundations. Furthermore, we anticipate significant differential settlement due to the variability in soil consistency and bedrock depth. Based on the soil conditions encountered and the settlement tolerances, we recommend supporting the proposed tank on deep foundation systems extending to the underlying bedrock.

Driven and drilled deep foundations systems were both considered for the support of the tank. After discussion with the client and deep foundation contractors, this report recommends supporting the proposed tank on driven steel piles extending to bedrock based on anticipated subsurface conditions and the associated costs for installation. Design recommendations for driven H-Piles and closed-end pipe pills filled with concrete are provided in Section 4.3.2 of this report. Terracon also considered drilled shafts and mircopiles. Because of the variable rock quality, anticipated groundwater conditions and depth to rock, Terracon believed driven piles would be more economical. Recommendations for other deep foundations can be provided upon request.

Variations in soil conditions could be encountered during construction. To establish correlations between the anticipated subsurface conditions described in this report and the actual subsurface conditions encountered during the construction phase, we recommend that an engineer or qualified soils technician perform continuous field observation and review during the soils-related phase of the construction.

4.2 Earthwork

The actual construction means and methods are the responsibility of the contractor(s). The following construction related items pertain to general site preparation for foundation, floor slab, and pavement support and are not intended to address all possible construction related concerns.

4.2.1 Site Preparation

After clearing the wooded site and stripping topsoil, organic soil and roots, the exposed subgrade should be proof-rolled to aid in locating loose or soft areas prior to the placement of new fill. Proof-rolling can be performed with a loaded tandem axle dump truck. Soft, wet and low-density soil should be removed or compacted in place prior to placing fill. In general, we anticipate the exposed subgrade will be relatively stable upon exposure; however, near-surface zones of medium stiff soil were encountered in Borings B-2, B-5, and B-9.

The highly-plastic, cohesive soils encountered in the borings will be sensitive to disturbance from construction activity and water seepage. If precipitation occurs prior to or during construction, the near-surface, fine-grained soils could increase in moisture content and become more susceptible to disturbance. Construction activity should be monitored, and should be curtailed if the construction activity is causing subgrade disturbance. A Terracon representative can help with monitoring and developing recommendations to help aid in limiting subgrade disturbance.

4.2.2 Fill Material Requirements

The onsite soils generally appear suitable for reuse as fill material, provided they are moisture conditioned as recommended in this report. Based on the provided grading plan, offsite borrow material will be required to reach the final subgrade elevations. Borrow material should meet the material requirements in the following table.

DuPont Pumping Station and Tank Chattanooga, Tennessee October 17, 2016 Terracon Project No. E2165009

Fill Type ¹	USCS Classification	Acceptable Location for Placement
Onsite soil	CL, CH, SC, SC-SM (LL <u><</u> 60, PI <u><</u> 35)	All locations more than 2 feet below proposed subgrade elevations
Low- to medium- plasticity borrow ²	CL, SC, GC (LL <u><</u> 50, PI <u><</u> 30)	All locations and elevations.
Well-graded granular	GW	All locations and elevations.

¹ Compacted structural fill should consist of approved materials that are free of organic matter and debris. Frozen material should not be used, and fill should not be placed on a frozen subgrade. A sample of each material type should be submitted to the geotechnical engineer for evaluation.

² Borrow soil should have a maximum dry density of at least 95 pcf or greater as determined by ASTM D698.

4.2.3 Fill Placement and Compaction Requirements

Item	Description
	8 inches or less in loose thickness when heavy, self- propelled compaction equipment is used.
	2 to 4 inches in loose thickness when hand-guided equipment (i.e. jumping jack or plate compactor) is used.
Compaction Requirements ¹	98% of the material's maximum standard dry density as determined by ASTM D698 (standard Proctor).
Moisture Content – Cohesive Soil	Within the range of 1% below to 2% above optimum moisture content as determined by the standard Proctor test at the time of placement and compaction
Moisture Content – Granular Material	Workable moisture levels ²

¹ We recommend testing engineered fill for compaction and moisture content during placement. If the results of the in-place density tests indicate the specified moisture or compaction limits have not been met, the area represented by the test should be reworked and retested as required until the specified moisture and compaction requirements are achieved.

² Specifically, moisture levels should be maintained low enough to allow for satisfactory compaction to be achieved without the cohesionless fill material pumping when proofrolled.

4.2.4 Utility Trench Backfill

All trench excavations should be made with sufficient working space to permit construction including backfill placement and compaction. If utility trenches are backfilled with relatively clean granular material, they should be capped with at least 18 inches of cohesive fill in non-pavement areas to reduce the infiltration and conveyance of surface water through the trench backfill.

Utility trenches are a common source of water infiltration and migration. All utility trenches that penetrate beneath buildings and pavements should be effectively sealed to restrict water intrusion and flow through the trenches that could adversely affect foundation and pavement subgrades. We recommend constructing an effective clay "trench plug" that extends at least 5 feet out from

DuPont Pumping Station and Tank Chattanooga, Tennessee October 17, 2016 Terracon Project No. E2165009

the face of the building exterior or where trench backfill daylights on cut or fill slope faces. The plug material should consist of clay compacted at a water content at or above the soil's optimum water content. The clay fill should be placed to completely surround the utility line and be compacted in accordance with recommendations in this report.

4.2.5 Grading and Drainage

Adequate positive drainage should be provided during construction and maintained throughout the life of the development to prevent an increase in moisture content of the foundation, pavement, and backfill materials. Surface water drainage should be controlled to prevent undermining of fill slopes and structures during and after construction.

Gutters and downspouts that drain water a minimum of 10 feet beyond the footprint of the proposed structures are recommended. This can be accomplished through the use of splashblocks, downspout extensions, and flexible pipes that are designed to attach to the end of the downspout. Flexible pipe should only be used if it is daylighted in such a manner that it gravitydrains collected water. Splash-blocks should also be considered below hose bibs and water spigots.

4.2.6 Construction Considerations

Upon completion of filling and grading, care should be taken to maintain the subgrade moisture content prior to construction of floor slabs and pavements. Construction traffic over the completed subgrade should be avoided to the extent practical. The site should also be graded to prevent ponding of surface water on the prepared subgrades or in excavations. If the subgrade should become frozen, desiccated, saturated, or disturbed, the affected material should be removed or these materials should be scarified, moisture conditioned, and re-compacted prior to floor slab and pavement construction and observed by Terracon.

Surface water should not be allowed to pond on the site and soak into the soil during construction. Construction staging should provide drainage of surface water and precipitation away from the building and pavement areas. Any water that collects over or adjacent to construction areas should be promptly removed, along with any softened or disturbed soils. Surface water control in the form of sloping surfaces, drainage ditches and trenches, and sump pits and pumps will be important to avoid ponding and associated delays due to precipitation and seepage.

All excavations should be sloped or braced as required by OSHA regulations to provide stability and safe working conditions. Temporary excavations will be required during grading operations. The grading contractor, by his contract, is usually responsible for designing and constructing stable, temporary excavations and should shore, slope or bench the sides of the excavations as required to maintain stability of both the excavation sides and bottom. All excavations should be braced or sloped to comply with applicable local, state and federal safety regulations, including the current Occupational Health and Safety Administration (OSHA) Excavation and Trench Safety Standards.

Geotechnical Engineering Report DuPont Pumping Station and Tank Chattanooga, Tennessee October 17, 2016 Terracon Project No. E2165009

Construction site safety is the sole responsibility of the contractor who controls the means, methods and sequencing of construction operations. Under no circumstances shall the information provided herein be interpreted to mean that Terracon is assuming any responsibility for construction site safety or the contractor's activities; such responsibility shall neither be implied nor inferred.

4.3 Foundations

In our opinion, the proposed wet weather pump station and additional equipment to be located in the northern portion of the site (flow splitter box, diversion structure, valve vault, and flow return meter vault) can be supported on shallow foundations bearing on the stiff and medium dense native soil encountered at the site. Shallow foundation design recommendations for these structures are presented in Section 4.3.1.

We recommend supporting the proposed water storage tank on driven deep foundation systems. Section 4.3.2 provides design recommendations for driven H-Piles and closed-end pipe piles filled with concrete.

Description	Column	Wall					
Net allowable bearing pressure ¹	2,500 psf	2,500 psf					
Minimum dimensions	24 inches	18 inches					
Minimum embedment below finished grade ²	18 inches	18 inches					
Approximate total settlement ³	< 1 inch	<1 inch					
Estimated differential settlement ³	≤ ¾ inch between columns	≤ ¾ inch over 40 feet					
Ultimate coefficient of sliding friction ⁴	0.35	0.35					
Allowable Passive Pressure ³	325 psf per vertical foot, up to 1,000 psf						

4.3.1 Shallow Foundation Design Recommendations (Ancillary Structures Only)

1. The recommended net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the footing base elevation. Assumes any unsuitable fill or soft soil, if encountered, will be undercut and replaced with engineered fill.

2. For frost protection and to reduce the effects of seasonal moisture change.

3. The foundation settlement will be dependent on variations in the subsurface profile, structural loading conditions, embedment depth of the footings, and quality of the earthwork operations. The stated settlement estimate does not include any movement stemming from karst-related ground subsidence or movement associated with placing foundations above undetected, inadequate existing fill.

4. The sides of the excavation for the spread footing foundation must be nearly vertical and the concrete should be placed neat against these vertical faces for the passive earth pressure values to be valid. If the loaded side is sloped or benched and then backfilled, the allowable passive pressure will be significantly reduced. Passive resistance in the upper 3 feet of the soil profile should be neglected. If passive resistance is used to resist lateral loads, the base friction should be neglected.

The base of all foundation excavations should be free of water and loose soil and rock prior to placing concrete. Concrete should be placed soon after excavating to reduce the potential for bearing soil disturbance. If the soils at bearing level should become excessively dry, disturbed, saturated, or frozen, the affected soil should be removed prior to placing concrete. Place a lean concrete mud-mat over the bearing soils if the excavations must remain open over night or for an extended period of time. We recommend retaining the geotechnical engineer to observe and test the foundation bearing materials.

We recommend retaining Terracon to observe and test the foundation bearing materials. If unsuitable bearing soils are encountered in footing excavations, the excavations should be extended deeper to suitable soils and the footings could bear directly on these soils at the lower level or on lean concrete backfill placed in the excavations as described in the following diagram.

NOTE: Excavation in sketch shown vertical for convenience. Excavations should be sloped as necessary for safety.

4.3.2 Deep Foundation Design Recommendations

Based on the subsurface conditions, proposed loading, and settlement tolerances, the proposed storage tank should be supported by deep foundations extending to the underlying bedrock encountered at the site. The depth to bedrock was observed to vary in the soil borings but was generally encountered between depths of 50 to 80 feet below the existing ground surface.

The results of the rock coring performed in seven borings indicated pinnacled bedrock and rock lenses may be encountered during pile installation at several locations. The contractor should anticipate hard driving conditions prior to refusal. This report recommends the use of steel H-Piles or closed-end pipe piles filled with concrete. To reduce the risk for damaging the piles due to hard driving conditions, we recommend reinforcing the pile tips with driving points. The following table provides allowable capacities for individual piles:

Pile Type	Pile Cross Section	Allowable Capacity, tons	Recommended Minimum Hammer Driving Energy, ft-lbs			
	10x42	45	19,000			
H-Piles	12x53	56	25,000			
	14x73	78	25,000			
Closed-End Pipe	10 in	80	25,000			
Piles filled with Concrete ¹	12 in	100	27,000			

¹ Based on the anticipated hard driving conditions, we recommend using extra-strong pipe pile sections.

Alternative pile sections can be evaluated if requested. In addition to the pipe pile sections listed above, oil-field pipe rejected due to tolerance or other non-quality reason may be considered as a cost-saving pile alternative. Terracon can evaluate allowable capacities based on material properties and pile dimensions provided to us.

Because of the pile capacities recommended and the zones of lower quality rock encountered at the site, Terracon recommends performing two pile load tests to verify the design capacities are being met in the field. At least one of these pile load tests should be targeted in the area of low quality rock, such as in the vicinity of boring B-6A.

Terracon should be retained to develop pile refusal criteria once the pile type, hammer, and final design capacities are developed. Typical refusal criteria of 10 blows per inch is common for endbearing piles on bedrock. Specific refusal criteria form the project will be dependent on the pile section selected, capacity, and equipment used to drive the pile.

Because of the variable rock quality, especially areas of low recovery/RQD, we anticipate the piles will penetrate into the weathered rock. Consequently, the piling contractor should anticipate hard driving conditions prior to reaching refusal.

A representative of this office should observe the pile driving process to verify that all piles are driven to refusal and to record the driving characteristics of each pile. Piles that terminate at depths above 45 feet below the existing ground surface are probably not founded on competent bedrock and should not be relied upon for support. Installed piles that do not meet the refusal criteria may be rejected or redesigned for a reduced carrying capacity. Replacement piles may be necessary in some cases.

DuPont Pumping Station and Tank
Chattanooga, Tennessee
October 17, 2016
Terracon Project No. E2165009

4.4 Floor Slabs

Prior to floor slab construction or the placement of new fill, the exposed subgrade should be proofrolled as described in Section 4.2 of this report. Any areas identified as unstable should be stabilized by undercutting and replacement with soil or aggregate, or other acceptable means determined by a geotechnical engineer such as soil stabilization, utilizing a stabilization fabric, or possibly scarifying the exposed subgrade and allowing air-drying.

4.4.1 Floor Slab Design Recommendations

Item	Description
Floor slab subgrade support	Native soil passing a proofroll test or properly placed and compacted fill $^{\rm 1,2}$
Modulus of Subgrade Reaction	125 pounds per square inch per inch (psi/in)
Aggregate base course/capillary break ²	4 inches of granular material

1 Floor slabs should be structurally independent of any building footings or walls to reduce the possibility of floor slab cracking caused by differential movements between the slab and foundation.

2 The floor slab design should include a capillary break, comprised of free-draining, compacted, granular material, at least 4 inches thick. The granular material for use as sub-base below slabs shall be an approved coarse-grained material and meet the following requirements:

Particle Size: Percent Passing No. 200 Sieve:	1 inch (max) 10 percent (max)
Plasticity Index:	6 (max)
Liquid Limit:	25 (max)

Where appropriate, saw-cut control joints should be placed in the slab to help control the location and extent of cracking. For additional recommendations refer to the ACI Design Manual. Joints or any cracks in pavement areas that develop should be sealed with a water-proof, non-extruding compressible compound specifically recommended for heavy duty concrete pavement and wet environments.

The use of a vapor retarder should be considered beneath concrete slabs on grade that will be covered with wood, tile, carpet or other moisture sensitive or impervious coverings, or when the slab will support equipment sensitive to moisture. When conditions warrant the use of a vapor retarder, the slab designer should refer to ACI 302 and/or ACI 360 for procedures and cautions regarding the use and placement of a vapor retarder/barrier.

4.4.2 Floor Slab Construction Considerations

On most project sites, the site grading is generally accomplished early in the construction phase. However, as construction proceeds, the subgrade may be disturbed due to utility excavations, construction traffic, desiccation, rainfall, etc. As a result, the floor slab subgrade may not be suitable for placement of base rock and concrete and corrective action will be required.

DuPont Pumping Station and Tank
Chattanooga, Tennessee
October 17, 2016
Terracon Project No. E2165009

We recommend the area underlying the floor slab be rough graded and then compacted prior to final grading and placement of base course aggregate. Particular attention should be paid to high traffic areas that were rutted and disturbed earlier and to areas where backfilled trenches are located. Areas where unsuitable conditions are located should be repaired by removing and replacing the affected material with properly compacted fill. All floor slab subgrade areas should be moisture conditioned and properly compacted to the recommendations in this report immediately prior to placement of the base course aggregate and concrete.

4.5 Seismic Considerations

Code Used	Site Classification
2012 International Building Code (IBC) ¹	C ²

1. In general accordance with ASCE-7 Chapter 20; Table 20.3-1.

2. The 2012 International Building Code (IBC) requires a site soil profile determination extending a depth of 100 feet for seismic site classification. For the purposes of this study, the Refraction Microtremor (ReMi) system was used to calculate the average weighted shear-wave velocity profiles across the site. Two seismic arrays, designated A-A' and B-B', were conducted at the project site to collect shear-wave velocity information for the upper 100' of the subsurface. Based on the two seismic arrays A-A' and B-B', average weighted shear-wave velocity values for the upper 100 feet of the subsurface were 1,706 ft/sec and 1,554 ft/sec, respectively.

4.6 Lateral Earth Pressures

Reinforced concrete walls with unbalanced backfill levels on opposite sides should be designed for earth pressures at least equal to those indicated in the following table. Earth pressures will be influenced by structural design of the walls, conditions of wall restraint, methods of construction and/or compaction, and the strength of the materials being restrained. Two wall restraint conditions are shown. Active earth pressure is commonly used for design of free-standing cantilever retaining walls and assumes wall movement occurs. The "at-rest" condition assumes a fixed wall with no movement. The recommended design lateral earth pressures do not include a factor of safety and do not provide for possible hydrostatic pressure on the walls.

DuPont Pumping Station and Tank
Chattanooga, Tennessee
October 17, 2016
Terracon Project No. E2165009

Earth Pressure Conditions	Coefficient for Backfill Type	Equivalent Fluid Density (pcf)	Surcharge Pressure, p₁ (psf)	Earth Pressure, p₂ (psf)
Active (K _a)	Granular - 0.33	40	(0.33)S	(40)H
	Lean Clay - 0.42	50	(0.42)S	(50)H
At-Rest (K _o)	Granular - 0.46	55	(0.46)S	(55)H
	Lean Clay - 0.58	70	(0.58)S	(70)H
Passive (K _p)	Granular - 3.0	360		
	Lean Clay - 2.4	290		

Applicable conditions to the above include:

- For active earth pressure, wall must rotate about base, with top lateral movements of about 0.002 H to 0.004 H, where H is wall height
- For passive earth pressure to develop, wall must move horizontally to mobilize resistance
- Uniform surcharge, where S is surcharge pressure
- Maximum in-situ soil backfill weight of 120 pcf
- Horizontal backfill, compacted between 95 and 98 percent of standard Proctor maximum dry density
- Loading from heavy compaction equipment not included
- No hydrostatic pressures acting on wall
- No dynamic loading
- No safety factor included in soil parameters
- Ignore passive pressure in frost zone

DuPont Pumping Station and Tank Chattanooga, Tennessee October 17, 2016 Terracon Project No. E2165009

Backfill placed against structures should consist of granular soils or low plasticity cohesive soils. For the granular values to be valid, the granular backfill must extend out from the base of the wall at an angle of at least 45 and 60 degrees from vertical for the active and passive cases, respectively. To calculate the resistance to sliding, a value of 0.30 should be used as the ultimate coefficient of friction between the footing and the underlying soil.

Due to the anticipated groundwater levels discussed earlier in this report, combined hydrostatic and lateral earth pressures should be calculated for clay backfill using an equivalent fluid weighing 90 and 100 pcf for active and at-rest conditions, respectively. For granular backfill, an equivalent fluid weighing 85 and 90 pcf should be used for active and at-rest conditions, respectively. These pressures do not include the influence of surcharge, equipment, or floor loading, which should be added. Heavy equipment should not operate within a distance closer than the exposed height of retaining walls to prevent lateral pressures more than those provided.

5.0 GENERAL COMMENTS

Terracon should be retained to review the final plans and specifications so comments can be made regarding interpretation and implementation of our recommendations in the design and specifications. Terracon should be retained to provide observation and testing services during grading, excavation, foundation, and other earth-related construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, and bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, either express or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

APPENDIX A FIELD EXPLORATION

DuPont Pumping Station and Tank Chattanooga, Tennessee October 17, 2016 Terracon Project No. E2165009

Field Exploration Description

The boring locations were marked in the field by the surveyor and surface elevations were provided by the surveyor. The borings were drilled with a rotary drill rig, using hollow-stem augers to advance the boreholes. Samples of the soil encountered in the borings were obtained using the split-barrel sampling procedures.

In the split-barrel sampling procedure, the number of blows required to advance a standard 2-inch O.D. split-barrel sampler the last 12 inches of the typical total 18-inch penetration by means of a 140-pound hammer with a free fall of 30 inches, is the standard penetration test value (SPT N-value). This value is used to estimate the in-situ relative density of cohesionless soils and consistency of cohesive soils.

An automatic SPT hammer was used to advance the split-barrel sampler in the borings performed on this site. A greater efficiency is typically achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. Published correlations between the SPT values and soil properties are based on the lower efficiency cathead and rope method. This higher efficiency affects the standard penetration resistance blow count (N) value by increasing the penetration per hammer blow over what would obtained using the cathead and rope method. The effect of the automatic hammer's efficiency has been considered in the interpretation and analysis of the subsurface information for this report.

A field log of each boring was prepared by the drill crew. These logs included visual classifications of the materials encountered during drilling as well as the driller's interpretation of the subsurface conditions between samples. Final boring logs included with this report represent the engineer's interpretation of the field logs and include modifications based on laboratory observation and tests of the samples.

Samples obtained in the field were sealed and returned to the laboratory for classification and testing. All borings were backfilled after drilling operations were completed with soil cuttings.

CHATTANOOGA, TENNESSEE

		BOR	ING	L	C	NO. B-	1				F	Page 1 of 2	2	
F	PROJECT: Dupont Pumping Station and	Tank			CLIENT: CDM Smith Chattanooga. TN									
S	SITE: 1615 Memphis Drive Chattanooga, Tennessee													
GRAPHICLOG	LOCATION See Exhibit A-2 Surface Elev.: DEPTH ELEVA	658.8 (Ft.) \TION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	PERCENT FINES	
	FAT CLAY (CH) brown stiff trace angular		1 –	_		3-5-7			3					
	rock fragments, trace roots, organic odor		-		Å	N=12			(HP)		27	57-28-29	89	
01 10/17/16	5.5	653.5	5-	-	\mid	3-3-6 N=9			2.5 (HP)		24			
ON2015.GE	CLAYEY SAND WITH GRAVEL (SC), brown, medium dense, with angular rock fragments		-		\mid	7-7-11 N=18					10			
J TERRAC			- 10-	-	X	6-9-10 N=19					8			
D TANK.GP	12.0 CLAYEY SAND WITH GRAVEL (SC), reddish-brown, loose to medium dense, with	647		-										
ION AN	angular rock fragments		- 15-			3-5-7 N=12					20			
IMPING STAT			-	-										
			20-			3-7-9 N=16					19			
2165009.DUF			-	-										
NO WELL E			25-	-	X	3-5-8 N=13					22	51-23-28	47	
MART LOG-N			-			3.4.7								
RT. GEO SI			30- -		X	N=11					26			
	32.0 FAT CLAY (CH), reddish-brown, stiff to very stiff, trace angular rock fragments, black mineral staining	627	_	-		4-8-9			25					
OM ORIGI			35-	-	Å	N=17			(HP)		24			
ARATED FR	Stratification lines are approximate. In-situ, the transition m	ay be gradu	lal.				Hammer Ty	pe: Auto	omatic					
VALID IF SEP	vancement Method: Hollow Stem Auger	See Exhib procedure See Appe procedure	bit A-3 fo es. endix B fo es and ac	r desc or desc Idition	ription criptior al data	of field of laboratory (if any).	Notes:							
	andonment Method: Borings backfilled with soil cuttings upon completion.	See Appe abbreviati Elevations	endix C fo ions. s provide	or expl	anatio dient.	n of symbols and								
	WATER LEVEL OBSERVATIONS Water encountered at 44'				2	CON	Boring Started Drill Rig: All-T	l: 3/10/20 errain Ve)16 ehicle	Borin Drille	Boring Completed: 3/10/2016 Driller: Tri-State			
THIS		51 Lost Mound Chattanoo				ite 135 N	Project No.: E	2165009		Exhil	oit:	A-5		

	BORI	NG	LC	C	6 NO. B-	1				F	Page 2 of 2	2
PROJECT: Dupont Pumping Station and	Tank			CLIENT: CDM Smith								
SITE: 1615 Memphis Drive Chattanooga, Tennessee					Chatt	anooga, i	N					
U U U <td>658.8 (Ft.) TION (Ft.)</td> <td>DEPTH (Ft.)</td> <td>WATER LEVEL OBSERVATIONS</td> <td>SAMPLE TYPE</td> <td>FIELD TEST RESULTS</td> <td>RECOVERY (%)</td> <td>RQD (%)</td> <td>LABORATORY TORVANE/HP (tsf)</td> <td>UNCONFINED COMPRESSIVE STRENGTH (tsf)</td> <td>WATER CONTENT (%)</td> <td>ATTERBERG LIMITS LL-PL-PI</td> <td>PERCENT FINES</td>	658.8 (Ft.) TION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
FAT CLAY (CH), reddish-brown, stiff to very stiff, trace angular rock fragments, black mineral staining (continued)		- - 40 -		X	3-5-6 N=11			1.0 (HP)				
47.0	612	- - 45 -		\times	3-5-7 N=12			1.5 (HP)				
FAT CLAY (CH), yellowish-brown, medium stiff, trace angular rock fragments 50.0 Boring Terminated at 50 Feet	609	- - 50-		\times	1-2-3 N=5			0.5 (HP)				
Stratification lines are approximate. In-situ, the transition ma Advancement Method: Hollow Stem Auger	ay be gradua	al. t A-3 for	descr	ription	n of field	Hammer Ty	pe: Auto	matic				
Abandonment Method: Borings backfilled with soil cuttings upon completion.	See Appen procedures See Appen abbreviatio Elevations	ndix B fo and ad ndix C fo ons. provide	r desc Iditiona or expla d by cl	riptior al data anatio lient.	n of laboratory a (if any). on of symbols and	d						
WATER LEVEL OBSERVATIONS Water encountered at 44'	ור	Tlerracon 51 Lost Mound Dr Ste 135				Boring Started: 3/10/2016 Drill Rig: All-Terrain Vehicle			Borir Drille Evbil	Boring Completed: 3/10/2016 Driller: Tri-State		

THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL E2165009. DUPONT PUMPING STATION AND TANK.GPJ TERRACON2015.GDT 10/17/16

			BOR	ING	L	C	NO. B-	2				F	Page 1 of	1
PR	OJECT:	Dupont Pumping Station and	Tank	CLIENT: CDM Smith Chattanooga, TN										
SIT	ГЕ:	1615 Memphis Drive Chattanooga, Tennessee												
GRAPHIC LOG	LOCATION	I See Exhibit A-2 Surface Elev.: ELEV.	: 658.4 (Ft.) ATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	(%) RQD	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	FAT C roots	:LAY (CH), brown, medium stiff, trace		_		\square	3-3-4 N=7			1.0 (HP)				
	5.0 FAT C roots	CLAY (CH), brown, very stiff, trace	653	5-		\square	3-7-10 N=17			3.0 (HP)				
	FAT C wtih a	CLAY (CH), brown, stiff to very stiff, ngular rock fragments	000	-	-		6-6-7 N=13							
				_ _ 10-		\times	7-9-10 N=19							
	12.0 FAT C	CLAY (CH), reddish-brown, stiff, trace	646.5											
	ungun			_ 15—	-	\mid	2-5-6 N=11			1.0 (HP)				
				_	-					1.05				
				20-		X	3-4-5 N=9			1.25 (HP)				
				-			3-4-5			1.75				
				25- -		\bigcirc	N=9			(HP)				
				- - 30-	-	\times	2-4-5 N=9			1.25 (HP)				
			000 5	-	-	\times	3-4-9			1.5				
	Borin	g Terminated at 35 Feet	023.5	35-			N=13							
	Stratificatio	n lines are approximate. In-situ, the transition n	nay be gradu	al.				Hammer Ty	pe: Auto	omatic				
Advan Holl Aband Bori	low Stem Aug low Stem Aug donment Metho	od: er od: I with soil cuttings upon completion.	See Exhib procedure See Appe procedure See Appe abbreviati	hit A-3 fo s. ndix B fo s and ac ndix C fo ons.	r desc or desc ddition or expl	ription criptior al data anatio	of field of laboratory ((if any). n of symbols and	Notes:						
	WATE	R LEVEL OBSERVATIONS	Elevations	s provide	ed by c	lient.		Boring Started: 3/10/2016			Borir	Boring Completed: 3/10/2016		
	NO free w	ater observed	╡║	CI 51 Lost	Moun	D d Dr S	te 135	Drill Rig: All-T	errain Ve	ehicle	Drille	er: Tri-S	tate	
Chattanoog						oga, 1	N	Project No.: E2165009				oit:	A-6	

		B	ORI	NG	L	C	NO. B-	3				F	Page 1 of	1
	PR	OJECT: Dupont Pumping Station and Tar	nk			CLI	ENT: CDM	Smith	'NI					
	SIT	E: 1615 Memphis Drive Chattanooga, Tennessee					Chau	anooya, i	IN					
	GRAPHIC LOG	LOCATION See Exhibit A-2 Surface Elev.: 659.0 DEPTH ELEVATION	8 (Ft.) N (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	PERCENT FINES
		FAT CLAY (CH), brown, stiff, trace angular rock fragments, trace roots, organic odor		-		X	2-4-6 N=10			2.25 (HP)		21		
T 10/17/16		5.5	654.5	- - 5 -	-		3-5-7 N=12			2.25 (HP)		24		
DN2015.GD	2000	CLAYEY SAND WITH GRAVEL (SC), brown, medium dense, with angular rock fragments		-	-		11-5-12 N=17					12		
U TERRAC	1000			- 10-	-	X	10-13-12 N=25					7		
ND TANK.GF				-	-		0.45.40							
STATION A	2000			- 15- -		X	N=31					16		
T PUMPING	0000	- Low recovery in 18.5'-20' sample		-	-		8-9-12					7		
NOUPON			638	20	-		N=21							
VELL E2165		stiff, trace angular rock fragments, black mineral oxidation		- - 25	-		4-6-5 N=11			1.25 (HP)		20		
KT LOG-NO \				-	-									
. GEO SMAF				- 30-	-	X	3-5-8 N=13			2.75 (HP)		29		
AL REPORT				-										
M ORIGIN		Boring Terminated at 35 Feet	625	35-		X	8-12-11 N=23			3.0 (HP)		22		
ATED FROI		Stratification lines are approximate. In-situ, the transition may be	e gradua	al.				Hammer Ty	pe: Auto	omatic				
SEPAR	lvan	rement Method:					-66-12	Notes:						
B IS NOT VALID IF 5	bando Borii	bow Stem Auger pro bow Stem Auger pro pro pro proment Method: ags backfilled with soil cuttings upon completion. Ele	e Exhibit ocedures e Apper ocedures e Apper breviations	it A-3 fo s. ndix B fo s and ac ndix C fo ons. s provide	r desc or desc Idition or expl ed by c	ription criptior al data anatio client.	of field of laboratory ((if any). n of symbols and	NOTES:						
I I I		WATER LEVEL OBSERVATIONS						Boring Started: 3/10/2016			Borir	Boring Completed: 3/10/2016		
BORIN		No tree water observed		6			CON	Drill Rig: All-T	errain Ve	ehicle	Drille	er: Tri-S	tate	
THIS					Mour attanc	nd Dr S ooga, T	ite 135 N	Project No.: E2165009 Exhibit: A-7						

		BOR	ING	L	OG	6 NO. B-4	4				F	Page 1 of ²	1	
PR	OJECT: Dupont Pumping Station and	Tank			CL	IENT: CDM	Smith	N						
SIT	E: 1615 Memphis Drive Chattanooga, Tennessee					onati	anooga, i							
GRAPHIC LOG	LOCATION See Exhibit A-2 Surface Elev.: (DEPTH ELEVA	656.7 (Ft.) TION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES	
	0.3 _ TOPSOIL FILL - FAT CLAY_, brown, asphaltic material, trace angular rock fragments	656.5		-	X	4-7-6 N=13			2.25 (HP)					
10/17/16	5.5 CLAYEY GRAVEL (GC), brown, very stiff	651		-		5-11-13 N=24								
N2015.GDT	FAT CLAY (CH), reddish-brown, very stiff, wtih angular rock fragments	001				6-9-15 N=24			3.5 (HP)					
TERRACO			_ _ 10_	-		9-10-13 N=23			3.25 (HP)					
) TANK.GPJ	12.0 FAT CLAY (CH), reddish-brown, stiff, trace angular rock fragments	644.5												
ATION ANE	- Low recovery in 13.5'-15' sample		_ 15—	-		3-3-5 N=8			2.25 (HP)					
UMPING ST			_	-										
DUPONT P					X	4-5-8 N=13			2.75 (HP)					
E2165009			_			3-4-7			1.75					
19 Mel	27.0	629.5	25- -	-		N=11			(HP)					
) SMART LC	FAT CLAY (CH), reddish-brown, medium stiff, trace angular rock fragments - Low recovery in 28.5'-30' sample	600 F	_	-		1-2-3								
PORT. GEG	Boring Terminated at 30 Feet	020.3	30–			N-5								
RIGINAL RE														
D FROM OF														
EPARATE	Stratification lines are approximate. In-situ, the transition ma	ay be gradu	al.				Hammer Ty	pe: Auto	matic				1	
Advan Holl Aband	cement Method: ow Stem Auger	See Exhib procedure See Appe procedure See Appe	it A-3 for s. ndix B for s and ac ndix C fo	r desc or desc Idition or expl	cription cription al dat	n of field n of laboratory a (if any). on of symbols and	Notes:							
Series Bori	ings backfilled with soil cuttings upon completion.	abbreviations	abbreviations. Elevations provided by client.											
	WATER LEVEL OBSERVATIONS Water encountered at 24'					lleccon				Borir	Boring Completed: 3/10/2016			
THISB		nd Dr boga,	Ste 135 TN	Project No.: E	2165009		Exhil	pit:	A-8					

	BORING LOG NO. B-4A Page 1 of 2															
	PR	OJECT: Dupont Pumping Station and	CLIENT: CDM Smith													
	SIT	E: 1615 Memphis Drive Chattanooga, Tennessee				Ghatt	anooya, i									
	GRAPHIC LOG	LOCATION See Exhibit A-2 Approximate Surface Elev: 65 DEPTH ELEV/	7.5 (Ft.) +/- ATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES		
	<u>1 1.</u>	0.7 TOPSOIL LEAN CLAY (CL), with rock fragments,	657+/-	_	-		15-19-23			4.5						
6		angular, brown, very stiff, trace roots				Å	N=42			(HP)		20				
T 10/17/1		5.5	652+/-	_ 5 -			9-11-16 N=27			4.0 (HP)		8				
0N2015.GD		FAT CLAY (CH), trace rock fragments, angular, reddish-brown, stiff to very stiff		-			16-11-11 N=22			4.5 (HP)		25				
TERRACC				_ 10-	-		12-13-13 N=26			3.5 (HP)		27				
TANK.GPJ				-	-											
LION AND				_ 			7-6-12 N=18			3.0 (HP)		26				
PING STA ⁻				_												
ONT PUM				20-			3-6-7 N=13			2.0 (HP)		22				
5009.DUP				-												
VELL E216					-		4-6-7 N=13			2.5 (HP)		23				
LOG-NO V				25	-											
EO SMART				- - 30-	-		4-10-17 N=27			3.5 (HP)		29				
EPORT. GI				-	-											
RIGINAL R					-		6-7-12 N=19			4.5 (HP)		17				
D FROM O				-	-											
ARATEI		Stratification lines are approximate. In-situ, the transition m		Hammer Ty	pe: Auto	matic	1									
G IS NOT VALID IF SEF	Advancement Method: See Ext 0'-56.8' Hollow Stem Auger procedu 56.8'-71.8' NQ2 Wireline Coring See App procedu See App Abandonment Method: See App Borings backfilled with soil cuttings upon completion. See App			ee Exhibit A-3 for description of field ocedures. ee Appendix B for description of laboratory ocedures and additional data (if any). ee Appendix C for explanation of symbols and bireviations. evations interpolated from topographic					Notes:							
NG LO	∇	WATER LEVEL OBSERVATIONS				Boring Started: 9/16/2016				Boring Completed: 9/16/2016						
BORL	<u> </u>							Drill Rig: All-T	Drill Rig: All-Terrain Vehicle				Driller: Tri-State			
THIS	51 Lost Moune Chattanor						IN ISS	Project No.: E2165009				Exhibit: A-9				

	В	ORII	NG	LO	G	NO. B-4	A				F	Page 2 of 2	2			
PR	PROJECT: Dupont Pumping Station and Tank						CLIENT: CDM Smith									
SIT	E: 1615 Memphis Drive Chattanooga, Tennessee					Chatt	anooya, i	IN								
GRAPHIC LOG	LOCATION See Exhibit A-2 Approximate Surface Elev: 657.5 DEPTH ELEVATI	(Ft.) +/- ON (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	PERCENT FINES			
	FAT CLAY (CH), trace rock fragments, angular, reddish-brown, stiff to very stiff (continued)		-	∇	X	3-4-4 N=8			1.5 (HP)		23					
DT 10/17/16	- medium stiff from approximately 37 to 47 feet		40-	-												
ACON2015.G			- 45-	-	X	4-3-4 N=7			1.0 (HP)		35					
GPJ TERR			-	-		10.0.10										
N AND TANK			- 50- -	-	X	13-8-10 N=18					17					
ING STATIO			-			4-5-6					19					
	56.8 Auger Refusal at 56.8'	600.5+/-	55	-		IN-11										
	Begin NQ2 Wireline Rock Core LIMESTONE, light gray, highly siliceous, concoidal fracture in silicious zones	595.5+/-	- - 60 -	-		RUN 1 Depth: 56.8'-61.8' Run Length: 5.0'	80	42								
) SMART LOG-NO W	DOLOMITE, light gray	590 5+/-	- - 65	-		RUN 2 Depth: 61.8'-66.8' Run Length: 5.0'	98	95								
	LIMESTONE, light gray	505.5.1	- - 70 -	-		RUN 3 Depth: 66.8'-71.8' Run Length: 5.0'	100	93								
	Coring Terminated at 71.8 Feet	565.5+/-														
EPARATE	Stratification lines are approximate. In-situ, the transition may	be gradu	al.	·	ı		Hammer Ty	pe: Auto	omatic							
Advan 0'-5 56.8 Aband Bori	Advancement Method: See Exhibit 0'-56.8' Hollow Stem Auger procedures 56.8'-71.8' NQ2 Wireline Coring See Appen Abandonment Method: See Appen Borings backfilled with soil cuttings upon completion. See Appen				riptior riptio al data anatio	n of field n of laboratory a (if any). nn of symbols and opographic	Notes:									
	WATER LEVEL OBSERVATIONS					r - 3Fv	Boring Started	Borir	Boring Completed: 9/16/2016							
	Water encountered at 39'			rigcon			Drill Rig: All-Terrain Vehicle				Driller: Tri-State					
THIS	51 Lost Moun Chattano					d Dr Ste 135 oga, TN Project No.: E2165009 Exhibit: A					A-9					
		BORI	NG	LC	C	6 NO. B-	5				F	Page 1 of ?	1			
-------------	---	---	---	---	---	--	--------------------	----------------------	--------------------------------	---	----------------------	---------------------------------	---------------			
PR	OJECT: Dupont Pumping Station and 1	Fank			CL	IENT: CDM Chatt	Smith anooga, T	'N								
SIT	E: 1615 Memphis Drive Chattanooga, Tennessee															
GRAPHIC LOG	LOCATION See Exhibit A-2 Surface Elev.: 6 DEPTH ELEVAT	57.3 (Ft.) FION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	Atterberg Limits LL-PL-PI	PERCENT FINES			
	LEAN CLAY (CL), brown, medium stiff, organic odor 3.0	654.5	-		\times	3-3-4 N=7			1.25 (HP)		24	46-21-25	91			
	LEAN CLAY (CL), grayish-brown, stiff, trace angular rock fragments, organic odor	652	_ 5 —		\boxtimes	3-4-5 N=9			1.75 (HP)		19					
	 FAT CLAY (CH), readish-brown, very stiff, with angular rock fragments 8.0 	649.5	-		\mid	5-8-15 N=23			2.25 (HP)		17					
	FAT CLAY (CH), reddish-brown, very stiff, trace angular rock fragments		_ 10_ _		\times	9-9-9 N=18			2.25 (HP)		16					
			_ _ 15—		\times	2-4-6 N=10			1.5 (HP)		21					
			- - - 20		\times	2-4-5 N=9			1.25 (HP)		22					
	27.0	630.5	- - 25 -		\times	2-4-5 N=9			1.25 (HP)		22					
	FAT CLAY (CH), reddish-brown, medium stiff, trace angular rock fragments 30.0 Boring Terminated at 30 Feet	627.5	_ 30—		\times	1-2-3 N=5			0.5 (HP)		24					
	Stratification lines are approximate. In-situ, the transition ma	y be gradu	al				Hammer Tv	ne: Auto	matic							
Advan	coment Method						Notos:									
Aband	onment Method: onment Method: ngs backfilled with soil cuttings upon completion.	See Exhibi procedures See Apper procedures See Apper abbreviatio Elevations	It A-3 for s. ndix B fo s and ad ndix C fo ons. provide	descr desc ditiona r expla d by c	ription riptior al data anatio lient.	n of field n of laboratory a (if any). n of symbols and										
	WATER LEVEL OBSERVATIONS No free water observed	זר					Boring Started	: 3/10/20	16	Borin	ıg Com	oleted: 3/10/20	016			
			51 Lost Ch	Moun	d Dr S oga, 1	Ste 135	Drill Rig: All-T	errain Ve 2165009	hicle	Drille Exhit	er: Tri-S	tate				

٦

	E	BORII	NG	LO	G	NO. B-5	A				F	Page 1 of 3	3
PR	OJECT: Dupont Pumping Station and	Tank			CL	IENT: CDM	Smith					-	
SIT	E: 1615 Memphis Drive Chattanooga, Tennessee					Chau	anooya, i	IN					
GRAPHIC LOG	LOCATION See Exhibit A-2 Approximate Surface Elev: 657 DEPTH ELEVA	7.5 (Ft.) +/- \TION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
<u>1 </u>	0.7 TOPSOIL LEAN CLAY (CL) brown hard trace roots		_	-		16-18-21			45				
	<u>3.0</u>	654.5+/-	_		\bowtie	N=39			(HP)		16		
	LEAN CLAY (CL), with rock fragments, angular, brown, hard, trace roots	652+/-	- 5	-	\times	19-25-34 N=59			4.5 (HP)		15		
	FAT CLAY (CH), with rock fragments, angular, reddish-brown, stiff to very stiff		-	-	\times	11-13-12 N=25			4.0 (HP)		15		
			_ 10—		\boxtimes	5-7-11 N=18			2.5 (HP)		20		
				-									
			45		\boxtimes	6-10-11 N=21			3.5 (HP)		15		
			-01 -	-									
					\mathbf{X}	6-7-6 N=13			2.0 (HP)		20		
	22.0 FAT CLAY (CH), with rock fragments.	635.5+/-	20	-									
	angular, reddish-brown, medium stiff		-		\times	3-4-4 N=8			1.5 (HP)		19		
			25- -	-									
			_		\mathbf{X}	3-3-4 N=7			1.5 (HP)		22		
	32.0	625 5+/-	30- -						(111)				
	FAT CLAY (CH) , with rock fragments, angular, reddish-brown, very stiff	010.077	_			3-7-11			2.0				
			35-		X	N=18			(HP)		18		
			-										
	Stratification lines are approximate. In-situ, the transition ma	ay be gradu	aı.				Hammer Ty	pe: Auto	matic				
Advan 0'-6 63.0 Aband	cement Method: 3.0' Hollow Stem Auger /-83.2' NQ2 Wireline Coring onment Method:	See Exhib procedure See Apper procedure See Apper	it A-3 for s. ndix B fo s and ac ndix C fo	r descr or desc Iditiona or expla	ription ription al data anatio	n of field n of laboratory a (if any). on of symbols and	Notes:						
Bori	ngs backfilled with soil cuttings upon completion.	abbreviations Elevations drawing.	ons. interpol	lated fr	om to	pographic							
∇	WATER LEVEL OBSERVATIONS Water encountered at 48'						Boring Started	1: 9/16/20	16	Borin	g Com	oleted: 9/16/20	016
		1 11	51 Lost	Mound	d Dr S	Ste 135	Drill Rig: All-T	errain Ve	hicle	Drille	er: Tri-S	tate	
			Ch	attanoo	oga, ⊺	ΓN	Project No.: E	2165009		Exhib	oit: A	\-11	

	B	ORIN	١G	LO	G	NO. B-5	Α				F	Page 2 of 3	3
I	PROJECT: Dupont Pumping Station and Ta	ank			CL	ENT: CDM	Smith	-NI					
	SITE: 1615 Memphis Drive Chattanooga, Tennessee					Chatt	anooga, i	N					
	Approximate Surface Elev: 657.5	(Ft.) +/- ON (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	FAT CLAY (CH), with rock fragments, angular, reddish-brown, very stiff (<i>continued</i>) - low recovery in 38.5'-40' sample		-		\times	7-7-10 N=17			2.0 (HP)		22		
TERRACON2015.GDT 10/17/16	- no recovery in 43.5'-45' sample		40 - - 45 -		\times	13-9-7 N=16							
IN AND TANK.GPJ	- no recovery in 48.5'-50' sample	605 5+/-	- - 50 -		\times	14-11-12 N=23							
165009. DUPONT PUMPING STATIO	FAT CLAY (CH), with rock fragments, angular, reddish-brown, soft				\times	1-1-1 N=2					30		
SMART LOG-NO WELL E2	63.0 Auger Refusal at 63.0' Begin NQ2 Wireline Rock Core - Core barrel skipped off edge of rock, no sample	594.5+/-	60			<u>RUN 1</u> Depth: 63.0'-68.0' Run Length:	0	0					
ROM ORIGINAL REPORT. GEC	68.2 LIMESTONE, light gray, concoidal fracture	<u>589.5+/-</u>	- - 70 - -			5.0' <u>RUN 2</u> Depth: 68.2'-73.2' Run Length: 5.0'	94	37					
PARATED F	Stratification lines are approximate. In-situ, the transition may	be gradua	al.				Hammer Ty	pe: Auto	omatic				
G IS NOT VALID IF SEI	vancement Method: 0'-63.0' Hollow Stem Auger 63.0'-83.2' NQ2 Wireline Coring andonment Method: Borings backfilled with soil cuttings upon completion.	See Exhibit procedures See Appen procedures See Appen abbreviatio Elevations	t A-3 for adix B for and ad adix C for ons. interpol	r descr or desc Iditiona or expla ated fr	ription ription al data anatio	of field n of laboratory a (if any). n of symbols and pographic	Notes:						
NG LO	WATER LEVEL OBSERVATIONS						Boring Started	1: 9/16/20)16	Borin	ıg Com	oleted: 9/16/20	016
BORI	∠ Water encountered at 48'		2			CON	Drill Rig: All-T	errain Ve	ehicle	Drille	er: Tri-S	tate	
THIS			51 Lost Ch	Moun attano	d Dr S oga, ⊺	6te 135 ⁻ N	Project No.: E	2165009		Exhil	oit: A	\-11	

		E	BORII	NG	LO	G	NO. B-5	A				F	Page 3 of 3	3
ĺ	PR	OJECT: Dupont Pumping Station and	Tank			CL	IENT: CDM	Smith	FNI				-	
	SIT	E: 1615 Memphis Drive Chattanooga, Tennessee					Chatt	anooya, i						
	GRAPHIC LOG	LOCATION See Exhibit A-2 Approximate Surface Elev: 657 DEPTH	.5 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	Atterberg Limits	PERCENT FINES
17/16	 	LIMESTONE, light gray, concoidal fracture (continued)	<u> </u>	75			RUN 3 Depth: 73.2'-78.2' Run Length: 5.0'	96	68					
CON2015.GDT 10/	- ·			- -			RUN 4 Depth: 78.2'-83.2' Run Length: 5.0'	98	76					
ERRA		83.2 Coring Terminated at 83.2 Feet	574.5+/-	. –										
0M ORIGINAL REPORT. GEO SMART LOG-NO WELL E2165009. DUPONT PUMPING STATION AND TANK GPU														
ATED FF		Stratification lines are approximate. In-situ, the transition ma	ay be gradu	al.				Hammer Ty	pe: Auto	matic				
SEPAF	Advan	cement Method:	Soo Evelik	.it Λ Ο f	deac	rintic	a of field	Notes [.]						
DG IS NOT VALID IF	0'-6 63.0 Aband Bori	3.0' Hollow Stem Auger 2'-83.2' NQ2 Wireline Coring Ionment Method: ings backfilled with soil cuttings upon completion.	See Exhib procedure See Appe procedure See Appe abbreviations drawing.	nt A-3 for s. ndix B fo s and ad ndix C fo ons. s interpol	desci or desc lditiona or expla ated fr	ription al dat anation rom t	n of laboratory a (if any). on of symbols and opographic							
ING LC	\bigtriangledown	WATER LEVEL OBSERVATIONS Water encountered at 48'						Boring Started	d: 9/16/20)16	Borir	ng Com	oleted: 9/16/20	016
S BOR			į II	51 Lost	Монр	d Dr	Ste 135	Drill Rig: All-T	errain Ve	ehicle	Drille	er: Tri-S	tate	
ΞĦ				Ch	attano	oga,	TN	Project No.: E	2165009		Exhil	bit: A	A-11	

		B	OR	ING	L	C	NO. B-	6				F	Page 1 of	1
ĺ	PR	OJECT: Dupont Pumping Station and Ta	ank			CL	IENT: CDM Chatt	Smith	 N					
	SIT	E: 1615 Memphis Drive Chattanooga, Tennessee					- Tak							
	GRAPHIC LOG	LOCATION See Exhibit A-2 Surface Elev.: 657 DEPTH ELEVATIO	7.7 (Ft.) DN (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	PERCENT FINES
		LEAN CLAY (CL), brown, very stiff, trace roots	654.5	_		X	5-6-9 N=15			4.0 (HP)				
DT 10/17/16		LEAN CLAY (CL), brown, very stiff, trace angular rock fragments 5.5	652	- 5 -	-		5-7-13 N=20			3.5 (HP)				
CON2015.GE		FAT CLAY (CH), reddish-brown, very stiff, trace angular rock fragments, black mineral staining		_	-		8-9-10 N=19			2.75 (HP)				
GPJ TERRA				- 10- -	-	X	4-8-13 N=21			3.0 (HP)				
I AND TANK.		12.0 FAT CLAY (CH), reddish-brown, stiff, trace angular rock fragments, black mineral staining	645.5	-			3-5-6			2.25				
ING STATION				15- - -			N=11							
PONT PUMP				- - 20-	-		4-4-5 N=9			1.5 (HP)				
2165009.DUF				-	-									
NO WELL E				_ 25- _	-	X	4-4-5 N=9			2.25 (HP)				
SMART LOG-				-			2-3-9			2.0				
EPORT. GEO:		30.0 Boring Terminated at 30 Feet	627.5	30-			N=12			(HP)				
OM ORIGINAL R														
ARATED FR		Stratification lines are approximate. In-situ, the transition may	be gradu	al.				Hammer Ty	pe: Auto	omatic				
S NOT VALID IF SEF	Advano Hollo Abando Bori	cement Method: ow Stem Auger p onment Method: ngs backfilled with soil cuttings upon completion.	ee Exhib rocedure ee Apper rocedure see Apper bbreviatio	it A-3 for s. ndix B fo s and ac ndix C fo ons.	r desc or desc Idition or expl	riptior criptio al dat anatio	n of field n of laboratory a (if any). on of symbols and	Notes:						
NG LOG IS		E WATER LEVEL OBSERVATIONS	levations	s provide	d by c	lient.		Boring Started	: 3/25/20)16	Borin	ıg Com	oleted: 3/25/20	016
IIS BORI		IND THEE WATER ODSERVED		CI 51 Lost	Moun	d Dr	CON Ste 135	Drill Rig: All-T	errain Ve	ehicle	Drille	er: Tri-S	tate	
† [Ch	attano	oga, ˈ	IN	Project No.: E	2165009		Exhil	oit: A	\ -12	

			BORI	NG	LC	G	NO. B-6	A				F	Page 1 of ≎	3
	PR	OJECT: Dupont Pumping Station and	Tank			CL	IENT: CDM	Smith	-N				-	
	SIT	E: 1615 Memphis Drive Chattanooga, Tennessee					onati	unoogu, i						
	GRAPHIC LOG	LOCATION See Exhibit A-2 Approximate Surface Elev: 65 DEPTH ELEV/	7.5 (Ft.) +/- ATION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	<u>1. str</u>	0.7 TOPSOIL LEAN CLAY (CL), trace rock fragments,	657+/-	_			14-28-22			4.5		16		
/16		angular, brown, very stiff, trace roots		_	-	\square	N=50			(HP)				
T 10/17		5.5	652+/-	5-	-	X	13-9-8 N=17			4.0 (HP)		10		
N2015.GD		FAT CLAY (CH), trace rock fragments, angular, reddish-brown, stiff to very stiff		-		\square	13-15-11 N=26					10		
TERRACO				- - 10-		\mathbf{X}	5-7-9 N=16			1.25 (HP)		23		
FANK.GPJ				_	-									
L DNA NOI				_ 15_	-	\square	5-5-5 N=10			2.0 (HP)		24		
PING STA1				-	-									
NUT PUM				-	-		3-3-5 N=8			2.5 (HP)		18		
5009.DUPC				20										
ELL E216				-	-	\mathbf{X}	5-7-9 N=16			2.5 (HP)		24		
OG-NO WI				25-						()				
SMART L				_	-		5-7-9			2.5		31		
ORT. GEC				30-			N=10							
GINAL REF				-			4-13-7			2.0		23		
ROM ORIG			000 5.4	35-	-		N=20			(HP)				
RATED FF		Stratification lines are approximate. In-situ, the transition n	nay be gradu	al.	1			Hammer Ty	pe: Auto	matic				<u> </u>
IOT VALID IF SEP#	Advan Holl Aband	cement Method: ow Stem Auger onment Method:	See Exhib procedure See Appe procedure See Appe	oit A-3 fo es. endix B fo es and ac endix C fo	r desc or desc ddition or expl	ription cription al data anatic	n of field n of laboratory a (if any). nn of symbols and	Notes:						
OG IS N	Bori	ngs backfilled with soil cuttings upon completion.	abbreviati Elevations drawing	ons. s interpo	lated f	rom to	opographic							
RING L	\Box	WATER LEVEL OBSERVATIONS Water encountered at 32.5'	ר					Boring Started	I: 9/16/20)16	Borin	ig Comj	oleted: 9/16/20)16
IS BOI] 💵	51 Lost	Mour	d Dr S	Ste 135	Drill Rig: All-T	errain Ve	hicle	Drille	er: Tri-S	tate	
ΗH				Ch	attanc	oga, ⁻	ΓN	Project No.: E	2165009		Exhib	oit: A	\-13	

	BOF	RINC	GΙ	_0	G	NO. B-6	Α				F	Page 2 of 3	3
PF	ROJECT: Dupont Pumping Station and Tank				CL	ENT: CDM	Smith	N					
SI	TE: 1615 Memphis Drive Chattanooga, Tennessee					Gridtte	anooya, I	N.					
GRAPHIC LOG	LOCATION See Exhibit A-2 Approximate Surface Elev: 657.5 (Ft.) DEPTH ELEVATION (F	+/- +/-	UEPIN (FL.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	FAT CLAY (CH), trace rock fragments, angular, reddish-brown to tan, stiff, black mineral staining	4	_ _ 0		\times	3-3-5 N=8			2.25 (HP)		36		
	42.5 61 FAT CLAY (CH), trace rock fragments, angular, reddish-brown to tan, soft to medium stiff, black mineral staining	<u>5+/-</u> 4	- - - - - - - -		\times	2-3-3 N=6					48		
	- no recovery in 48.5'-50' sample	5			\times	6-2-2 N=4							
	- no recovery in 53.5'-55' sample	5	5 5 - - -		X	1-2-1 N=3							
	59.1 Auger Refusal at 59.1 598. Begin NQ2 Wireline Rock Core - Majority of strata consisted of clay with thin, scattered rock lenses. - 2.25' of LIMESTONE recovered from 59.1'-79.3'	5+/- 6				50/5" <u>RUN 1</u> Depth: 59.1'-62.7' Run Length: 3.6'	0	0					
		6	5— — —			RUN 2 Depth: 62.7'-67.7' Run Length: 5.0'	0	0					
		7	- - 0- - -			RUN 3 Depth: 67.7'-72.7' Run Length: 5.0'	0	0					
			_			<u>RUN 4</u> Depth:	0	0					
	Stratification lines are approximate. In-situ, the transition may be g	adual.					Hammer Ty	pe: Auto	omatic				
Advar Ho Aban Bo	ncement Method: See E Ilow Stem Auger See A proce See A proce donment Method: See A rings backfilled with soil cuttings upon completion.	xhibit A-3 dures. ppendix dures and ppendix viations.	3 for B for d add C for	descr desc litiona expla	iption ription al data anatio	of field n of laboratory a (if any). n of symbols and pooraphic	Notes:						
	WATER LEVEL OBSERVATIONS	ng.			5.1110		Boring Started	: 9/16/20)16	Borin	ig Comi	oleted: 9/16/20	016
	Water encountered at 32.5'	51 1	Lost I Cha	Mound	d Dr S	CON Ste 135	Drill Rig: All-T	errain Ve 2165009	ehicle	Drille Exhil	er: Tri-S pit: A	tate	
Advai Ho	- no recovery in 48.5'-50' sample - no recovery in 53.5'-55' sample 59.1 Auger Refusal at 59.1 59. Begin NQ2 Wireline Rock Core - Majority of strata consisted of clay with thin, scattered rock lenses. - 2.25' of LIMESTONE recovered from 59.1'-79.3' Stratification lines are approximate. In-situ, the transition may be gu noement Method: low Stem Auger See A abbre comment Method: ings backfilled with soil cuttings upon completion. WATER LEVEL OBSERVATIONS Water encountered at 32.5'	51		descr desc itionaa tted fr Mounn ttanoo	iption ription d data	6-2-2 N=4	Image: Constraint of the second s	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	pmatic 2)16	Borin Drille Exhib	g Com		eted: 9/16/20 ate 13

	В	ORIN	IG	LO	G	NO. B-6	A				F	Page 3 of 3	3
PR	OJECT: Dupont Pumping Station and T	ank			CL	IENT: CDM	Smith					0	
SIT	E: 1615 Memphis Drive Chattanooga, Tennessee					Chatt	anooga, i	N					
GRAPHIC LOG	LOCATION See Exhibit A-2 Approximate Surface Elev: 657.5 DEPTH ELEVATI	5 (Ft.) +/- ION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	PERCENT FINES
	 Majority of strata consisted of clay with thin, scattered rock lenses. 2.25' of LIMESTONE recovered from 59.1'-79.3' (continued) 	578+/-	75— — —			72.7'-74.1' Run Length: 1.4' RUN 5 Depth: 74.1'-79.3' Run Length: 5.2'	0	0					
	DOLOMITE, light gray	573+/-	80			RUN 6 Depth: 79.3'-84.3' Run Length: 5.0'	38	7.5					
	Coring Terminated at 84.3 Feet	/ / be gradua	П.				Hammer Ty	pe: Auto	omatic				
Advane Holl	cement Method: ow Stem Auger	See Exhibit procedures See Appen procedures	t A-3 for dix B fo and ad	r desci r desci ditiona	riptior cription al data	n of field n of laboratory a (if any).	Notes:						
Aband Bori	onment Method: ngs backfilled with soil cuttings upon completion.	See Appen abbreviatio Elevations	dix C fo ns. interpola	r expla ated fi	anatic rom to	on of symbols and opographic							
	WATER LEVEL OBSERVATIONS	arawing.					Boring Started	1: 9/16/20	016	Borir	ıg Com	oleted: 9/16/20	016
	water encountered at 32.5'		21			CON	Drill Rig: All-T	errain Ve	ehicle	Drille	er: Tri-S	tate	
			51 Lost Cha	Moun attano	d Dr S oga,	Ste 135 TN	Project No.: E	2165009		Exhil	oit: A	A-13	

		E	BOR	ING	LC	C	NO. B-	7				F	Page 1 of 3	3
	PR	OJECT: Dupont Pumping Station and Ta	ank			CL	ENT: CDM	Smith	N					
	SIT	E: 1615 Memphis Drive Chattanooga, Tennessee					onati	unoogu, i						
	GRAPHIC LOG	LOCATION See Exhibit A-2 Surface Elev.: 65 DEPTH ELEVATIO	5.6 (Ft.) ON (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	Atterberg Limits LL-PL-PI	PERCENT FINES
		<u>CLAYEY SAND WITH GRAVEL (SC)</u> , reddish-brown, medium dense to dense, with angular rock fragments			-	\times	4-18-15 N=33					19		
- 10/17/16		5.5	650	- - 5	-	\boxtimes	18-12-14 N=26					19		
N2015.GD1		FAT CLAY (CH), reddish-brown, stiff, trace angular rock fragments 8.0	647.5	-	-	\times	7-4-10 N=14			3.5 (HP)		15		
TERRACC		FAT CLAY (CH), reddish-brown, stiff to very stiff		_ 10-	-	\times	5-6-8 N=14			3.0 (HP)		23		
D TANK.GPJ				-	-									
ATION AND				_ 15—	-	\boxtimes	10-12-13 N=25			2.0 (HP)		18		
UMPING ST				-	-									
DUPONT P					-	X	8-7-9 N=16			3.25 (HP)		22		
. E2165009				-	-		3-4-5			1 75				
G-NO WELL		27.0	628 5	25- -	-	\bowtie	N=9			(HP)		24		
SMART LO		FAT CLAY (CH), reddish-brown, medium stiff, with angular rock fragments	020.3	-	-		3-4-3			1.75		25		
PORT. GEO		32.0	623.5	30- -	-		N=7	71		(HP) 1.25 (HP)	1.46	27		
RIGINAL REI		FAT CLAY (CH), reddish-brown, soft, with angular rock fragments, black mineral staining		-	-	\times	2-2-2 N=4			1.75 (HP)		31		
D FROM OF				35-	-					(
EPARATE		Stratification lines are approximate. In-situ, the transition may	be gradu	al.		I		Hammer Ty	pe: Auto	matic				
IS NOT VALID IF SE	Advan 0'-6 Cori Aband Bori	cement Method: 7.3' Hollow Stem Auger; 67.3'-80.6' NQ2 Wireline Rock ing onment Method: ngs backfilled with soil cuttings upon completion.	See Exhib procedure See Apper procedure See Apper abbreviations	it A-3 fo s. ndix B fo s and ac ndix C fo ons. s provide	r descr or desc Iditiona or expla	ription riptior al data anatio lient.	of field n of laboratory a (if any). n of symbols and	Notes:		_		_		
NG LOG		WATER LEVEL OBSERVATIONS						Boring Started	I: 3/24/20	16	Borir	ig Com	oleted: 3/24/20	016
S BORII		IND THEE WALET ODSERVED			Mound		CON Ste 135	Drill Rig: All-T	errain Ve	hicle	Drille	er: Tri-S	tate	
ΪΗ				Ch	attano	oga, 1	ÎN	Project No.: E	2165009		Exhil	oit: A	A-14	

	E	BORI	NG	LC	C	NO. B-7	7				F	Page 2 of 3	3
PR	OJECT: Dupont Pumping Station and T	ank			CL	IENT: CDM	Smith	-NI					
SIT	E: 1615 Memphis Drive Chattanooga, Tennessee					Chail	anooya, i	N					
GRAPHIC LOG	LOCATION See Exhibit A-2 Surface Elev.: 65	55.6 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	Atterberg Limits	PERCENT FINES
	<u>FAT CLAY (CH)</u> , reddish-brown, soft, with angular rock fragments, black mineral staining (continued)	613.5			\times	0-1-1 N=2	92		0.5 (HP) 0.75 (HP)		27		
	SANDY LEAN CLAY WITH GRAVEL (CL). reddish-brown, very soft to soft, trace angular rock fragments		- - 45 -		\times	0-1-1 N=2			0.5 (HP)		19	45-23-22	60
					X	5/5"			0 (HP)		_42_		
	57.0 FAT CLAY (CH), reddish-brown, stiff	598.5	 55 -		\times	0-1-0 N=1			0 (HP)		39		
	62.0 No Recovery	593.5	 60 		\times	2-6-3 N=9			1.5 (HP)		22		
	Auron Defined of 67.01		65— _		\times	0-1-1 N=2							
	Begin NQ2 Wireline Rock Coring at 67.3' LIMESTONE, siliceous, light gray, concoidal fractures in siliceous zones 70.6 LIMESTONE, siliceous, with yugs, light gray,	588.5	- - 70-			RUN 1 Depth: 67.3' - 70.6'	21	11					
	concoidal fracture in siliceous zones		-			<u>RUN 2</u> Depth: 70.6' -	66	43					
	Strautication lines are approximate. In-situ, the transition may	r be gradua	dI.				Hammer Ty	pe: Auto	mauc				
Advan 0'-6 Cori Aband Bori	cement Method: 7.3' Hollow Stem Auger; 67.3'-80.6' NQ2 Wireline Rock ng onment Method: ngs backfilled with soil cuttings upon completion.	See Exhibi procedures See Apper procedures See Apper abbreviatio Elevations	it A-3 for s. ndix B fo s and ad ndix C fo ons. provide	r desci lor desc lditiona or expla d by c	ription cription al data anatic lient.	n of field n of laboratory a (if any). on of symbols and	Notes:						
	WATER LEVEL OBSERVATIONS						Boring Started	: 3/24/20)16	Borir	ig Com	pleted: 3/24/20	016
			C			CON	Drill Rig: All-T	errain Ve	ehicle	Drille	er: Tri-S	itate	
			51 Lost Ch	Moun attano	d Dr S oga, ⁻	Ste 135 TN	Project No.: E	2165009		Exhil	oit: /	A-14	

		E	BOR	ING	LC	00	S NO. B-7	7				F	Page 3 of 3	3
	PR	OJECT: Dupont Pumping Station and T	ank			CL	IENT: CDM	Smith anooga, T	'N					
	SIT	FE: 1615 Memphis Drive Chattanooga, Tennessee												
	GRAPHIC LOG	LOCATION See Exhibit A-2 Surface Elev.: 6 DEPTH ELEVAT	55.6 (Ft.) ION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
.GDT 10/17/16		75.6 LIMESTONE, siliceous, with calcite seams, light gray	580	75			75.6' <u>RUN 3</u> Depth: 75.6' - 80.6'	94	83					
01 VALID IF SEPARATED FROM ORIGINAL REPORT. GEO SMART LOG-NO WELL E2165009. DUPONT PUMPING STATION AND TANK. GPJ TERRACON2015.	Advan 0'-6' Cori	Stratification lines are approximate. In-situ, the transition may be gradu Stratification lines are approximate. In-situ, the transition may be gradu dvancement Method: 0'-67.3' Hollow Stem Auger; 67.3'-80.6' NQ2 Wireline Rock Coring See Appe procedure See				ription	n of field on of laboratory ta (if any).	Hammer Ty	pe: Auto	matic				
LOG IS N	Bori	WATER LEVEL OBSERVATIONS	abbreviations	ons. s provide	d by c	client.	,		0/5					
RING		No free water observed						Boring Started	1: 3/24/20	016	Borin	ig Com	pleted: 3/24/20	U16
IS BO				51 Lost	Moun	d Dr	Ste 135	Drill Rig: All-T	errain Ve	ehicle	Drille	er: Tri-S	tate	
Ŧ				Ch	attano	oga,	TN	Project No.: E	2165009		Exhit	oit: A	\-14	

			BOR	ING	LC	C	NO. B-	8				F	Page 1 of 1	1
ľ	PR	OJECT: Dupont Pumping Station and	Fank			CL	IENT: CDM	Smith	N					
-	SIT	E: 1615 Memphis Drive Chattanooga, Tennessee					onau	anooga, i						
	GRAPHIC LOG	LOCATION See Exhibit A-2 Surface Elev.: 6 DEPTH ELEVA	552.5 (Ft.) ГІОN (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
	North Control	CLAYEY SAND WITH GRAVEL (SC), reddish-brown, medium dense	640.5	_	-	X	12-23-9 N=32					19	41-24-17	39
- 10/17/16		FAT CLAY (CH) , reddish-brown, stiff	647		-		5-5-5 N=10			0.75 (HP)		23		
N2015.GD1		FAT CLAY (CH), reddish-brown, very stiff, trace angular rock fragments		_	-		7-8-10 N=18			3.0 (HP)		24		
J TERRACC				_ 10—	-		5-8-13 N=21			2.25 (HP)		18		
ND TANK.GP.		12.0 FAT CLAY (CH), reddish-brown, medium stiff, trace angular rock fragments, black	640.5	_	-									
STATION AN		mineral staining		- 15 -	-	X	2-4-3 N=7			2.0 (HP)		21		
T PUMPING				-	-		2-2-4			2.5		25		
NO9.DUPON		22.0	630.5	20	-		N=6			(HP)		23		
/ELL E2165(ELASTIC SILT (MH), reddish-brown, stiff, trace angular rock fragments			-		1-3-6 N=9			1.25 (HP)		35		
T LOG-NO W		27.0 FAT CLAY (CH), reddish-brown, soft, trace	625.5	- 25	-									
GEO SMAR		angular rock fragments 30.4	622	 		X	2-2-1 N=3			0.5 (HP)		28		
L REPORT.		Auger Refusal at 30.4 Feet												
OM ORIGINA														
ARATED FR		Stratification lines are approximate. In-situ, the transition ma	iy be gradu	al.				Hammer Ty	pe: Auto	omatic				
OT VALID IF SEP	Advano Hollo Abando	cement Method: ow Stem Auger	See Exhib procedure See Apper procedure See Apper	it A-3 for s. ndix B fo s and ad ndix C fo	r desci or desc Iditiona or expla	riptior criptio al dat anatic	n of field n of laboratory a (if any). on of symbols and	Notes:						
OG IS N	Bori	ngs backfilled with soil cuttings upon completion.	abbreviations	ons. s provide	d by c	lient.								
RING L		WATER LEVEL OBSERVATIONS No free water observed						Boring Started	1: 3/24/20	016	Borin	ig Com	pleted: 3/24/20	016
THIS BC				51 Lost Ch	Moun attano	d Dr s oga,	Ste 135	Project No.: E	errain Ve 2165009		Exhil	oit: /	A-15	

	BORING LOG NO. B-9 Page 1 of 1													
	PROJECT: Dupont Pumping Station and Tank						CLIENT: CDM Smith						-	
	SIT	E: 1615 Memphis Drive Chattanooga, Tennessee					onau	anooga, i						
	GRAPHIC LOG	LOCATION See Exhibit A-2 Surface Elev.: 6 DEPTH ELEVAT	53.5 (Ft.) FION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	PERCENT FINES
		FAT CLAY (CH), brown, medium stiff, with angular rock fragments	650 5	_	-	X	2-3-3 N=6			1.0 (HP)				
r 10/17/16		FAT CLAY (CH), brown, stiff	648	- - 5	-	\mid	3-4-7 N=11			1.25 (HP)				
0N2015.GD1		FAT CLAY (CH), reddish-brown, stiff, trace angular rock fragments				X	3-6-7 N=13			1.75 (HP)				
U TERRACC				_ 10—	-	\mid	3-5-8 N=13	_		2.25 (HP)				
ND TANK.GF				-	_		259			2.0				
STATION A				15- _	-	X	N=13			3.0 (HP)				
IT PUMPING				-	-		3-4-6			2.0				
5009.DUPON				20 -	-		N=10			<u>(nr)</u>				
WELL E216		- Low recovery in 23.5'-25' sample		- - 25-	-	\mid	5-4-5 N=9			1.25 (HP)				
D SMART LOG-NO		27.0 FAT CLAY (CH) , reddish-brown, medium stiff, trace angular rock fragments, black mineral staining	626.5	-	-		3-3-4 N-7			0.75				
ROM ORIGINAL REPORT. GEO		Boring Terminated at 30 Feet	023.3	30-										
PARATED FF		Stratification lines are approximate. In-situ, the transition ma	y be gradu	al.				Hammer Ty	pe: Auto	matic				
)G IS NOT VALID IF SEF	Advano Hollo Abando Borii	cement Method: ow Stem Auger onment Method: ngs backfilled with soil cuttings upon completion.	See Exhib procedure See Appe procedure See Appe abbreviations	it A-3 for s. ndix B for s and ac ndix C for ons. s provide	r desc or desc Idition or expl ed by c	riptior criptio al dat anatio	n of field n of laboratory a (if any). on of symbols and	Notes:						
SING LC		WATER LEVEL OBSERVATIONS No free water observed	RVATIONS					Boring Started	1: 3/10/20)16	Borir	ıg Com	oleted: 3/10/20	016
						d Dr s	Ste 135	Drill Rig: All-T Project No.: E	errain Ve 2165009	ehicle	Drille Exhil	er: Tri-S pit: A	tate A-16	

	В	ORI	NG	LO	G	NO. B-9	Α				F	Page 1 of 2	2
PR	OJECT: Dupont Pumping Station and T	ank			CLIENT: CDM Smith								
SIT	E: 1615 Memphis Drive Chattanooga, Tennessee												
GRAPHIC LOG	LOCATION See Exhibit A-2 Approximate Surface Elev: 652.5 DEPTH ELEVAT	5 (Ft.) +/- ION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	PERCENT FINES
<u>x1 /x</u> . <u>x1 /x</u>	0.7 TOPSOIL LEAN CLAY (CL) with rock fragments	652+/-				20-30-28			45				
	angular, brown, very stiff		_			N=58			(HP) 4.5		6		
	5.5 FAT CLAY (CH) with rock fragments	647+/-	5 —		\square	N=17			(HP)				
	angular, reddish-brown, very stiff		_		X	10-12-14 N=26					17		
					X	10-7-20 N=27			4.5 (HP)		21		
			_			E 7 11			2.05				
			15— _		X	N=18			3.25 (HP)		33		
	17.0 635.5+/- FAT CLAY (CH), trace rock fragments, angular, reddish-brown, stiff to very stiff, black mineral staining		_			457			2.75				
			20— _		X	N=12			(HP)		32		
			_			2-4-6			2.5		22		
			25— _		\cap	N=10			(HP)		32		
			-		\times	3-6-9			2.5 (HP)		28		
			30— _ _			14 10			(111)				
			 35		\times	4-4-5 N=9			1.5 (HP)		28		
	37.0	615 5+/-											
	Stratification lines are approximate. In-situ, the transition may	y be gradua	al.				Hammer Ty	pe: Auto	matic				
Advan Holl	cement Method: ow Stem Auger	See Exhibi procedures See Apper procedures	it A-3 for s. ndix B fo s and ad	[·] desci r desc ditiona	ription criptior al data	of field n of laboratory a (if any).	Notes:						
Aband Bori	onment Method: ngs backfilled with soil cuttings upon completion.	See Apper abbreviation Elevations drawing.	ndix C fo ons. interpol	r expli ated fi	anatio rom to	n ot symbols and pographic							
	No free water observed	זר					Boring Started	1: 9/16/20	16	Borin	g Comp	oleted: 9/16/20)16
			51 Lost	Moun	d Dr S	Ste 135	Drill Rig: All-T	errain Ve	hicle	Drille	er: Tri-S		
			Cn	ลแสกอ	ioya, I	IN	Project No.: E2165009 Exhibit: A-17						

	BORING LOG NO. B-9A Page 2 of 2													
PR	OJECT: Dupont Pumping Station and T	ank			CLIENT: CDM Smith									
SIT	E: 1615 Memphis Drive Chattanooga, Tennessee				Chattanooga, TN									
GRAPHIC LOG	LOCATION See Exhibit A-2 Approximate Surface Elev: 652.5	5 (Ft.) +/-	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	PERCENT FINES	
	FAT CLAY (CH), trace rock fragments, angular, reddish-brown, medium stiff, black mineral staining		-		X	7-4-3 N=7			1.5 (HP)		22			
	40.5 Auger Refusal at 40.5 Begin NQ2 Wireline Rock Core DOLOMITE, light gray	612+/-	40 45			RUN 1 Depth: 40.5' - 45.5' Run Length: 5.0'	93	61						
1	- no recovery					RUN 2 Depth: 45.5' - 50.5' Run Length: 5.0'	- 0	0						
			 55			RUN 3 Depth: 50.5' - 55.5' Run Length: 5.0'	. 0	0						
	- Coring terminated due to core barrel angling off rock pinnacle 67.5 55 Coring Terminated at 67.5 Feet	ng 6	 60			RUN 4 Depth: 55.5' - 60.5' Run Length: 5.0'	0	0						
			- - - 65-			<u>RUN 5</u> Depth: 60.5' - 65.5' Run Length: 5.0'	0	0						
			_			RUN 6 Depth: 65.5' - 67.5' Run Length: 2.0'	- 0	0						
	Stratification lines are approximate. In-situ, the transition may	/ be gradua	al.				Hammer Ty	pe: Auto	matic					
Advan Holl Aband Bori	Advancement Method: Hollow Stem Auger		See Exhibit A-3 for description of field procedures. See Appendix B for description of laboratory procedures and additional data (if any). See Appendix C for explanation of symbols and abbreviations.				Notes:							
	WATER LEVEL OBSERVATIONS						Boring Started	1: 9/16/20	016	Borir	ng Com	pleted: 9/16/20	016	
	No free water observed		C (CON	Drill Rig: All-T	errain Ve	ehicle	Drille	er: Tri-S	itate		
51 Lost Mour Chattanc						Ste 135 TN	Project No.: E2165009				Exhibit: A-17			

PROJECT: Dupont Pumping Station and Tank CLIENT: CDM Smith Chattanooga, TN SITE: 1615 Memphis Drive Chattanooga, Tennessee CLIENT: CDM Smith Chattanooga, TN Opging and and and the station and Tank CLIENT: CDM Smith Chattanooga, TN Opging and and and the station and Tank CLIENT: CDM Smith Chattanooga, TN Opging and the station and the st		B	BORI	NG	LC	G	NO. B-1	0				F	<u>مو</u> عور موجع	2		
Characterization of the second	PRO	PROJECT: Dupont Pumping Station and Tank						CLIENT: CDM Smith Chattanooga TN								
Display Display Bit Status Bit Status <th>SITE</th> <th>: 1615 Memphis Drive Chattanooga, Tennessee</th> <th></th> <th></th> <th></th> <th></th> <th>onati</th> <th>anooga, i</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	SITE	: 1615 Memphis Drive Chattanooga, Tennessee					onati	anooga, i								
EAT CLAY (CH), reddish-brown, very stiff, trace angular rock fragments, black mineral staining 3-6-10 1.0 - No recovery in 6'-7.5' sample - - - No recovery in 6'-7.5' sample - - - No recovery in 13.5'-15' sample - - - Solution - - - No recovery in 13.5'-15' sample - - - Solution - - - Solu	GRAPHIC LOG	OCATION See Exhibit A-2 Surface Elev.: 6 DEPTH ELEVAT	55.6 (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES		
- No recovery in 6'-7.5' sample 5 8-10-15 2.25 (HP) - No recovery in 6'-7.5' sample 7-9-12 - - - No recovery in 13.5'-15' sample 6-11-7 - - - No recovery in 13.5'-15' sample - - - - - No recovery in 13.5'-15' sample - - - - - No recovery in 13.5'-15' sample - - - - - No recovery in 13.5'-15' sample - - - - - No recovery in 13.5'-15' sample - - - - - No recovery in 13.5'-15' sample - - - - - Stiff - - - - - - Stiff - - - - - - Stiff - - - - - - - Stiff - - - - - - - Stiff - - - - - - - - Stiff - - - - -		FAT CLAY (CH), reddish-brown, very stiff, trace angular rock fragments, black mineral staining		_	-	\times	3-6-10 N=16			1.0 (HP)						
- No recovery in 6'-7.5' sample - No recovery in 13.5'-15' sample 22.0 EAT CLAY (CH), reddish-brown, medium stiff 27.0 EAT CLAY (CH), reddish-brown, very stiff 30.4 Auger Refusal at 30.4' LIMESTORE Rock Coring at 30.4' LIMESTORE with Calcing at 30.4				- 5 -	-	\times	8-10-15 N=25			2.25 (HP)						
- No recovery in 13.5'-15' sample		- No recovery in 6'-7.5' sample		-	-		7-9-12 N=21									
- No recovery in 13.5'-15' sample - No recovery in 13.5'-15' sample 15 15 20 22.0 EAT CLAY (CH), reddish-brown, medium stiff 27.0 EAT CLAY (CH), reddish-brown, very stiff 30.4 Auger Refusal at 30.4' Begin NQ2 Wireline Rock Coring at 30.4' LIMESTONE, with calcite seams, light gray				 10 -		X	6-11-7 N=18									
22.0 633.5 FAT CLAY (CH), reddish-brown, medium stiff 27.0 FAT CLAY (CH), reddish-brown, medium 25 27.0 628.5 9 8-12-13 2.75 8-12-13 2.75 Begin NQ2 Wireline Rock Coring at 30.4' 625 30.4 Auger Refusal at 30.4' 625 30.4 LIMESTONE, with calcite seams, light gray		- No recovery in 13.5'-15' sample		- 15-	-	\times	3-5-7 N=12									
22.0 633.5 FAT CLAY (CH), reddish-brown, medium stiff 27.0 FAT CLAY (CH), reddish-brown, medium 25- 27.0 FAT CLAY (CH), vellowish-brown, wery stiff 30.4 Auger Refusal at 30.4' Begin NQ2 Wireline Rock Coring at 30.4' LIMESTONE, with calcite seams, light gray				-	-											
FAT CLAY (CH), reddish-brown, medium stiff 27.0 FAT CLAY (CH), reddish-brown, medium 25 7 FAT CLAY (CH), reddish-brown, medium 27.0 FAT CLAY (CH), yellowish-brown, very stiff 30.4 Auger Refusal at 30.4' Begin NQ2 Wireline Rock Coring at 30.4' LIMESTONE, with calcite seams, light gray			000 5	- 20- -	-	\mid	6-8-8 N=16			2.5 (HP)						
27.0 628.5 FAT CLAY (CH), yellowish-brown, very stiff 30.4 Auger Refusal at 30.4' Begin NQ2 Wireline Rock Coring at 30.4' LIMESTONE, with calcite seams, light gray		FAT CLAY (CH), reddish-brown, medium stiff	033.5	-	-	\times	4-3-3 N=6			1.25 (HP)						
30.4 Auger Refusal at 30.4' 625 30 Begin NQ2 Wireline Rock Coring at 30.4' 30.4' LIMESTONE, with calcite seams, light gray 5000000000000000000000000000000000000		7.0 FAT CLAY (CH), yellowish-brown, very stiff	628.5	25	-											
LIMESTONE. with calcite seams, light gray	30	D.4 Auger Refusal at 30.4' Regin NO2 Wireline Rock Coring at 30.4'	625	- 30-	-		8-12-13 N=25			2.75 (HP)						
HUN 1 → Depth: 30.4' - 82 80 35.4'		LIMESTONE, with calcite seams, light gray		-	-		<u>RUN 1</u> Depth: 30.4' - 35.4'	82	80							
FAT CLAY (CH), trace limestone fragments, angular 620 35-		5.4 FAT CLAY (CH) , trace limestone fragments, angular	620	35-	-											
Stratification lines are approximate. In-situ, the transition may be gradual. Hammer Type: Automatic		Stratification lines are approximate. In-situ, the transition may	y be gradu	ial.				Hammer Ty	pe: Auto	omatic						
Advancement Method: Hollow Stem Auger Advancement Method: Hollow Stem Auger Advancement Method: Abandonment Method: Beck Appendix B for description of laboratory procedures and additional data (if any). See Appendix C for explanation of symbols and Abandon method: Devices heal efforts are an additional data (if any).	Advanced Hollow	ment Method: v Stem Auger	See Exhib procedure See Apper procedure See Apper	oit A-3 fo es. endix B fo es and ac endix C fo	r desc or desc ddition or expl	ription cription al data anatio	of field n of laboratory a (if any). n of symbols and	Notes:								
Boilings backlined with soil cuttings upon completion. abbreviations. Biology abbreviations. Elevations provided by client.	Boring		Elevations	s provide	ed by c	lient.										
VVALER LEVEL OBSERVATIONS Boring Started: 3/24/2016 Boring Completed: 3/24 No free water observed Image: Completed: 3/24 Dellipsi: All Termin Vahiate Dell		No free water observed						Boring Started	1: 3/24/20)16	Borin		pleted: 3/24/20	016		
Image: Signature Image: Signature <td></td> <td></td> <td colspan="4">51 Lost Moun</td> <td>Ste 135</td> <td>Project No.: E</td> <td>2165009</td> <td>enicie</td> <td>Exhit</td> <td>pit: /</td> <td>4-18</td> <td></td>			51 Lost Moun				Ste 135	Project No.: E	2165009	enicie	Exhit	pit: /	4-18			

	BORING LOG NO. B-10 Page 2 of 2												
	PR	OJECT: Dupont Pumping Station and Tank	С	CLIENT: CDM Smith									
	SIT	E: 1615 Memphis Drive Chattanooga, Tennessee			Cha	llanooya,							
	GRAPHIC LOG	LOCATION See Exhibit A-2 Surface Elev.: 655.6 (F DEPTH ELEVATION (F	t.) (:t.)	WATER LEVEL	OBSERVATIONS	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	ATTERBERG LIMITS LL-PL-PI	PERCENT FINES
6		FAT CLAY (CH), trace limestone fragments, angular (continued)	515 4 0 ⁻	_		<u>RUN 2</u> Depth: 35.4' 40.4'	'- 24	0					
:ON2015.GDT 10/17/1		NO RECOVERY 61 43.0 61 LIMESTONE, with calcite seams, light gray 45.4 61	2.5 510 45			<u>RUN 3</u> Depth: 40.4' 45.4'	'- 34	30					
D TANK.GPJ TERRAC		NO RECOVERY	505 50	-		RUN 4 Depth: 45.4' 50.4'	'- 0	0					
JMPING STATION AND		LIMESTONE, with calcite seams, light gray	55	-		<u>RUN 5</u> Depth: 50.4' 55.4'	'- 50	50					
E2165009.DUPONT PL			60	-		RUN 6 Depth: 55.4' 60.4'	'- 100	100					
ART LOG-NO WELL		65.4	<u>590</u> 65-	- - -		<u>RUN 7</u> Depth: 60.4' 65.4'	'- 94	94					
D FROM ORIGINAL REPORT. GEO SM		Coring Terminated at 65.4 Feet											
PARATE		Stratification lines are approximate. In-situ, the transition may be gr	adual.				Hammer Ty	vpe: Auto	matic				
DG IS NOT VALID IF SEF	Advand Holl Aband Bori	cement Method: ow Stem Auger See E procec See A procec See A See A	whibit A-3 the second s	escript onal o xplana	tion of field tion of laboratory data (if any). ation of symbols and nt.	Notes:							
SING LC		WATER LEVEL OBSERVATIONS No free water observed		-			Boring Started	d: 3/24/20)16	Borin	ig Com	oleted: 3/24/20	016
IS BOF			51 Lo	st Mo		Dr Ste 135	Drill Rig: All-T	errain Ve	ehicle	Drille	er: Tri-S	tate	
臣			anooga	ga, TN Project No.: E2165009 Exhibit: A-18					A-18				

BORING LOG NO. B-11 Page 2 of 2												
PROJECT: Dupont Pumping Station and	Tank			CLIENT: CDM Smith								
SITE: 1615 Memphis Drive Chattanooga, Tennessee					Chau	anooga, i	IN					
UCATION See Exhibit A-2	655.2 (Ft.) TION (Ft.)	DEPTH (Ft.)	WATER LEVEL OBSERVATIONS	SAMPLE TYPE	FIELD TEST RESULTS	RECOVERY (%)	RQD (%)	LABORATORY TORVANE/HP (tsf)	UNCONFINED COMPRESSIVE STRENGTH (tsf)	WATER CONTENT (%)	Atterberg Limits LL-PL-Pi	PERCENT FINES
FAT CLAY (CH), reddish-brown, very soft to soft, trace angular rock fragments		_			0-1-2			0.25		30		
		40— _			N=3	100		(HP) 1.25 (HP)		28		
- Low recovery in 43.5'-45' sample		_	-	$\overline{\times}$	0-0-0			0		27		
47.0	608	45— _			N=0			(HP)				
FAT CLAY (CH), brown - Low recovery in 48.5'-50' sample		_		\times	2-50/4"					67		
52.0 EAT CLAY (CH) raddich brown with	603	50— _ _										
angular rock fragments 54.8 Auger Refusal at 54.75'	600.5	 55		\times	5-12-50/3"			0 (HP)		42		
55.7 Begin NQ2 Wireline Rock Coring at 54.75' 56.7 LIMESTONE, siliceous, with vugs, light gray, concoidal fracture in siliceous zones NO RECOVERY, clay seam	<u>599.5</u> <u>598.5</u> <u>597</u>	-			RUN 1 Depth: 54.75' 59.0'	- 78	77					
LIMESTONE, mechanically fractured core, with siliceous zones Coring Terminated at 59 Feet		_										
Stratification lines are approximate. In-situ, the transition ma	ay be gradua	al.				Hammer Ty	pe: Auto	matic				
Advancement Method: Hollow Stem Auger	See Exhibi procedures See Apper procedures	it A-3 for s. ndix B fo s and ad	⁻ descr r desc Iditiona	riptior ription al data	n of field n of laboratory a (if any).	Notes:						
Abandonment Method: Borings backfilled with soil cuttings upon completion.	See Apper abbreviation Elevations	ndix C fo ons. provide	or expla d by cl	anatic lient.	on of symbols and							
WATER LEVEL OBSERVATIONS Water encountered at 25'	הר					Boring Started	I: 3/10/20	16	Borin		bleted: 3/10/20)16
51 Lost Mour Chattanc					Ste 135 TN	Project No.: E	2165009		Exhit	pit:	A-19	

APPENDIX B SUPPORTING INFORMATION

Geotechnical Engineering Report

DuPont Pumping Station and Tank
Chattanooga, Tennessee
October 17, 2016 Terracon Project No. E2165009

Laboratory Testing

The soil and samples were delivered to the laboratory for testing. The project engineer reviewed the boring logs developed in the field and assigned laboratory testing on select samples to provide the data necessary for the anticipated designs. Laboratory testing was accomplished to determine index properties, such as moisture content, Atterberg limits, and grain size distribution analysis. Additionally unconfined compression strength testing and consolidation testing were performed on relatively undisturbed Shelby tube samples collected at the site. In some cases, variations to procedural standards are applied as a result of local practice or professional judgment.

Descriptive classifications of the soils indicated on the boring logs are in accordance with the enclosed General Notes and the Unified Soil Classification System. Also shown are estimated Unified Soil Classification Symbols. A brief description of this classification system is attached to this report.

GRAIN SIZE DISTRIBUTION

GRAIN SIZE: USCS 1 E2165009 DUPONT PUMPING STATION AND TANK.GPJ 35159097 - ATTERBERG ISSUE GPJ 10/13/16 ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

GRAIN SIZE DISTRIBUTION

GRAIN SIZE: USCS 1 E2165009 DUPONT PUMPING STATION AND TANK.GPJ 35159097 - ATTERBERG ISSUE GPJ 10/13/16 ABORATORY TESTS ARE NOT VALID IF SEPARATED FROM ORIGINAL REPORT.

UNCONFINED COMPRESSION TEST

APPENDIX C SUPPORTING DOCUMENTS

GENERAL NOTES

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	RELATIVE DENSITY OF COARSE-GRAINED SOILS (More than 50% retained on No. 200 sieve.) Density determined by Standard Penetration Resistance Includes gravels, sands and silts.		NED SOILS sieve.) on Resistance ts.	CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance			
RMS	Descriptive Term (Density)	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.	Descriptive Term (Consistency)	Unconfined Compressive Strength, Qu, tsf	Standard Penetration or N-Value Blows/Ft.	Ring Sampler Blows/Ft.
H TE	Very Loose	0 - 3	0 - 6	Very Soft	less than 0.25	0 - 1	< 3
IGTI	Loose	4 - 9	7 - 18	Soft	0.25 to 0.50	2 - 4	3 - 4
IREN	Medium Dense	10 - 29	19 - 58	Medium-Stiff	0.50 to 1.00	4 - 8	5 - 9
S	Dense	30 - 50	59 - 98	Stiff	1.00 to 2.00	8 - 15	10 - 18
	Very Dense	> 50	<u>></u> 99	Very Stiff	2.00 to 4.00	15 - 30	19 - 42
				Hard	> 4.00	> 30	> 42

RELATIVE PROPORTIONS OF SAND AND GRAVEL

Descriptive Term(s) of other constituents

Trace

With

Modifier

Percent of Dry Weight < 15 15 - 29 > 30

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents Trace With Modifier Percent of Dry Weight < 5 5 - 12 > 12 **GRAIN SIZE TERMINOLOGY**

Major Component of Sample Boulders Cobbles Gravel Sand

Silt or Clay

Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

Particle Size

PLASTICITY DESCRIPTION

<u>Term</u> Non-plastic Low Medium High

Plasticity Index

Exhibit C-1

UNIFIED SOIL CLASSIFICATION SYSTEM						
	Soil Classification					Soil Classification
Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests A Group Symbol Group Name ^B					Group Name ^B	
	Gravels:	Clean Gravels:	$Cu \ge 4$ and $1 \le Cc \le 3^{E}$		GW	Well-graded gravel F
	More than 50% of	Less than 5% fines ^C	Cu < 4 and/or 1 > Cc > 3	E	GP	Poorly graded gravel F
	coarse fraction retained on No. 4 sieve	Gravels with Fines:	Fines classify as ML or M	ΛH	GM	Silty gravel F,G,H
Coarse Grained Soils:		More than 12% fines ^c	Fines classify as CL or CH		GC	Clayey gravel F,G,H
on No. 200 sieve	Sands: 50% or more of coarse fraction passes No. 4 sieve	Clean Sands: Less than 5% fines ^D	$Cu \ge 6$ and $1 \le Cc \le 3^{E}$		SW	Well-graded sand ¹
			$Cu < 6$ and/or $1 > Cc > 3^{E}$		SP	Poorly graded sand
		Sands with Fines: More than 12% fines ^D	Fines classify as ML or MH		SM	Silty sand G,H,I
			Fines classify as CL or CH		SC	Clayey sand G,H,I
	Silts and Clays: Liquid limit less than 50	Inorganic:	PI > 7 and plots on or above "A" line ^J		CL	Lean clay ^{K,L,M}
			PI < 4 or plots below "A" line ^J		ML	Silt ^{K,L,M}
		Organic:	Liquid limit - oven dried	.0.75 01	Organic clay K,L,M,N	
Fine-Grained Soils:			Liquid limit - not dried	< 0.75	< 0.75 OL	Organic silt K,L,M,O
No. 200 sieve		Inorgania	PI plots on or above "A" line		СН	Fat clay ^{K,L,M}
	Silts and Clays:	Inorganic:	PI plots below "A" line		MH	Elastic Silt K,L,M
	Liquid limit 50 or more	Ormania	Liquid limit - oven dried	< 0.75 OH	Organic clay K,L,M,P	
		Organic.	Liquid limit - not dried			Organic silt K,L,M,Q
Highly organic soils: Primarily organic matter, dark in color, and organic odor PT Peat				Peat		

^A Based on the material passing the 3-inch (75-mm) sieve

- ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- ^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- ^D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

^E Cu = D₆₀/D₁₀ Cc =
$$\frac{(D_{30})^2}{D_{10} \times D_{60}}$$

 $^{\sf F}$ If soil contains \geq 15% sand, add "with sand" to group name. $^{\sf G}$ If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

- ^H If fines are organic, add "with organic fines" to group name.
- If soil contains \geq 15% gravel, add "with gravel" to group name.
- ^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.
- ^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.
- ^L If soil contains \ge 30% plus No. 200 predominantly sand, add "sandy" to group name.
- ^M If soil contains \geq 30% plus No. 200, predominantly gravel, add "gravelly" to group name.
- ^N $PI \ge 4$ and plots on or above "A" line.
- ^o PI < 4 or plots below "A" line.
- ^P PI plots on or above "A" line.
- ^Q PI plots below "A" line.

lferracon

DESCRIPTION OF ROCK PROPERTIES

WEATHERING				
Term	Description			
Unweathered	No visible sign of rock material weathering, perhaps slight discoloration on major discontinuity surfaces.			
Slightly weathered	Discoloration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discolored by weathering and may be somewhat weaker externally than in its fresh condition.			
Moderately weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a continuous framework or as corestones.			
Highly weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discolored rock is present either as a discontinuous framework or as corestones.			
Completely weathered	All rock material is decomposed and/or disintegrated to soil. The original mass structure is still largely intact.			
Residual soil	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly transported.			

STRENGTH OR HARDNESS			
Description	Field Identification	Uniaxial Compressive Strength, PSI (MPa)	
Extremely weak	Indented by thumbnail	40-150 (0.3-1)	
Very weak	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife	150-700 (1-5)	
Weak rock	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer	700-4,000 (5-30)	
Medium strong	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer	4,000-7,000 (30-50)	
Strong rock	Specimen requires more than one blow of geological hammer to fracture it	7,000-15,000 (50-100)	
Very strong	Specimen requires many blows of geological hammer to fracture it	15,000-36,000 (100-250)	
Extremely strong	Specimen can only be chipped with geological hammer	>36,000 (>250)	

DISCONTINUITY	DESCRIPTION
---------------	-------------

Fracture Spacing (Joi	ints, Faults, Other Fractures)	Bedding Spacing (May Include Foliation or Banding)		
Description Spacing		Description	Spacing	
Extremely close	< ¾ in (<19 mm)	Laminated	< ½ in (<12 mm)	
Very close	³ ⁄ ₄ in – 2-1/2 in (19 - 60 mm)	Very thin	½ in – 2 in (12 – 50 mm)	
Close	2-1/2 in – 8 in (60 – 200 mm)	Thin	2 in – 1 ft (50 – 300 mm)	
Moderate	8 in – 2 ft (200 – 600 mm)	Medium	1 ft – 3 ft (300 – 900 mm)	
Wide	2 ft – 6 ft (600 mm – 2.0 m)	Thick	3 ft – 10 ft (900 mm – 3 m)	
Very Wide	6 ft – 20 ft (2.0 – 6 m)	Massive	> 10 ft (3 m)	

<u>Discontinuity Orientation (Angle)</u>: Measure the angle of discontinuity relative to a plane perpendicular to the longitudinal axis of the core. (For most cases, the core axis is vertical; therefore, the plane perpendicular to the core axis is horizontal.) For example, a horizontal bedding plane would have a 0 degree angle.

ROCK QUALITY DESIGNATION (RQD*)		
Description	RQD Value (%)	
Very Poor	0 - 25	
Poor	25 – 50	
Fair	50 – 75	
Good	75 – 90	
Excellent	90 - 100	

*The combined length of all sound and intact core segments equal to or greater than 4 inches in length, expressed as a percentage of the total core run length.

Reference: U.S. Department of Transportation, Federal Highway Administration, Publication No FHWA-NHI-10-034, December 2009 <u>Technical Manual for Design and Construction of Road Tunnels – Civil Elements</u>

EXHIBIT B

Rendering and Description of Planned Landscaping & Screening of Property

GENERAL NOTES NOT INCLUDED IN THIS RENDERING. PROPOSED LOCATION WOULD BE IN FRONT OF THE BERM SHOWN. FINAL PLANT SELECTIONS SHALL BE COORDINATED WITH THE LANDSCAPE DESIGNER. ADDED SCREENING OF THE STORAGE TANK.

1. PROPOSED PROCESS MECHANICAL COMPONENTS INCLUDING WET WEATHER PUMP STATION, PIPING, ETC. AS SHOWN ON PRELIMINARY SITE PLAN ARE

2. IT IS ANTICIPATED THAT ALL EXISTING OLD-GROWTH TREES ALONG ELM STREET WITHIN THE LIMITS OF CONSTRUCTION WILL BE NEED TO CLEARED TO ACCOMMODATE CONSTRUCTION OF TANK, UNDERGROUND PIPING AND WET WEATHER PUMP STATION. LOCATION AND DENSITY OF NEW TREES PLANNED ALONG FENCE LINE WILL REQUIRE COORDINATION WITH FINAL LOCATION OF PROCESS COMPONENTS.

3. TREES AND LANDSCAPING SHOWN AT BERM ARE SUGGESTIONS ONLY AND DEMONSTRATE FULLY ESTABLISHED LONG TERM GROWTH OF PLANTS.

4. THE DISTURBANCE SURROUNDING THE STORAGE TANK WILL BE KEPT TO A MINIMUM SO THAT VEGETATION AND SCREENING SURROUNDING THE TANK SHALL REMAIN. THIS INCLUDES A 30 FOOT BUFFER ALONG THE STREAM. ADDITIONAL VEGETATION WILL ALSO BE PLANTED TO FILL IN AND PROVIDE FOR

General Decision Number: TN170146 01/06/2017 TN146

Superseded General Decision Number: TN20160146

State: Tennessee

Construction Type: Heavy Including Water and Sewer Line Construction

Counties: Hamilton and Sequatchie Counties in Tennessee.

HEAVY CONSTRUCTION PROJECTS (including sewer/water construction).

Note: Under Executive Order (EO) 13658, an hourly minimum wage of \$10.20 for calendar year 2017 applies to all contracts subject to the Davis-Bacon Act for which the contract is awarded (and any solicitation was issued) on or after January 1, 2015. If this contract is covered by the EO, the contractor must pay all workers in any classification listed on this wage determination at least \$10.20 per hour (or the applicable wage rate listed on this wage determination, if it is higher) for all hours spent performing on the contract in calendar year 2017. The EO minimum wage rate will be adjusted annually. Additional information on contractor requirements and worker protections under the EO is available at www.dol.gov/whd/govcontracts.

Modification	Number	Publication	Date
0		01/06/2017	

ELEC0175-012 06/01/2016

Hamilton County

	Rates	Fringes
ELECTRICIAN	\$ 30.56	14.5%+6.65
ELEC0429-008 06/01/2016		
Sequatchie County		
	Rates	Fringes
Electrician	\$ 25.42	12.17
ENGI0917-022 05/01/2015		
	Rates	Fringes
Operating Engineers: Bulldozer and Crane Forklift	\$ 26.72 \$ 24.53	9.90 9.90
* LABO0846-001 05/01/2016		

		Rates	Fringes
LABORER:	Common or General	\$ 14.90	5.40
SUTN2009	9-144 12/02/2009		
		Rates	Fringes
LABORER:	Flagger	\$ 8.73	0.00
LABORER:	Pipelayer	\$ 11.68	0.00
OPERATOR: Backhoe/Ez	kcavator/Trackhoe	\$ 16.82	0.00
OPERATOR:	Loader	\$ 13.50	0.00
TRUCK DRIV	/ER: Dump Truck	\$ 10.76	0.00

WELDERS - Receive rate prescribed for craft performing operation to which welding is incidental.

Note: Executive Order (EO) 13706, Establishing Paid Sick Leave for Federal Contractors applies to all contracts subject to the Davis-Bacon Act for which the contract is awarded (and any solicitation was issued) on or after January 1, 2017. If this contract is covered by the EO, the contractor must provide employees with 1 hour of paid sick leave for every 30 hours they work, up to 56 hours of paid sick leave each year. Employees must be permitted to use paid sick leave for their own illness, injury or other health-related needs, including preventive care; to assist a family member (or person who is like family to the employee) who is ill, injured, or has other health-related needs, including preventive care; or for reasons resulting from, or to assist a family member (or person who is like family to the employee) who is a victim of, domestic violence, sexual assault, or stalking. Additional information on contractor requirements and worker protections under the EO is available at www.dol.gov/whd/govcontracts.

Unlisted classifications needed for work not included within the scope of the classifications listed may be added after award only as provided in the labor standards contract clauses (29CFR 5.5 (a) (1) (ii)).

The body of each wage determination lists the classification and wage rates that have been found to be prevailing for the cited type(s) of construction in the area covered by the wage determination. The classifications are listed in alphabetical order of "identifiers" that indicate whether the particular rate is a union rate (current union negotiated rate for local), a survey rate (weighted average rate) or a union average rate (weighted union average rate).

Union Rate Identifiers

A four letter classification abbreviation identifier enclosed in dotted lines beginning with characters other than "SU" or "UAVG" denotes that the union classification and rate were prevailing for that classification in the survey. Example: PLUM0198-005 07/01/2014. PLUM is an abbreviation identifier of the union which prevailed in the survey for this classification, which in this example would be Plumbers. 0198 indicates the local union number or district council number where applicable, i.e., Plumbers Local 0198. The next number, 005 in the example, is an internal number used in processing the wage determination. 07/01/2014 is the effective date of the most current negotiated rate, which in this example is July 1, 2014.

Union prevailing wage rates are updated to reflect all rate changes in the collective bargaining agreement (CBA) governing this classification and rate.

Survey Rate Identifiers

Classifications listed under the "SU" identifier indicate that no one rate prevailed for this classification in the survey and the published rate is derived by computing a weighted average rate based on all the rates reported in the survey for that classification. As this weighted average rate includes all rates reported in the survey, it may include both union and non-union rates. Example: SULA2012-007 5/13/2014. SU indicates the rates are survey rates based on a weighted average calculation of rates and are not majority rates. LA indicates the State of Louisiana. 2012 is the year of survey on which these classifications and rates are based. The next number, 007 in the example, is an internal number used in producing the wage determination. 5/13/2014 indicates the survey completion date for the classifications and rates under that identifier.

Survey wage rates are not updated and remain in effect until a new survey is conducted.

Union Average Rate Identifiers

Classification(s) listed under the UAVG identifier indicate that no single majority rate prevailed for those classifications; however, 100% of the data reported for the classifications was union data. EXAMPLE: UAVG-OH-0010 08/29/2014. UAVG indicates that the rate is a weighted union average rate. OH indicates the state. The next number, 0010 in the example, is an internal number used in producing the wage determination. 08/29/2014 indicates the survey completion date for the classifications and rates under that identifier.

A UAVG rate will be updated once a year, usually in January of each year, to reflect a weighted average of the current negotiated/CBA rate of the union locals from which the rate is based.

WAGE DETERMINATION APPEALS PROCESS

1.) Has there been an initial decision in the matter? This can be:

- * an existing published wage determination
- * a survey underlying a wage determination
- * a Wage and Hour Division letter setting forth a position on a wage determination matter
- * a conformance (additional classification and rate) ruling

On survey related matters, initial contact, including requests for summaries of surveys, should be with the Wage and Hour Regional Office for the area in which the survey was conducted because those Regional Offices have responsibility for the Davis-Bacon survey program. If the response from this initial contact is not satisfactory, then the process described in 2.) and 3.) should be followed.

With regard to any other matter not yet ripe for the formal process described here, initial contact should be with the Branch of Construction Wage Determinations. Write to:

Branch of Construction Wage Determinations Wage and Hour Division U.S. Department of Labor 200 Constitution Avenue, N.W. Washington, DC 20210

2.) If the answer to the question in 1.) is yes, then an interested party (those affected by the action) can request review and reconsideration from the Wage and Hour Administrator (See 29 CFR Part 1.8 and 29 CFR Part 7). Write to:

Wage and Hour Administrator U.S. Department of Labor 200 Constitution Avenue, N.W. Washington, DC 20210

The request should be accompanied by a full statement of the interested party's position and by any information (wage payment data, project description, area practice material, etc.) that the requestor considers relevant to the issue.

3.) If the decision of the Administrator is not favorable, an interested party may appeal directly to the Administrative Review Board (formerly the Wage Appeals Board). Write to:

Administrative Review Board U.S. Department of Labor 200 Constitution Avenue, N.W. Washington, DC 20210

4.) All decisions by the Administrative Review Board are final.

END OF GENERAL DECISION

Page 5 of 5

Section 00 45 47 Iran Divestment Act Compliance Certification

In accordance with Tennessee Code Annotated (TCA) § 12-12-101 *et. seq.*, by submission of this bid, each bidder and each person signing on behalf of any bidder certifies, and in the case of a joint bid each party thereto certifies as to its own organization, under penalty of perjury, that to the best of its knowledge and belief that each bidder is not on the list created pursuant to TCA § 12-12-106.

SIGNATURE:	
NAME PRINTED:	
COMPANY:	
DATE:	