Village of Addison Purchasing Department 1 Friendship Plaza Addison, IL 60101

ADDENDUM NO. 1

RFP 22-7-2

COMBINED SEWER SEPARATION, DRAINAGE IMPROVEMENTS AND STORM WATER UPGRADES, LEAD WATER SERVICE REPLACEMENT AND UPGRADES, AND WASTEWATER TREATMENT PLANT CONSOLIDATION STUDY

LEAD WATER SERVICE REPLACEMENT AND UPGRADES, AND WASTEWATER TREATMENT CONSOLIDATION STUDY
RETURN WITH RFP
August 9, 2022
TO: ALL PROSPECTIVE BIDDERS
FROM: Anna Hendrey, Purchasing Agent
The following items are included in Addendum #1:
 Village of Addison – Wastewater Master Plan – Item 6 - Phasing of Improvements Phosphorus Removal Feasibility Study Qualifications Evaluation Form
Please sign below and return with your RFP documents.
Signature of Bidder

6 Phasing of Improvements

This chapter outlines the phases of implementation for the various pump station and treatment plant improvements along with future phasing for nutrient removal. A workshop was held with the Village's public works and treatment plant operations and maintenance staff. The projects were grouped into the following categories:

- Current Budget Items
- Future Budget Items
- Pump Stations
 - o Phase 2
- North WWTP
 - OM&R Projects Phase 2
- Nutrient Projects

The findings provided in Task Memoranda 1A, 1B, and 1C and subsequently included in Sections 3, 4 and 5 were used to identify projects and costs in Section 12 and used in the workshop for identifying priorities. Staff ranked projects as 'Budget', 1, 2 or 3, with 1 being the highest priority. 'Budget' items are items that the Village believes can be financed internally through the Village's regular OM&R reserves.

6.1 CURRENT BUDGET ITEMS

The items listed in Table 6-1 have our currently been budgeted for replacement.

TABLE 6-1						
Items Currently Budgeted for Replacement – North WWTP						
Description Fiscal Year						
North WWTP						
Screw Pump Replacement	19/20					
Roof Top HVAC Unit	18/19, 19/20					
Lab Upgrade	20/21					
Belt Press Control Panel	20/21					

6.2 FUTURE BUDGET ITEMS

Table 6-2 presents items identified in the Workshop to be included in future OM&R budgets.

TABLE 6-2 Future Budget Items for Replacement					
Description	Costs				
North WWTP					
Raw Sewage Pump Isolation Valve Replacement	\$149,000				
Primary Tank Scum Baffle and Box	\$125,000				
Aeration Tank Drain Valve Replacement	\$36,000				
Chlorination/Dechlorination Equipment Replacement	\$100,000				
Polymer System Replacement	\$159,000				
Belt Filter Press Controls	\$178,000				
TOTAL BUDGET ITEMS	\$747,000				

6.3 Phase 2- Operations, Maintenance and Replacement Projects

The cost associated with the Phase 2 OM&R projects is presented in **Table 6-3**.

TABLE 6-3							
Phase 2- OM&R Projects							
Phase 2- North WWTP							
Replacement of Scum Pumps		\$159,000					
Sludge Piping	Projects	\$378,000					
Heat Exchangers	completed in	\$1,383,000					
Digester Covers	2021-2022	\$3,847,000					
Digester Gas Piping		\$143,000					
TOTAL PHASE 2		\$5,910,000					

6.4 Phase 3- Operations, Maintenance and Replacement Projects

The cost associated with the Phase 2 OM&R projects is presented in Table 6-4.

TABLE 6-4						
Phase 3- OM&R Projects						
Phase 3- North WWTP						
Raw Sewage Pumps Replacement	\$656,000					

TABLE 6-4						
Phase 3- OM&R Projects						
Raw Sewage Pump and Influent Gate Controls	\$129,000					
Second Turbo Blower	\$378,000					
Return Sludge Pump Station Replacement	\$530,000					
Intermediate Pump Station Replacement	\$641,000					
Intermediate Clarifier Mechanism Replacement	\$1,331,000					
Scum Concentrator	\$740,000					
GBT Building/ WAS Holding	\$5,043,000					
Excess Flow Clarifier Mechanism Replacement	\$362,000					
TOTAL PHASE 3	\$9,810,000					

6.5 NUTRIENT REMOVAL PROJECTS

6.5.1 Introduction

In 2016, NPDES permits were issued for the Anthony J. LaRocca Wastewater Treatment Plant, and the North Wastewater Treatment Plant. The Special Conditions of the NPDES permit required that a *Phosphorus Removal Feasibility Study and Discharge Optimization Plan* was submitted to IEPA by January 1, 2018. The study assessed the technical feasibility and costs associated with meeting a 0.5 mg/l and 0.1 mg/l TP limit and must also address the impacts of potential seasonal limits. In addition, the Special Conditions required both the North and the AJL WWTP, to meet a 1 mg/l total phosphorus (TP) limit by June 1, 2026 if chemical phosphorus removal is utilized, or June 1, 2027 if biological phosphorus is utilized.

6.5.2 MODELING RESULTS

After the waste characterization, and jar testing to determine chemical dosing, three alternatives were evaluated for the North WWTP: AO, A₂O, and chemical precipitation. BIOWIN was used to model the alternatives considering two temperature scenarios: 10 and 15 degrees C. The results of the modeling are provided in **Tables 6-5** and **6-6**. Ranking of the alternatives is also provided, with 1 being the highest or most favorable rank and 5 being the lowest or least favorable rank.

TABLE 6-5 North Wastewater Treatment Plant Modeling Results Considering a 1.0 mg/l TP Limit									
Constit	uents	A: AO		В	3: A2O	C: Chemi	cal Alone		
(mg	(mg/l) 15 deg. C 15 deg. C 10 deg. C 15 deg. C						15 deg. C		
TF)	0.92	0.93	0.91	0.94	0.93	0.9		
FECL3 (gpd), 3:1 Fe/P	110	110	155	155	260	265		
Rank Based on FeCl3 Addition	1	1		3	3	5	6		
CAKE (lbs/d)	3,927	3,905		4,019	3,990	4,328	4,321		
CY/yr	3,867	3,845		3,958	3,929	4,261	4,255		
Excess Sludge CY	538	516		629	600	932	926		
	16%	16%	16% 19% 18% 28% 2		28%				
Rank Based on Excess Sludge Production	2	1		4	3	6	5		

TABLE 6-6 North Wastewater Treatment Plant Modeling Results Considering a 0.5 mg/l TP Limit								
Constituents	A:	AO	B: A	\20	C: Chemi	cal Alone		
(mg/l)	10 deg. C	15 deg. C	10 deg. C	15 deg. C	10 deg. C	15 deg. C		
TP	0.43	0.44	0.47	0.42	0.44	0.42		
FECL3 (gpd), 3:1 Fe/P	150	150	190	195	290	295		
Rank Based on FeCl3 Addition	1	1	3	4	5	6		
CAKE (lbs/d)	4,223	4,200	4,296	4,300	4,685	4,667		
CY/yr	4,158	4,136	4,230	4,234	4,613	4,595		
Excess SludgeCY	829	807	901	905	1,284	1,266		
	25%	25%	27%	28%	39%	39%		
Rank Based on Excess Sludge Production	2	1	3	4	6	5		

Capital costs are the construction costs associated with adding infrastructure to meet NPDES permit limits. To meet a 0.5 mg/l TP limit, filters must be provided. As a result, there is a significant difference in capital costs when the 0.5 mg/l TP limits and the 1.0 mg/l TP limit alternatives are compared. A new tertiary filter unit process is estimated to cost \$6.5 million.

The capital costs are presented in **Table 6-7**.

TABLE 6-7							
Capital Costs							
North Wastewater Treatment Plant							
Alternative	A: AO	B: A2O	C: Chemical Alone				
1 mg/l TP Limit	\$1.766 M	\$2.060 M	\$0.800 M				
0.5 mg/l TP Limit	\$8.266 M	\$8.560 M	\$7.300 M				

Table 6-8 presents the annual operations and maintenance costs for each of the modeling scenarios. The operations and maintenance costs include power costs, man-

hours for maintenance of mixers and pumps, chemical costs, and additional sludge disposal costs.

TABLE 6-8 Annual Operation and Maintenance Costs							
	North Wastewater Treatment Plant						
Alternative	A:	AO	B: A	\20	C: Chemi	cal Alone	
Temperature	10 deg. C	15 deg. C	10 deg. C	15 deg. C	10 deg. C	15 deg. C	
1 mg/l TP Limit	\$0.148 M	\$0.148 M	\$0.185 M	\$0.185 M	\$0.116 M	\$0.117 M	
0.5 mg/l TP Limit	\$0.168 M	\$0.168 M	\$0.203 M	\$0.205 M	\$0.133 M	\$0.135 M	

Net present value is a simple method of determining the true costs of the alternatives in 'today's dollars'. A linear gradient series was used to account for the inflation of operations and maintenance costs which include. The inflation rate was assumed to be 3% and the costs of capital, assuming a bond issue, to be 5%. It was assumed mixers and pumps would be replaced at 15 years. The twenty year net present value was calculated for each temperature conditions and effluent limit. The alternatives with the least Net Present Value are favorable. The total net present value and the total number of pounds of phosphorus removed over 20 years for each alternate was utilized to calculate the cost per pound of phosphorus removed at each facility, refer to **Table 6-9**.

6.5.3 NET PRESENT VALUE

TABLE 6-9							
Total Net Present Value, Rank and NPV/lb P Removed							
	North WWTF	Considerin	g a 1.0 mg/l	Effluent TP			
	A : <i>i</i>	AO	B: <i>A</i>	\20	C: Chemic	cal Alone	
TOTAL NPV	10 deg. C	15 deg. C	10 deg. C	15 deg. C	10 deg. C	15 deg. C	
	\$4.729 M	\$4.722 M	\$5.831 M	\$5.821 M	\$2.646 M	\$2.67 M	
RANK	4	3	6	5	1	2	
lbs of P removed in 20 years	1.438 M	1.435 M	1.441 M	1.432 M	1.435 M	1.445 M	
NPV \$/lb. of P Removed over 20 years	\$3.29	\$3.29	\$4.05	\$4.07	\$1.84	\$1.85	
	North WWTF	Considerin	g a 0.5 mg/l	Effluent TP			
	A : <i>A</i>	AO	B: /	A2O	C: Chemi	cal Alone	
TOTAL NPV	10 deg. C	15 deg. C	10 deg. C	15 deg. C	10 deg. C	15 deg. C	
	\$11.543 M	\$11.535 M	\$12.611 M	\$12.639 M	\$9.427 M	\$9.447 M	
RANK	4	3	5	6	1	2	
lbs of P removed in 20 years	1.597 M	1.594 M	1.584 M	1.600 M	1.594 M	1.600 M	
NPV \$/lb. of P Removed over 20 years	\$7.23	\$7.24	\$7.96	\$7.90	\$5.92	\$5.90	

The impacts of a seasonal limit of 1.0 mg/l in the winter and 0.5 mg/l in the summer was evaluated at both treatment facilities. The 20 year NPV of savings for a 1 mg/l TP for 6 months of the year is approximately \$960,000 at the North Wastewater Treatment Plant.

The special conditions of the NPDES permit also required the evaluation of technologies and costs to meet a 0.1 mg/l TP limit. To meet a 0.1 mg/l TP limit a combination of chemical, physical and biological process must be employed. Three technologies were evaluated: 5 micron filtration, ballasted settling, and filtration through a ferric chloride impregnated sand filter. Of these technologies, the simplest to employ is the 5 micron filter.

The capital costs presented in **Table 6-10** are associated with the construction of a rapid mixing and flocculation tank. It assumed 0.5 mg/l of an anionic polymer will be required to promote floc formation. The total NPV \$/lb over 20 years is the sum of costs associated with the 0.5 mg/l TP alternatives and the costs associated with 0.1 mg/l TP. The increase

in costs, NPV \$/lb over 20 years, to achieve a 0.1 mg/l TP from a 0.5 mg/l TP limit is also presented.

TABLE 6-10 Total Net Present Value and NPV/Ib P Removed Considering a 0.1 mg/l Effluent TP									
	North WWTP AJL WWTP								
Capital	\$	875,000.00	\$	556,000.00					
Annual O&M Costs									
Power	\$	1,442	\$	1,442					
Ferric Chloride	\$	74,661	\$	45,946					
Polymer	\$	8,067	\$	4,871					
Manpower	\$	5,232	\$	5,232					
Sludge	\$	17,266	\$	10,625					
Total Annual OM	\$	106,668	\$	68,116					
NPV of OM	\$	1,702,419	\$	1,087,124					
Total NPV	\$	2,577,419	\$	1,643,124					
Incremental NPV\$/lb Removed	\$	21.59	\$	22.79					
Total NPV\$/lb Removed over 20 Years	\$	28.82	\$	48.06					
Increase in NPV \$/lb to Achieve 0.1 mg/l TP									

Conclusions were arrived at by evaluating both economic and non-economic criteria. On November 17th, 2017, a Workshop was held with Village Staff. It was concluded that the chemical dosing estimates at North Plant were conservative and as a result the AO process may in fact be more economical.

North WWTP

- 1.0 mg/l TP Limit: AO process
- 0.5 mg/l TP Limit: AO process with Tertiary Filtration
- 0.1 mg/l TP Limit: AO process with rapid mix, flocculation, Tertiary Filtration

Table 6-11 presents the financial impacts. The average NPV of the alternatives is presented along with the NPV per person and the average initial rate increase required to meet the capital and on-going operation and maintenance costs. It is assumed that rates would increase 3% per year for 20 years. The rates per person in **Table 6-11** may be reduced by 1-2% as a result of industrial surcharges.

<u>TABLE 6-11</u>								
Financial Impacts								
NPV COSTS for SELECTED ALTERNATIVE								
Limit	1.0 mg/l TP	0.5 mg/l TP	0.1 mg/l TP					
NORTH PLANT	\$4,726,000	\$11,539,000	\$14,116,000					
AVERAGE NPV / CAPITA								
Limit	1.0 mg/l TP	0.5 mg/l TP	0.1 mg/l TP					
NORTH PLANT	\$129.00	\$313.00	\$383.00					
Total	\$294.00	\$1,063.00	\$1,177.00					
AVERAGE INITIAL INCREASE IN ANNUAL BILL/HOUSEHOLD (1)								
Limit	1.0 mg/l TP	0.5 mg/l TP	0.1 mg/l TP					
Increase in Annual Bill ⁽²⁾	\$45.42	\$164.23	\$181.85					
%	8.6%	30.9%	34.2%					

⁽¹⁾ Assuming Annual Average Bill is \$577/household Followed by 3% annual increases thereafter

⁽²⁾ Refer to Phosphorous Removal Feasibility Study, average annual increase in annual bill/household also includes cost associated with modifications to the AJL WWTP.

TABLE-9-14 Financial Impacts								
NPV COSTS for SELECTED ALTERNATIVE								
Limit	1.0 mg/l TP	0.5 mg/l TP	0.1 mg/l TP					
NORTH PLANT	\$4,726,000	\$11,539,000	\$14,116,000 \$29,300,000					
AJL	\$6,069,000	\$27,657,000						
AVERAGE NPV / CAPITA								
Limit	1.0 mg/l TP	0.5 mg/l TP	0.1 mg/l TP					
NORTH PLANT	\$129.00	\$313.00	\$383.00					
AJL	\$165.00	\$750.00	\$794.00 \$1,177.00					
Total	\$294.00	\$1,063.00						
AVERAGE INITIAL INCREASE IN ANNUAL BILL/HOUSEHOLD (1)								
Limit	1.0 mg/l TP	0.5 mg/l TP	0.1 mg/l TP					
Increase in Annual Bill	\$45.42	\$164.23	\$181.85					
%	8.6%	30.9%	34.2%					

⁽¹⁾ Assuming Annual Average Bill is \$577/household Followed by 3% annual increases thereafter

QUALIFICATIONS EVALUATION

This form was extracted from the Qualifications-Based Selection Guide pamphlet and Modified.

COI	NSULTANT'S NAME:					
PRO	DJECT NAME:					
RE\	/IEWERS NAME:					
	of its' importance to you uniform and comparabl one Consultant, then the enter 10 on the appropri	u but the r e Total wi e rest of th iate line p	ng this form, the Weight (1 to 10) conumber assigned should be entered if be achieved for all Consultants. For e Consultants should also be 2 for er Consultant but it should also be the aries per Consultant pursuant to you	the same for all the or example, if you a ltem 4. If you think he same for all Corur review of the Co	e Consultants. In ssign 2 on this fo that Item 5 is me isultants and so consultants Propose	this way, a r Item 4 on rited for 10, on. Only the
1	Firm's history and resour	rce canahi	lity to perform required services	Rating (1 to 5) X		= <u>10tai</u> = 0
	•	•				
			Are key personnel moving all the time)	x		=0
3.	Related experience in pe	erforming s	studies and designs	X	:	=0
4.	Time and planned sched	ule for this	s project (Availability and Dedication)	X	:	=0
	5. Familiarity with the local area geography and facilities or N/A (This is up to the Reviewer as he sees fit)					=0
6.	Ability to relate to project	requirem	ents	X	:	=0
	Analysis of subjective sta applicable to the project		x	:	=0	
8.	Reference Check (Review	X	:	=0		
9.	Technical approach to th	e project	(in conjunction with Item 7 or N/A)	x	:	=0
10.	Management Approach f	or the pro	ject (in conjunction with item 7 or N/A)	X	:	=0
	11. Issues of Special Concern (in conjunction with Item 7 or N/A) Electronic Submission and Use of new Technologies)				=	=0
12.	Use of Consultants that r	may work	on this project (In-house or Outside)	X	=	=0
	Other additives as the Rother applicant call, we have an i		ees fit (please list so that when Presentation of Proposal	x		= 0
	GRAND TO	_	(Note: You need Excel to perform electronic the Rating Column and the Weight Column the same for all Consultants per each Item calculate the Total and Grand Total automatic exercises.)	(but remember the Weig of Work as mentioned a atically. Thank you for pa	ght column should above) and it will	0

PROCEED TO THE NEXT SHEET FOR THE NEXT CONSULTANT