ADDENDUM NO. 1 11 January 2017

- **RE:** MILLER PARK DISTRICT PHASE 1 Contract no. R-14-011-201
- FROM: Spackman Mossop Michaels/ Eskew+Dumez+Ripple, Joint Venture 365 Canal Street, Suite 3150 New Orleans, Louisiana 70130 (504) 561-8686
 - **TO:** Prospective Bidders

This Addendum forms a part of the Contract Documents and modifies the original Procurement Documents dated December 12, 2016 as noted below. Acknowledge receipt of this Addendum in the space provided on the Bid Form. Failure to do so may subject Bidder to disqualification.

This Addendum consists of Four (4) Pages in addition to the enumerated specification sections and drawing sheets.

PRIOR APPROVALS

The following manufacturers, materials, products or equipment have been submitted for approval. Items listed are approved for use on the Project if all requirements of the Documents are satisfied (except those indicated as "Not Approved")

1. SECTION 07 25 00 - WEATHER BARRIERS

Georgia-Pacific Gypsum; DensElement Barrier System. W.R. Meadows, Air-Shield LMP.

CHANGES TO INTRODUCTORY INFORMATION

- 2. SECTION 00 01 01 TABLE OF CONTENTS: Modify the section numbers and titles of individual sections as indicated below:
 - A. SECTION 00201 INSTRUCTION TO BIDDERS: Re-number as "00200".
 - B. Add SECTION 00201 CONTRACTOR'S INDENTIFICATION to the Table of Contents. It appears in the project manual but not the TOC.
 - C. Change Title of Section 01035 WEATHER DAYS TO "WEATHER DELAYS".
 - D. SECTION 01220 PROJECT MEETING: Re-number as "01200".
 - E. SECTION 32 94 51 SOIL CELL: Re-number as "32 94 50".
- 3. EXISTING CONDITION INFORMATION: The following Documents are attached to the end of this Addendum for informational purposes in the preparation of bids. The information was furnished by the Owner and was not generated by the Consultant; therefore the Consultant is not responsible for their content.

Attachment 1 – Report of Geotechnical Exploration, Miller Park District, dated November 25, 2015 Attachment 2 – Report of Limited Phase II Environmental Site Assessment, Miller Park, dated December 10, 2015.

CHANGES TO PROCUREMENT REQUIREMENTS

4. The sign-in sheet from the pre-bid meeting held December, 21, 2016 is attached to the end of this Addendum.

CHANGES TO CONTRACTING REQUIREMENTS

- 5. DOCUMENT 00301 BID SCHEDULE: Delete the six-page Bid Schedule included in the Project Manual and Replace with the Bid Schedule attached to the end of this Addendum. The following items have been added, removed or clarified:
 - A. 01010-1: Addition
 - B. 311000-23: Clarification
 - C. 321400-1: Clarification
 - D. 321400-2: Clarification
 - E. 321000-1: Clarification
 - F. 331000-3: Removal of Item and Clarification/Re-number of Item 4
 - G. 333000-9: Removal
 - H. 334000-19: Clarification of quantity
 - I. 334000-26: Removal
 - J. SI-003-2: Clarification
 - K. SI-003-4: Addition
 - L. SI-004: Addition of line items 1 thru 3
 - M. SI-005: Addition of line item 1
 - N. Clarification of Alternates.
- 6. DOCUMET 00500 CONTRACT: delete this document in its entirety and replace with the version attached to the end of this Addendum.

CHANGES TO SPECIFICATIONS

7. The following Section(s) have not previously been issued and are introduced as Procurement Documents as part this Addendum, attached herein:

SECTION 08 44 13 - GLAZED ALUMINUM CURTAIN WALL SYSTEMS

8. The following Section(s) are hereby replaced as Procurement Documents as part of this Addendum, attached herein:

SECTION 01010 - SUMMARY OF WORK

CHANGES TO DRAWINGS

- 9. The following Drawings Sheet(s) are hereby replaced as Procurement Documents as part of this Addendum, attached herein:
 - A. SHEET C001: Added general notes 32 and 33 regarding temporary fences and capping contaminated soil. Added detail for City Typical Detail for pavement cut and repair.
 - B. SHEET C101: Revised limits of pavement cut and repairs at Georgia Ave. Show gutter for curb connection at northwest side of Cherry Street.

- C. SHEET C201: Revised limits of pavement cut and repairs at Georgia Ave. Add note for existing steps to remain east side of Cherry Street. Revised note regarding existing pedestrian street lights along MLK Blvd.
- D. SHEET C401: Add Additional 4" underdrain on north side of Cherry Street, Show revised locations of utilities to service stage pavilion.
- E. SHEET C402: Add Additional 4" underdrain on north side of Cherry Street and add invert elevation for underdrain to Structure #D1
- F. SHEET C501:
 - 1. Revised sewer service route. Revised Irrigation Backflow location and type.
 - 2. Label Conduit Bank as for EPB and Telephone. Adding additional note refereeing the irrigation plan for irrigation conduit locations. This sheet is to only direct attention to that sheet, not to show the full irrigation system nor all irrigation conduits.
- G. SHEET C503: Show updated utility locations and revised pavement cuts in Georgia Ave.
- H. SHEET C611:, Add note regarding egress access from One Central Plaza doorway.
- I. SHEET L5.0 IRRIGATION PLAN: Irrigation Plan has been updated
- J. SHEET L5.1- IRRIGATION DETIALS: Added Detail 9/L5.1: Backflow Preventer Detail
- K. SHEET A1.4: Added dimensions for building to locate relative to grid lines and property lines.
- L. SHEET A2.1:
 - 3. Revised the graphic representation of the hand sinks to more accurately represent the specified individual wall mount sinks in lieu of a counter with integral undermount basins.
 - 4. Added graphic symbols for specified toilet accessories.
 - 5. Added door tags 101B, 109 and 110. These doors were listed in the door schedule.
- M. SHEET A2.2:
 - 1. Revised the graphic representation of the hand sinks to more accurately represent the specified individual wall mount sinks in lieu of a counter with integral undermount basins.
 - 2. Removed basement grid lines from first floor for graphic clarity.
- N. SHEET A3.1:
 - 1. Added detail #3: Door Jamb @ Brick
 - 2. Revised door numbering to reflect the doors tagged on Sheet A2.1.
- 0. SHEET A4.1: Added notes indicating removable sections of roof framing.
- P. SHEET A5.2: Removed basement grid lines from first floor for graphic clarity.

10. Architectural Drawings: In general, delete any references to Aluminum Storefront (08 43 13). All glazing systems shall be provided under Aluminum Curtain Wall, Section 08 44 13.

ATTACHMENTS

Specifications

 Revised Bid Schedule, Contract and two (2) Sections and as stated above

Drawings

o 16 Sheets as stated above

Additional Information

- o Pre-Bid Meeting Sign-in Sheet
- o Report of Geotechnical Exploration (separately attached)
- Limited Phase II Environmental Site Assessment Report (separately attached)

END OF ADDENDUM

	nooga, Tennessee			Contrac	tor Name
Item No.	Description	Estimated Qty.	Unit	Unit Price	Total Price
01010	General Conditions				
01010-1	General Conditions, including mobilization, management, temporary facilities and controls, and all overhead expenses required to supervise and complete the Work.	1	LS		
033000	Steel and Concrete Retaining Wall		-		
033000-1	Steel and Concrete Retaining Wall along 10th Street at stage	83	LF		
044300	Stone Masonry		-		
044300-1	Stone Monumental Steps over Concrete Foundation	1,725	SF		
044300-2	Stone Steps over Concrete Foundation	2,387	SF		
044300-3	Stone Steps at Stage	154	SF		
044300-4	Stone Transitional Steps	9	EA		
044300-5	Stone Transitional Steps at Stage	4	EA		
044300-6	Flush Granite Curb	680	LF		
055213	Pipe & Tube Railings & Bike Racks				
055213-1	Handrail A	1	EA		
055213-2	Handrail B/ C	2	EA		
055213-3	Handrail E	1	EA		
055213-4	Handrail F	1	EA		
055213-5	Steel Guardrail	63	LF		
055213-6	Steel Bike Rack	15	EA		
055800	Formed Metal Fabrications		T		
055800-1	Powder Coated Steel- 18"	443	LF		
055800-2	Powder Coated Steel- 22"	143	LF		
055800-3	Powder Coated Steel- 24"	33	LF		
055800-4	Powder Coated Steel- 30"	96	LF		
055800-5	Powder Coated Steel- 36"	22	LF		
055800-6	Curved Steel, Powder Coated	127	LF		
129300	Site Furnishings		1		
129300-1	Bottle Filler	1	EA		
129300-2	Drinking Fountain	1	EA		
129300-3	Steel Bollard	88	EA		
129300-3	Excess Steel Bollard, No Installation	10	EA		
129300-4	3" Round Roadway Reflector	88	EA		
260500	Common Work Results for Electrical				
260500-1	New Traffic Signal Pole, Heads,	1	EA		
260500-2	Secondary Power	400	LF		

	nooga, Tennessee			Contrac	tor Name
ltem No.	Description	Estimated Qty.	Unit	Unit Price	Total Price
265600	Exterior Lighting				
265600-1	In Grade Power Outlets	20	EA		
265600-2	USB Chargers for Step Seating Area	7	EA		
265600-3	Power and USB Pedestals	7	EA		
265600-4	Food Truck Power Stations	5	EA		
265600-5	New City Streetscape Poles	16	EA		
265600-6	Ped Light Pole Pull Box	16	EA		
265600-7	In-ground Lighting	5	EA		
265600-8	LED Light Strip	691	LF		
265600-9	Recessed Linear In-Grade Fixture	5	EA		
265600-10	Relocated City Streetscape Poles	4	EA		
265600-11	Underground Electric for Street lights	225	LF		
NIC	Pole Mounted WiFi WAP by EPB	14	EA		
NIC	Building Mounted WiFi WAP by EPB	2	EA		
NIC	Traffic Signal WiFi Hub by EPB	2	EA		
311000	Site Clearing & Demolition				
011000	Demolition of existing site elements				
	including sidewalks, asphalt, pavers,				
	utilities, flag poles, signs or other	1	LS		
	man-made items shown on plans,				
311000-1	include removal, disposal and saw				
311000-2	Concrete Fill Existing Pipes to remain	3	CY		
311000-3	Bus Stop Removal	1	LS		
311000-4	Remove existing fountain pumps	1	LS		
311000-5	Relocate Bike Share Station	1	LS		
511000-5	Remove and store items shown as	1	5		
	salvaged, such a site furniture and	1	LS		
311000-6	-	1	LS		
311100-7	signs. Silt Fencing, TYPE C	375	LF		
31100-7	Inlet Protection w/ Waddle	11	EA		
311000-8	Outlet Protection at sediment traps	1	EA		
511000-9	Undercut Chamber Area as Sediment	1	LA		
311000-10	Trap	210	CY		
311000-10	Temporary Stone Filter Dam	1	EA		
311000-11	Construction Entrance	2	EA		
311000-12	Diversion Swales W/ matting	280	LF		
311000-12	Monitoring	1	LS		
311000-13	Temporary Seeding/Mulch	1	LS		<u> </u>
311000-14	Silt Waddle	175	LS		
311000-15	Concrete Washout	1/5	EA		
311000-16	Maintenance of BMPs	1	LS		

City of Chatta	nooga, Tennessee		[Contros	tor Name
		Estimated	Unit		
Item No.	Description	Qty.		Unit Price	Total Price
311000-18	Tree Protection	1	LS		
311000-19	Temporary Traffic Control, phase 1A	1	LS		
311000-20	Temporary Traffic Control, phase 1B	1	LS		
311000-21	Temporary Traffic Control, phase 2	1	LS		
311000-22	Temporary Traffic Control, phase 3	1	LS		
311000-23	6' Tall Temporary Site Security Fence (adjust locations as needed)	2000	LF		
312000	Earthwork				
	Common and/or Borrow Excavation				
312000-1	and placement compacted in place	1	LS		
312000-2	Mass Rock Excavation	20	CY		
312000-3	Trench Rock Excavation	10	CY		
	Undercut below subgrade as				
312000-4	directed by testing agency	190	CY		
	Backfill undercut areas with crushed				
312000-5	stone as directed	150	CY		
312000-6	Backfill undercut areas with offsite	40	CY		
321216	Hot-Mix Asphalt Paving		<u> </u>		
	Pavement Cut and replacement				
	Georgia Ave for utility/drainage cuts,	2170	SF		
321216-1	per SD700.01				
	Pavement Cut and replacement at	450	C.E.		
321216-2	North End of Cherry St.	450	SF		
321216-3	Mill Asphalt Topping <1" as need	200	SF		
321313	Portland Cement Concrete Paving				
321313-1	Concrete Curb & Gutter Type A	535	LF		
	Concrete Drop Curb for Curb Ramps	210	LF		
321313-2	& Speed Table Transitions	210	LF		
321313-3	Concrete Rolled Curb and Gutter	14	LF		
321313-4	Flush Curb at Crosswalks	318	LF		
321400	Unit Paving				
	Vehicular Paving System (including	19,060	SF		
321400-1	asphalt base and stone subbase)	19,000	51		
	Pedestrian Paving System (including	37,489	SF		
321400-2	concrete base and stone subbase)	57,705			
321400-3	Truncated Dome Paver	171	SF		
321400-4	Directional Bar Paver	1,468	SF		
321400-5	4' x 4' Pavergrate	37	Ea		
321400-6	6' x 6' Pavergrate	29	Ea		
321400-7	Paver Edge Restraint	11,360	LF		
321500	Aggregate Surfacing				

City of Chattar	nooga, Tennessee		[Contrac	tor Name
ltem No.	Description	Estimated Qty.	Unit	Unit Price	Total Price
321500-1	Stabilized Decomposed Granite	104	SF		
321500-2	Steel Landscape Edging	58	LF		
324000	Stone Outcrop				
324000-1	Stone Outcrop	1	LS		
328400	Planting Irrigation				
328400-1	Drip Irrigation System	2,587	SF		
328400-2	Root Watering System	240	EA		
328400-3	Subsurface Irrigation Mat	25,500	SF		
328400-4	Temporary Lawn Irrigation System	25,500	SF		
328400-5	Irrigation Controller	1	EA		
328400-6	Irrigation Piping, valves	1	LS		
329100	Planting Soils				
329100-1	Engineered Lawn Soil	1	LS		
329100-2	Planting Soil	1	LS		
329100-3	Silva Cell Soil	1	LS		
329200	Turf and Grasses		· · · · ·		•
329200-1	Sod	25,500	SF		
329300	Plants				L
329300-1	<i>Amelanchier x grandiflora</i> 'Autumn Briliance'- 3" Cal.	7	EA		
329300-2	Carpinus caroliniana - 3" Cal.	2	EA		
329300-2	Cladrastis kentucke a- 4" Cal.	13	EA		
329300-4	Hamamelis virginiana - 8-10' Ht	3	EA		
329300-5	Liriodendron tulipifera - 4" Cal.	13	EA		
329300-6	Liriodendron tulipifera 'Arnold'- 4" Cal.	7	EA		
329300-0	Nyssa sylvatica 'Wildfire'-4" Cal.	6	EA		
329300-7	Oxydendron arboreum - 4" Cal.	4	EA		
329300-8	Quercus bicolo r- 4" Cal.	7	EA		
329300-10	Quercus lyrata - 4" Cal.	22	EA		
329300-10 329300-11	Perennials- QT.	1,224	EA		
329300-11 329300-12	Shrubs - 5 gallon	17	EA		
329300-12 329300-13	Perennials- Plugs	893	EA		
329451	Soil Cells	855	17		
329451-1	Two-Layer Soil Cell System and all required components	1,634	EA		
331000	Water Distribution System				
331000-1	2" Water Tap (including all fees)	2	EA		
331000-2	2" Copper Service	115	LF		
331000-3	Backflow Preventer Irrigation and Hot Box for Irrigation	1	EA		

City of Chattai	nooga, Tennessee			Contrac	tor Name
ltem No.	Description	Estimated Qty.	Unit	Unit Price	Total Price
333300	Sanitary Sewer System				
333000-1	Connect to Existing Manhole	3	EA		
333000-2	Repair Existing Manholes	2	EA		
333000-3	Manholes (10' to 12' Deep) (installed in place)	3	EA		
333000-4	18" PVC Sewer Line (8' to 10' Deep) (installed in place)	265	LF		
333000-5	3" Copper Sewer (installed in place)	30	LF		
333000-6	Backwater Valve from sump pump in basement (installed in place)	1	EA		
333000-7	Tap Existing Sewer Main	1	EA		
333000-8	4" PVC Sewer Service (installed in place)	86	LF		
333000-9	not used				
333000-10	Sewer Cleanout (installed in place)	4	EA		
333000-11	Grease Trap & Lids (installed in place)	1	EA		
333000-12	As-built Survey Sewer System	1	LS		
333000-13	Testing	1	LS		
333000 /334000-14	Adjust Existing Utility Box and Manhole Lid's Elevation , including a concrete collar below paver grade	11	EA		
334000	Storm Drainage				
334000-1	Concrete Junction Boxes (installed in place)	3	EA		
334000-2	Catch Basins - 24"x24" Grate (installed in place)	4	EA		
334000-3	Catch Basins - 18"x36" Grate (installed in place)	6	EA		
334000-4	Inline Drain 6" & Grate (installed in place)	2	EA		
334000-5	Inline Drain 8" & Grate (installed in place)	2	EA		
334000-6	Drain Basin 8" & Grate (installed in place)	7	EA		
334000-7	Drain Basin 10" & Grate (installed in place)	1	EA		
334000-8	Drain Basin 15" & Grate (installed in place)	1	EA		

city of Chattai	nooga, Tennessee			Contrac	tor Name
ltem No.	Description	Estimated Qty.	Unit	Unit Price	Total Price
334000-9	12"x"6" French Drain (installed in place)	340	LF		
334000-10	Underground Chamber System - including stone foundation, backfill, and manifold pipes	1	LS		
334000-11	Water Quality Unit , FD-4 (installed in place)	1	EA		
334000-12	Pump Out Water Quality Unit at Project Completion	1	EA		
334000-13	Storm Water Clean-outs (Non-Traffic Areas)	2	EA		
334000-14	Brick slot Drain (installed in place)	60	LF		
334000-15	As-built Survey of Drainage	1	LS		
334000-16	Pavement Cut / Replacement	700	SF		
334000-17	Infiltration Testing prior to Chamber Installation	6	EA		
334000-18	15" Dia. Reinforced Concrete Pipe (installed in place)	350	LF		
334000-19	4" Dia. HDPE Pipe (Underdrain)	1,740	LF		
334000-20	6" Dia. HDPE Pipe (installed in place)	166	LF		
334000-21	8" Dia. HDPE Pipe (installed in place)	256	LF		
334000-22	12" Dia. HDPE Pipe (installed in	73	LF		
334000-23	15" Dia. HDPE Pipe (installed in	202	LF		
334000-24	12" Elbow (installed in place)	1	EA		
334000-25	6"x4" Tee (installed in place)	1	EA		
334000-26	not used				
334000-27	Gravel French Drain in lawn (installed in place)	725	LF		
SI	SUPPLEMENTAL INFORMATION				
SI-001	Stage Pavilion				
SI-001-1	Stage Pavilion	1	LS		
SI-001-2	Projection Screen	1	LS		
SI-001-3	Building Signage	1	LS		
SI-001-4	Toilet Accessories	1	LS		
SI-001-5	Projection Equipment	1	LS		
SI-002	Fountain				
SI-002-1	Fountain	1	LS		
SI-003	Roadway				
SI-003-1	Traffic Control Signage, including poles and installation	2	EA		

Description	Estimated			
	Qty.	Unit	Unit Price	Total Price
Pavement Striping (including milling of old stripping as necessary)	1	LS		
Store, Clean, and Reset Bus Stop	1	EA		
Mobilization for Base Bid Phasing as indicated in Section 01010, 1.3, A	1	LS		
Special Waste				
Haul supsected special waste material to City site <4 miles (to pe paid per scale ticket)	270	ΤN		
Containment and cover of suspected special waste material.	1	LS		
Load and Haul special waste material to permitted special waste landfill (to be paid per scale ticket)	270	TN		
Incentive Payment				
Incentive Payment for completion of roadwork prior to 120 days per Section 01010 of Project Manual	15	EA	\$1,500	\$ 22,500.00
	Store, Clean, and Reset Bus Stop Mobilization for Base Bid Phasing as indicated in Section 01010, 1.3, A Special Waste Haul supsected special waste material to City site <4 miles (to pe paid per scale ticket) Containment and cover of suspected special waste material. Load and Haul special waste material to permitted special waste landfill (to be paid per scale ticket) Incentive Payment Incentive Payment for completion of roadwork prior to 120 days per	of old stripping as necessary)IStore, Clean, and Reset Bus Stop1Mobilization for Base Bid Phasing as indicated in Section 01010, 1.3, A1Special Waste1Haul supsected special waste material to City site <4 miles (to pe paid per scale ticket)270Containment and cover of suspected special waste material.1Load and Haul special waste material to permitted special waste landfill (to be paid per scale ticket)270Incentive Payment1Incentive Payment for completion of roadwork prior to 120 days per15	of old stripping as necessary)Image: Constraint of the section of the s	of old stripping as necessary)IEAStore, Clean, and Reset Bus Stop1EAMobilization for Base Bid Phasing as indicated in Section 01010, 1.3, A1LSSpecial Waste1LSHaul supsected special waste material to City site <4 miles (to pe paid per scale ticket)270TNContainment and cover of suspected special waste material.1LSLoad and Haul special waste landfill to permitted special waste landfill (to be paid per scale ticket)270TNIncentive Payment15EA\$1,500

—

ALT-002	Add Alternate No. 2			
	Delete Item 01010-1 and replace			
	with the following: Mobilization for	1	F A	
	Alternate 2 phasing as indicated in	T	EA	
ALT-002-1	Section 01010, 1.3, A.			
	CONTRACT SUBTOTAL WITH			
	ALTERNATE 2			

NOTE: Alternates 1 and 2 shall be considered individually and are note cumulative.

CONTRACT

C1	a		6 m		-		C		1.1	~		-	
												, Contractor, of the City	of
2016,	between	the (CITY	OF CH	HAT	ΓAN	100	OGA,	TEN	NES!	SEE,	hereinafter called the City, an	ıd
ARTI	CLES OF	FAG	REEN	MENT	enter	ed i	nto	this _		day	of _		

Chattanooga, State of Tennessee, hereinafter called the Contractor.

ARTICLE I. The Contractor hereby contracts and agrees to furnish all supervision, labor, materials and equipment and execute in a thorough and workmanlike manner, complete in every respect, in accordance with the Drawings, Specifications and other Contract Documents made therefor and hereto attached, and to the satisfaction of the City of Chattanooga, or its successor, all of the Work shown, specified and otherwise required in these contract documents, to-wit:

MILLER PARK DISTRICT & CONNECTIVITY IMPROVEMENTS – PHASE I CONTRACT NUMBER R-14-011-201

ARTICLE II. The prices shown in the Bid Schedule shall be the amount of the compensation to the Contractor for the proper and satisfactory completion of the work specified herein, including all contingencies, in full conformity with the Contract Documents. This compensation shall be full payment for the performance of the work and the furnishing of labor, materials, transportation, supplies, tools, equipment, taxes, employee benefits, incidentals, services, and other items necessary or convenient for completion of the work in a satisfactory and acceptable manner, and within the intent of these Contract Documents.

ARTICLE III. The Contractor agrees that he has informed himself fully of the conditions relating to the construction and labor under which the work will be or is now being performed, and this Contractor must employ, so far as possible, such methods and means in the carrying out of his work as will not cause any interruption or interference with any other contractor.

ARTICLE IV. All work and material required under this Contract shall be in such quantities, kinds and qualities, and in such places, and of such dimensions and forms as may be designated by the plans and specifications, or by the working plans provided by the Engineer.

ARTICLE V. The purchase of all materials, the delivery of same, and all incidental expenses which may arise during the construction and finishing of said work above specified, shall be at the sole cost and expense of the Contractor.

ARTICLE VI. All materials which the said Contractor may procure or deliver upon or in the vicinity of said work herein specified to be incorporated in and become a part of said improvement, shall, from the time of such procurement or delivery become the property of the City of Chattanooga, except any surplus which shall remain over the final completion of this Contract.

ARTICLE VII. The Contractor hereunder contracts and agrees to complete the whole of the work contemplated *in accordance to each Phase as defined in SECTION 01010 – SUMMARY OF WORK, 1.3, A.* Time of the completion of the work is the essence of the Contract, and the Contractor is prepared to make completion of the work in such quantity and on such dates as are herein specified, and the parties having agreed, after estimates, that the sum of *One Thousand, Five Hundred dollars and no cents (\$1,500.00)* per day would be liquidated damages in case of

the Contractor's failure to perform *on each Phase individually*, now, therefore, the aforementioned sum per day, not as a penalty but to be considered and taken as liquidated damages suffered by the City of each day's delay in completion of this Contract.

Liquidated Damages for each phase not completed within the specified time as described above will be imposed concurrently. The Contractor hereby agrees that said sum(s) listed above shall be deducted from amounts due the Contractor under the Contractor, if no amount is due the Contractor, the Contractor hereby agrees to pay to the Owner as liquidated damages such total sum as shall be due for such delay, computed as aforesaid.

ARTICLE VIII. It is agreed that the Contractor will not assign, transfer, or sublet the said work or any part thereof without the written consent of the City of Chattanooga.

ARTICLE IX. Estimates shall be made every thirty (30) days during the progress of the work by the Contractor and submitted to the Engineer for his approval. When, in the Engineer's judgment, the estimate shall represent a fair value of such work done in accordance with the provisions of this contract, the Contractor shall be paid ninety-five (95%) percent with five (5%) percent being retained as collateral security, said five (5%) percent to be paid within ninety (90) days after completion of such work or within ninety (90) days after substantial completion of the project for work completed, whichever occurs first.

ARTICLE X. An omission to disapprove the work badly done, at the time of a monthly or other estimate, by the Engineer shall not be construed into an acceptance of any defective work.

All documents bound herein and all other documents not bound herein but given to Contractor in connection with the work shall be and are hereby made a part of this contract. These contract documents shall include, but not be limited to, the following: the Contract, Advertisement for Bids, Instructions to Bidders, Bid Proposal and Proposal Documents, Bid Bond, Performance Bond, Payment Bond, Certificates, General Provisions, Supplementary General Provisions, Specifications, Drawings, Addenda, Change Orders, Notice to Proceed, and Specifications, Drawings, and Engineering Data furnished to the Contractor.

IN TESTIMONY WHEREOF, the said parties have hereunto set their hands and seals the day and year first above written.

Attest:

CITY OF CHATTANOOGA

	By:	
City Finance Officer	Public Works Administrator	
	CONTRACTOR	
Attest:	Name	
Attest.		
	By:	
	00500-2	

Title

CITY FINANCE OFFICER'S CERTIFICATE

I do hereby certify that the funds required to be paid by the City under this contract have been appropriated or a loan authorized and have been encumbered and will be available as needed for payment.

This ______, 2016.

City Finance Officer

CITY ATTORNEY'S APPROVAL

This contract approved as to form and legality this the _____ day of _____, 2016.

City Attorney

END OF DOCUMENT

SECTION 01010 SUMMARY OF WORK

PART 1 – GENERAL

1.1 Section Includes

- A. Description of Work
- B. Items regulating the execution of the Work
- 1.2 Description of the Work

A. The work covered by this Contract consists of: The redesign of the existing 1.5 acre Miller Park and the repaying and restriping of a section of M.L.King Blvd adjacent to the park. The new park includes *one new pavilion*. New paving a large lawn, a water feature, new lighting and stormwater management.

B. The Contractor shall furnish all materials, power, equipment, tools, labor, transportation and other items necessary or convenient to the Contractor for the installation of equipment, materials and products specified or described in these Contract Documents and called for on the Plans and for the completion of all work to be performed by the Contractor as specified herein.

C. The City Engineer reserves the right to substitute, add, delete, increase, decrease in any form or fashion as necessary the scope of work under the provisions of this Contract, including the projects noted above.

D. This project shall be assigned a unique project number by the Engineer. The Contractor shall execute this project in complete compliance with the requirements of this contract. All records of the Contractor shall conspicuously identify them to be associated with the unique project number assigned by the Engineer.

E. The work covered under this project shall consist of furnishing all materials, equipment and labor for the full depth reclamation of designated streets including but not limited to mobilization, parking sign placement, public notification, placement of traffic control devices per MUTCD, cleaning and conditioning of the roadways, repair of base failures as needed, the adjustment of sanitary manholes and other publicly owned structures as required, milling as directed, cement and water addition, grading, compaction, saw cutting and installation of traffic signal loop wires where required and placement of temporary and permanent pavement markings as required.

F. The Engineer shall provide a set of standard City details, as needed, which shall be applicable to this project. The Contractor shall be called in for a Pre-Construction meeting at which time the Engineer shall issue notice to proceed. The Contractor shall have ten (10) days or an agreed to start date to start construction.

1.3 Scheduling of the Work

A. Project Phases and Alternates

The following dates are scheduled based on the Contractor receiving their Notice of Award from the City of Chattanooga on February 22nd, 2017. Phases below corresponded to Phasing Plan, Sheets C610 and C611 of Drawings.

PHASE 1A AND 1B - WORK WITHIN MILLER PARK

Pavilion Stage and Basement – The Contractor shall complete the whole of the work regarding the Pavilion Stage and Basement in <u>318 calendar days</u> from the dates of March 20th, 2017 to February 1st, 2018 (3/20/17-2/1/18). The Contractor will be required to submit a Certificate of Occupancy to the City of Chattanooga for Phase 1 to be considered complete. Failure to do so will result in a penalty of Liquidated Damages to the sum of one thousand five hundred dollars and no cents (\$1,500.00) per calendar day to be implemented should the work for Pavilion Stage and Basement not be completed in the specified time. No incentive payments will be made regarding this Scope of Work.

Miller Park Improvements – The Contractor shall complete the remainder of the work, excluding roadway improvements within the Limits of Construction. The bulk of this work will be the construction and installation of the fountain, irrigation system, rock outcropping installation, flat work, storm drainage elements, and the remaining trees and shrubs. Phase 1 will be completed in <u>318</u> <u>calendar days</u> from the dates of March 20th, 2017 to February 1st, 2018 (3/20/17-2/1/18). Liquidated Damages to the sum of one thousand five hundred dollars and no cents (\$1,500.00) per calendar day to be implemented should the work for Miller Park Improvements not be completed in the specified time. There will be no incentive payments associated with this Scope of Work.

PHASE 2 AND 3 ROADWAY IMPROVEMENTS

The Contractor shall provide Base Bid and Alternates for the Roadwork as indicated below:

BASE BID

Phase 2 – The Contractor shall complete the center portion of the roadway improvements along MLK Blvd, from Georgia Ave to Market St. This work shall include the placement of all utilities and trees along MLK Blvd that may impact, or be impacted by, the roadway, in addition to the installation of the radius returns at the East and West ends of the Limits of Construction, as indicated on Sheet C611. Completion of Phase 2 will be accepted pending a substantial completion walkthrough of this portion of the site. Phases 2 and 3 shall be completed in <u>120 calendar days</u> from the date March 20th to July 18th, 2017 (3/20/17-7/18/17). Liquidated Damages to the sum of one thousand five hundred dollars and no cents (\$1,500.00) per calendar day to be implemented should the work for Phase 2 not be completed in the specified time. **Phase 3** – The Contractor shall complete the remaining work on the north and south sides of MLK Blvd and in Miller Park Plaza, as well as the whole of the work along Cherry St and the placement of the traffic pole at the corner of Cherry St. and Georgia Ave, as indicated on Sheet C611. All work for Phase 3 will be completed in <u>60 calendar days</u> from May 19^h to July 18th, 2017 (5/19/17-7/18/17). Liquidated Damages to the sum of one thousand five hundred dollars and no cents (\$1,500.00) per calendar day to be implemented should the work for Phase 3 not be completed in the specified time. Phase 3 will be considered complete pending a substantial completion walkthrough and approval of the specified portion of the site.

Total Duration for Phases 2 and 3 shall not exceed <u>120 calendar days</u>. If both Phases are completed before the date stipulated in this Section, an incentive payment of one thousand five hundred dollars and no cents (\$1,500.00) per calendar day, for a maximum of fifteen (15) days, will be made for each calendar day in which all work for Phases 2 and 3 is completed prior to the specified completion time.

Liquidated Damages for each phase not completed within the specified time as described above will be implemented concurrently.

ALTERNATE NO. 1

The Contractor shall complete all roadway improvements, Phases 2 and 3 concurrently, with the roadway shut down and traffic re-routed per Traffic Control Plans indicated in Drawings on Sheet C700. Completion of Phases 2 and 3 will be accepted pending a substantial completion walkthrough of this portion of the site. This phase shall be completed in <u>90 calendar days</u> from the date March 20th to June 18th, 2017 (3/20/17-6/18/17). Liquidated Damages to the sum of one thousand five hundred dollars and no cents (\$1,500.00) per calendar day to be implemented should the work for Phases 2 and 3 not be completed in the specified time. An incentive payment of one thousand five hundred dollars and no cents (\$1,500.00) per calendar day, for a maximum of fifteen (15) days, will be made for each calendar day in which all work for Phases 2 and 3 is completed prior to the specified completion time.

Liquidated Damages for each phase not completed within the specified time as described above will be implemented concurrently.

ALTERNATE NO. 2

The Contractor shall Complete Phases 2 and 3 per the Base Bid durations, however no roadway work shall commence until August 28, 2017 (8/28/17). Terms of Liquidated Damages and Incentive Payments shall be the same as provided in the Base Bid.

Phase 2 shall be completed in <u>120 calendar days</u> from the date August 28 to December 19th, 2017 (8/28/17-12/19/17).

Liquidated Damages for each phase not completed within the specified time as described above will be implemented concurrently.

B. The roadways and sidewalks of Martin Luther King Boulevard, Georgia Ave, and Market Street shall remain open to vehicular and pedestrian traffic for the following events and dates:

Armed Forces Day Parade	Friday, May 5, 2017	On Market Street
Nightfall	May 5 - August 25	On ML King Blvd and Market St
Bessie Smith Strut River Gorge Omnium	Monday, June 12, 2017 August 25 - 27	On ML King Blvd On ML King Blvd, Market St, and Georgia Ave
Rucknooga	mid-October	On ML King Blvd
Causeway One Table	Monday before Thanksgiving	On ML King Blvd
MLK Day Parade	Monday, January 15, 2018	On ML King Blvd

The following dates may experience heavier than usual traffic due to detours associated with other events around the Chattanooga area:

Riverside Spring Meetup	April 14 th , 2017
Scenic City Art Car Parade	Late April 2017
Market Street Mile	May 6 th , 2017
IRONMAN 70.3	May 21 st , 2017
Riverbend 2017	June 9 th -June 17 th
Waterfront Triathlon	June 25 th , 2017
Sports Barn Sprint Triathlon	August 6 th , 2017
IRONMAN - World Championships 70.3	<i>September</i> 9 th & 10 th , 2017
IRONMAN	September 24 th , 2017

Additional dates for which these roadways must remain open may be determined at a later date and the contractor shall coordinate construction activities as necessary.

1.4 Items regulating the Execution of the Work.

A. <u>Attention to Work</u>

For this project, the Contractor shall give his personal attention to and shall supervise the work to the end that it shall be prosecuted faithfully; and, when he is not personally present on the work, he shall at all times be represented by a <u>competent</u> superintendent or foreman who shall be present at the work and who shall receive and obey all instruction or orders given under this Contract, and who shall have full authority to execute the same, and to supply materials, tools and labor without delay, and who shall be the legal representative of the Contractor.

The Contractor shall be liable for the faithful observance of any instructions delivered to him or to his authorized representatives.

B. <u>Access to Work</u>

The Contractor shall at all times provide proper facilities for access and inspection of the work by representatives of the Owner and of such official Governmental agencies as may be designated by the Owner as having jurisdictional rights to inspect the work.

C. <u>No Parking Signs</u>

The Contractor shall place "NO PARKING" signs 48 hours prior to beginning work at a project location. The Contractor shall notify the City's designated Inspector/ Project Manager when the signs have been placed and if vehicles have not been moved at such time as work is scheduled to begin. No additional cost shall be paid to the Contractor while the Owner is making arrangements to get the vehicle moved or towed.

D. <u>Work on State Highway</u>

Where the work on this project encroaches upon the right-of-way of any State or Interstate Highway right-of-way, the owner will execute a contract with proper authorities for the proposed work.

The Contractor shall notify the proper authorities prior to entering upon such right-of-way and shall be responsible for all damage and for satisfying the requirements of these authorities.

E. <u>Work on Private Property</u>

Where the work on this project encroaches upon private property, the Owner shall provide easements and/or right-of-entry in or onto said property. Work performed in such easements is subject to the provisions of the easement agreement on file with the City of Chattanooga Engineering Department.

The Contractor shall be responsible for obtaining any additional agreements which may be deemed necessary for the storage of equipment or materials outside of public easements or rights of ways for this project. The Contractor shall obtain a written agreement between the Contractor and Land Owner and forward it to the Engineer prior to use of said property.

The Contractor shall be responsible for the preservation of and shall use every precaution to prevent damage to all trees, shrubbery, fences, culverts, mailboxes, bridges, pavements, driveways, sidewalks, houses or building and all water, sewer, gas, telephone and electric lines thereto and all other private and public property along or adjacent to the work.

Any damage that occurs will be restored to a like condition as existed prior to construction, in the Contract Documents, unless otherwise indicated or specified.

Forty-eight (48) hours prior to construction on any easement or streets the Contractor shall notify in writing the affected property owners in the area. This

notification shall include the Contractor's name and the name and phone number of the contact person.

F. <u>Monthly Job Site Meetings</u>

Once a month, on a date mutually agreed upon by the Contractor and the Engineer, a job site meeting shall be held for review of the Project, including, but not limited to: The construction schedule, traffic control, pending submittals, and any other issues that may arise. This meeting shall be used to review the contractor's monthly applications for payment.

G. <u>Contract Working Hours</u>

All work shall be performed during regular working hours unless mutually agreed upon and approved in writing by the City Engineer. The Contractor will not permit overtime work or the performance of work on Sunday or any legal holiday without the Owner's written consent given after prior 24 hour written notice to the Engineer. Saturday work shall also require prior 24 hour written notice. Regular working hours are Monday through Saturday from 7:00 A.M. to 8:00 P.M. The actual costs of the Owner's and Engineer's inspection of the work performed outside of regular working hours will be billed to the Contractor and deducted from the Contractor's application for payment as they occur.

END OF DOCUMENT

SECTION 08 44 13 GLAZED ALUMINUM CURTAIN WALLS

PART 1 - GENERAL

1.1 Related Documents

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 Summary

- A. Section Includes: Basis of Design: Kawneer Architectural Aluminum Curtain Wall Systems, including perimeter trims, stools, accessories, shims and anchors, and perimeter sealing of curtain wall framing.
 - 1. Types of Kawneer Aluminum Curtain Wall include:
 - a.
- 600 Wall System[™]1 Curtain Wall 2-1/2" (63.5), outside glazed pressure plate format.
- 1) Standard System depth: 7-1/2" (190.5) for 1" (25.4) insulating glazing
- 2) Veneer System depth: 2 ¹/₂" for 1/4" (6.3) monolithic glazing.
- B. Related Sections:
 - 1. 072700 "Air Barriers"
 - 2. 079200 "Joint Sealants"
 - 3. 088000 "Glazing"
- 1.3 Definitions
 - A. Definitions: For fenestration industry standard terminology and definitions refer to American Architectural Manufactures Association (AAMA) – AAMA Glossary (AAMA AG).
- **1.4** Performance Requirements
 - A. General Performance: Comply with performance requirements specified, as determined by testing of glazed aluminum curtain walls representing those indicated for this Project without failure due to defective manufacture, fabrication, installation, or other defects in construction.
 - 1. Glazed aluminum curtain walls shall withstand movements of supporting structure including, but not limited to, story drift, twist, column shortening, long-term creep, and deflection from uniformly distributed and concentrated live loads. Failure also includes the following:
 - a. Thermal stresses transferring to building structure.
 - b. Glass breakage.
 - c. Loosening or weakening of fasteners, attachments, and other components.
 - d. Failure of operating units.
 - B. Delegated Design: Design glazed aluminum curtain walls, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.
 - C. Wind loads: Provide Curtain Wall system; include anchorage, capable of withstanding wind load design pressures of local applicable wind load pressures.
 - D. Air Infiltration: The test specimen shall be tested in accordance with ASTM E 283. Air infiltration rate shall not exceed 0.06 cfm/ft² (0.3 l/s · m²) at a static air pressure differential of 6.24 psf (300 Pa).

- E. Water Resistance, (static): The test specimen shall be tested in accordance with ASTM E 331. There shall be no leakage at a static air pressure differential of 12 psf (575 Pa) as defined in AAMA 501.
- F. Water Resistance, (dynamic): The test specimen shall be tested in accordance with AAMA 501.1. There shall be no leakage at an air pressure differential of 12 psf (575 Pa) as defined in AAMA 501.
- G. Uniform Load: A static air design load of 40 psf (1915 Pa) shall be applied in the positive and negative direction in accordance with ASTM E 330. There shall be no deflection in excess of L/175 of the span of any framing member at design load. At structural test load equal to 1.5 times the specified design load, no glass breakage or permanent set in the framing members in excess of 0.2% of their clear spans shall occur.
- H. Seismic: When tested to AAMA 501.4, system must meet design displacement of 0.010 x the story height and ultimate displacement of 1.5 x the design displacement.
- 1. Thermal Transmittance (U-factor): When tested to AAMA Specification 1503, the thermal transmittance (U-factor) shall not be more than: 0.66 (clear) or
- J. Condensation Resistance (CRF): When tested to AAMA Specification 1503, the condensation resistance factor shall not be less than 66frame and 60glass (clear)
- K. Thermal Transmittance (U-factor): When tested to AAMA Specification 1503, the thermal transmittance (U-factor) shall not be more than: 0.43 (HP glass).
- L. Condensation Resistance (CRF): When tested to AAMA Specification 1503, the condensation resistance factor shall not be less than 71 frame and 71 glass (HP glass).
- M. Sound Transmission Loss: When tested to ASTM E90 and ASTM E1425, the Sound Transmission Class (STC) and Outdoor/Indoor Transmission Class (OITC) shall not be less than: STC 31 or OITC 26 based upon 1" (25.4) insulating glass (1/4", 1/2" AS, 1/4"), STC 37 or OITC 30 based upon 1" (25.4) laminated glass (1/4" laminated, 1/2" AS, 1/4" laminated).
- N. Windborne-Debris-Impact Resistance Performance: Shall be tested in accordance with ASTM E1886, information in ASTM E1996, and TAS 201/203.
 - 1. Large Missile Impact: For aluminum-framed systems located within 30 feet (9.1 m) of grade.
 - 2. Small Missile Impact: For aluminum-framed systems located above 30 feet (9.1 m) of grade.
- 0. Blast Mitigation performance: Shall be tested or proven through analysis to meet ASTM F1642, GSA-TS01, and UFC 04-010.01 performance criteria.

To meet UFC 04-010-01, B-3.1 Standard 10 for Windows and Skylights, the following options are available:

- 1. Section B-3.1.1 Dynamic analysis
- 2. Section B-3.1.2 Testing
- 3. Section B-3.1.3 ASTM F2248 Design Approach
- 1.5 Submittals
 - A. Product Data: For each type of product indicated. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.

- B. Shop Drawings: For glazed aluminum curtain walls. Include plans, elevations, sections, full-size details, and attachments to other work.
- C. Samples for Initial Selection: For units with factory-applied color finishes.
- D. Samples for Verification: For each type of exposed finish required, in manufacturer's standard sizes.
- E. Product Test Reports: Based on evaluation of comprehensive tests performed by a qualified preconstruction testing agency, for glazed aluminum curtain walls, indicating compliance with performance requirements.
- F. Fabrication Sample: Of each vertical-to-horizontal intersection of aluminum-framed curtain wall systems, made from 12" (304.8 mm) lengths of full-size components and showing details of the following:
 - 1. Joinery
 - 2. Glazing
- **1.6** Quality Assurance
 - A. Installer Qualifications: Installer who has had successful experience with installation of the same or similar systems required for the project and other projects of similar size and scope.
 - B. Manufacturer Qualifications: A manufacturer capable of fabricating glazed aluminum curtain walls that meet or exceed performance requirements.
 - C. Source Limitations: Obtain aluminum curtain wall system through one source from a single manufacturer.
 - D. Product Options: Information on Drawings and in Specifications establishes requirements for aesthetic effects and performance characteristics of assemblies. Aesthetic effects are indicated by dimensions, arrangements, alignment, and profiles of components and assemblies as they relate to sightlines, to one another, and to adjoining construction.
 - 1. Do not modify intended aesthetic effects, as judged solely by Architect, except with Architect's approval. If revisions are proposed, submit comprehensive explanatory data to Architect for review.
 - E. Mockups: Build mockups to verify selections made under sample submittals and to demonstrate aesthetic effects and set quality standards for materials and execution.
 - 1. Build mockups for type(s) of curtain wall elevation(s) indicated, in location(s) shown on Drawings.
 - F. Pre-installation Conference: Conduct conference at Project site to comply with requirements in Division 01 Section "Project Management and Coordination".
- 1.7 Project Conditions
 - A. Field Measurements: Verify actual locations of structural supports for glazed aluminum curtain walls by field measurements before fabrication and indicate measurements on Shop Drawings.
- 1.8 Warranty
 - A. Manufacturer's Warranty: Submit, for Owner's acceptance, manufacturer's standard warranty.
 - 1. Warranty Period: Two (2) years from Date of Substantial Completion of the project provided however that the Limited Warranty shall begin in no event later than six months from date of shipment by manufacturer.

PART 2 - PRODUCTS

- 2.1 Manufacturers
 - A. Basis-of-Design Product:
 - 1. Kawneer Company Inc.
 - a.
- 600 Wall System[™]1 Curtain Wall 2-1/2" (63.5), outside glazed pressure plate format.
- System depth: 6" (152.4) or 7-1/2" (190.5) for 1" (25.4) insulating glazing and 1/4" (6.3) monolithic glazing.
- B. Submit substitutions to architect for approval. Refer to Substitutions Section for procedures and submission requirements
- 2.2 Materials
 - A. Aluminum Extrusions: Alloy and temper recommended by glazed aluminum curtain wall manufacturer for strength, corrosion resistance, and application of required finish and not less than 0.070" (1.78) wall thickness at any location for the main frame and complying with ASTM B 221: 6063-T6 alloy and temper.
 - B. Aluminum sheet alloy: Shall meet the requirements of ASTM B209.
 - C. Fasteners: Aluminum, nonmagnetic stainless steel or other materials to be non-corrosive and compatible with aluminum window members, trim hardware, anchors, and other components.
 - D. Anchors, Clips, and Accessories: Aluminum, nonmagnetic stainless steel, or zinc-coated steel or iron complying with ASTM B 633 for SC 3 severe service conditions or other suitable zinc coating; provide sufficient strength to withstand design pressure indicated.
 - E. Pressure Plate: Pressure plate shall be aluminum and fastened to the mullion with stainless steel screws.
 - F. Reinforcing Members: Aluminum, nonmagnetic stainless steel, or nickel/chrome-plated steel complying with ASTM B 456 for Type SC 3 severe service conditions, or zinc-coated steel or iron complying with ASTM B 633 for SC 3 severe service conditions or other suitable zinc coating; provide sufficient strength to withstand design pressure indicated.
 - G. Sealant: For sealants required within fabricated curtain wall system, provide permanently elastic, non-shrinking, and non-migrating type recommended by sealant manufacturer for joint size and movement.
 - H. Thermal Barrier: Thermal separator shall be extruded of a silicone compatible elastomer that provides a minimum 1/4" (6.3) separation.
 - 1. Tolerances: Reference to tolerances for wall thickness and other cross-sectional dimensions of glazed curtain wall members are nominal and in compliance with AA Aluminum Standards and Data.
- **2.3** Curtain Wall Framing
 - A. Framing Members: Manufacturer's standard extruded- or formed-aluminum framing members of thickness required and reinforced as required to support imposed loads. Glazing System: 4 sided captured. Glazing Plane: Front.
 - B. Glass: 1" (25.4) insulating glass option.

- C. Brackets and Reinforcements: Manufacturer's standard high-strength aluminum with nonstaining, nonferrous shims for aligning system components.
- D. Framing Sealants: Shall be suitable for glazed aluminum curtain wall as recommended by sealant manufacturer.
- E. Fasteners and Accessories: Manufacturer's standard corrosion-resistant, nonstaining, nonbleeding fasteners and accessories compatible with adjacent materials. Where exposed shall be stainless steel.
- F. Perimeter Anchors: When steel anchors are used, provide insulation between steel material and aluminum material to prevent galvanic action.
- G. Packing, Shipping, Handling and Unloading: Deliver materials in manufacturer's original, unopened, undamaged containers with identification labels intact.
- H. Storage and Protection: Store materials protected from exposure to harmful weather conditions. Handle curtain wall material and components to avoid damage. Protect curtain wall material against damage from elements, construction activities, and other hazards before, during and after installation.

2.4 Glazing

- A. Glazing: Comply with Division 08 Section "Glazing". Following glazing options are available.
 1. 1600 Wall System[™]1 Curtain Wall.
 2. System depth: 7-1/2" (190.5) for 1" (25.4) insulating glazing
- B. Glazing Gaskets: Gaskets to meet the requirements of ASTM C864.
- C. Spacers and Setting Blocks: Manufacturer's standard elastomeric type.
- D. Bond-Breaker Tape: Manufacturer's standard TFE-fluorocarbon or polyethylene material to which sealants will not develop adhesion.
- E. Glazing Sealants: As recommended by manufacturer for joint type.

2.5 Operable Units

- A. Doors: Comply with Division 08 Section "Aluminum-Framed Entrances and Storefronts".
- B. Windows: Comply with Division 08 Section "Aluminum Windows".
- 2.6 Accessory Materials
 - A. Bituminous Paint: Cold-applied asphalt-mastic paint complying with SSPC-Paint 12 requirements except containing no asbestos, formulated for 30-mil (0.762 mm) thickness per coat.

2.7 Fabrication

- A. Form or extrude aluminum shapes before finishing.
- B. Fabricate components that, when assembled, have the following characteristics:
 - Profiles that are sharp, straight, and free of defects or deformations.
 - Accurately fitted joints.

Physical and thermal isolation of glazing from framing members.

Accommodations for thermal and mechanical movements of glazing and framing to maintain required glazing edge clearances.

Provisions for field replacement of glazing from exterior.

Fasteners, anchors, and connection devices that are concealed from view to greatest extent possible.

Internal weeping system or other means to drain water passing joints, condensation occurring within framing members, and moisture migrating within glazed aluminum curtain wall to exterior.

- C. Curtain Wall Framing: Fabricate components for assembly using shear block system following manufacturer's standard installation instructions.
- D. After fabrication, clearly mark components to identify their locations in Project according to Shop Drawings.
- **2.8** Aluminum Finishes
 - A. Finish designations prefixed by AA comply with the system established by the Aluminum Association for designating aluminum finishes.
 - B. Factory Finishing:

Kawneer Permanodic[™] AA-M10C21A44 / AA-M45C22A44, AAMA 611, Architectural Class I Color Anodic Coating (Color: Submit full range of colors to architect for selection.).

PART 3 - EXECUTION

- 3.1 Examination
 - A. Examine areas, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 - B. Proceed with installation only after unsatisfactory conditions have been corrected.
- 3.2 Installation
 - A. General: Install curtain wall systems plumb, level, and true to line, without warp or rack of frames with manufacturer's prescribed tolerances and installation instructions. Provide support and anchor in place.
 - B. Dissimilar Materials: Provide separation of aluminum materials from sources of corrosion or electrolytic action contact points.
 - C. Glazing: Glass shall be outside glazed and held in place with extruded aluminum pressure plates anchored to the mullion using stainless steel fasteners spaced no greater than 9" (228.6) on center.

15003 11/21/2016

- D. Water Drainage: Each light of glass shall be compartmentalized using joint plugs and silicone sealant to divert water to the horizontal weep locations. Weep holes shall be located in the horizontal pressure plates and covers to divert water to the exterior of the building.
- E. Related Products Installation Requirements:
 - Sealants (Perimeter): Refer to Joint Treatment (Sealants) Section.
 - Glass: Refer to Glass and Glazing Section.
 - a. Reference: ANSI Z97.1, CPSC 16 CFR 1201 and GANA Glazing Manual.
- 3.3 Field Quality Control

1.

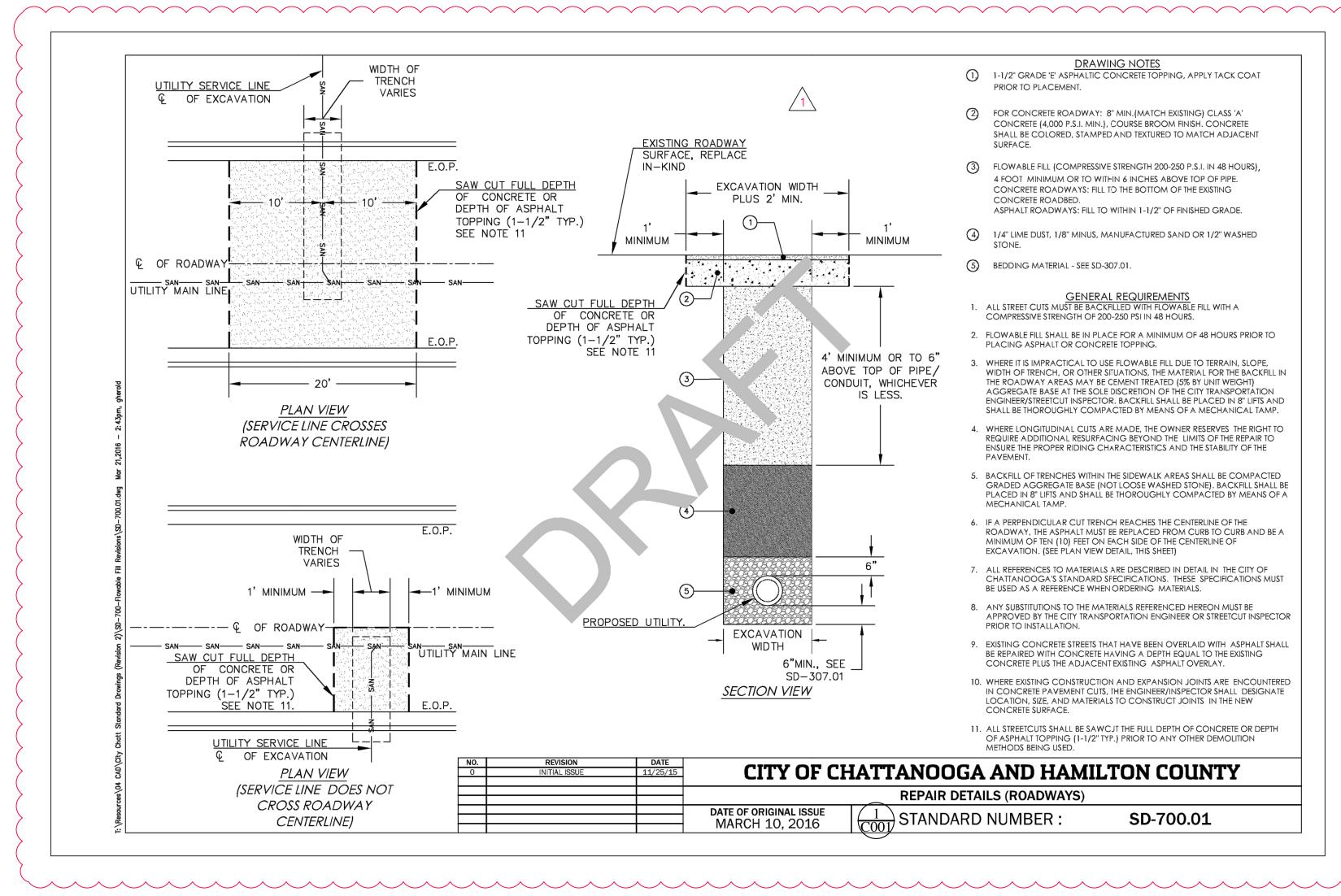
- A. Field Tests: Architect shall select curtain wall units to be tested as soon as a representative portion of the project has been installed, glazed, perimeter caulked and cured. Conduct tests for air infiltration and water penetration with manufacturer's representative present. Tests not meeting specified performance requirements and units having deficiencies shall be corrected as part of the contract amount.
 - Testing: Testing shall be performed per AAMA 503 by a qualified independent testing agency. Refer to Testing Section for payment of testing and testing requirements.
 - a. Air Infiltration Tests: Conduct tests in accordance with ASTM E 783. Allowable air infiltration shall not exceed 1.5 times the amount indicated in the performance requirements or 0.09 cfm/ft², whichever is greater.
 - b. Water Infiltration Tests: Conduct tests in accordance with ASTM E 1105. No uncontrolled water leakage is permitted when tested at a static test pressure of two-thirds the specified water penetration pressure but not less than 8 psf (383 Pa).
- B. Manufacturer's Field Services: Upon Owner's written request, provide periodic site visit by manufacturer's field service representative.
- **3.4** Adjusting, Cleaning and Protection
 - A. Protection: Protect installed product's finish surfaces from damage during construction. Protect aluminum curtain wall system from damage from grinding and polishing compounds, plaster, lime, acid, cement, or other harmful contaminants.
 - B. Cleaning: Repair or replace damaged installed products. Clean installed products in accordance with manufacturer's instructions prior to owner's acceptance. Remove construction debris from project site and legally dispose of debris.
 - C. Remove and replace glass that has been broken, chipped, cracked, abraded, or damaged during construction period.

END OF SECTION 084413

ATTENDING PRE-BID CONFERENCE

Bid/Proposal Number: 147376

Opening Date: 01/26/17


Miller Park District & Connectivity Improvements – Phase I

Pre-Bid Date: 12/21/16

Name & Company Email Bonnie dodsow Cuc B MUMBONTOR Chattenage.ga JASON PAINTRE Jen-Hill Jason @ Jenhill. com Ocan Briss WBCT Obriggs@ which in CHAD @ TURNITBUSCK. COM CHAD NORMAN ADI MIKE MCBRAYER DANE TBOCINC.NET MIKE CTBOCINC.NET THOMAS BRUTHURS Bo Maply Tellay Construction bootelley Construction. not Jeff Siker Аза Елерессина is ites & asacrymearing the Com brente c ji contractors com Bent Collier JJJ Cont. Adrew Smith 5 logiade @ CATT. Con jbergooll & Chattaneoga, gov J. Berydoll CoC Brandon Sutton (CDOT) bsutton@ chattahoog q. gov

EMAIL NAME & COMPANY Imakone echa Hanooga. 901 DENNIS MALONE COC-PW-ENC 1goerlich@chaddanoosa.sa COC-Open Spaces LORI GOERLICH AKOSUA COOK

AKOSVA COOK COC-Open Spaces acrok@chattanooge.go JOSEPH PARKS MARCH ADAMS JOE, PARKS & MARCH ADAMS. Com Emily Bullak SM/EhR emily@SMM. Studio Jenny Ruk City jpark Echattanooge.go

GENERAL	NOTES:

THESE DRAWINGS DO NOT PURPORT TO LOCATE ALL UTILITIES.
ALL UTILITY LOCATIONS TO BE FIELD VERIFIED BY PROPER AGENCIES BEFORE BEGINNING
CONSTRUCTION. UNDERGROUND UTILITIES ARE NOT FIELD LOCATED NOR ARE ALL PURPORTED
TO BE SHOWN. INFORMATION SHOWN SHOULD BE CONSIDERED APPROXIMATE. CONTRACTOR TO
CONTACT ALL UTILITY COMPANIES TO HAVE UTILITIES FIELD LOCATED BEFORE EXCAVATION OR

- Demolition work begins. **3** THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES SHOWN HAVE NOT BEEN INDEPENDENTLY VERIFIED BY THE OWNER OR ITS REPRESENTATIVE. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES WITHIN THE WORKING AREA BEFORE COMMENCING WORK & AGREES TO BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE OCCASIONED BY THE CONTRACTOR'S FAILURE TO EXACTLY LOCATE & PRESERVE ANY & ALL UNDERGROUND UTILITIES.
- 4 THE CONTRACTOR SHALL COORDINATE LOCATION & INSTALLATION OF ALL UNDERGROUND UTILITIES & APPURTENANCES TO MINIMIZE DISTURBING CURB & GUTTER, PAVING, EXISTING UTILITIES & COMPACTED SUBGRADE.
- 5 CONTRACTOR SHALL VERIFY EXISTING UTILITY LINE OR EXISTING INFRASTRUCTURE PRIOR TO BEGINNING WORK. CONTRACTOR SHALL NOTIFY THE ENGINEER OF ANY DISCREPANCIES ON THE DRAWING OR IN THE FIELD BEFORE BEGINNING WORK OR DURING CONSTRUCTION.
- 6 CONTRACTOR TO COORDINATE ALL WORK WITH OTHER UTILITY INSTALLATIONS NOT COVERED IN THESE PLANS (ELECTRIC, TELEPHONE, GAS, CABLE, ETC.) & ALLOW FOR THEIR OPERATIONS & CONSTRUCTION TO BE PREPARED.
- 7 THE CONTRACTOR SHALL IMMEDIATELY INFORM THE OWNERS REPRESENTATIVE OR ENGINEER OF ANY DISCREPANCIES OR ERRORS HE DISCOVERS IN THE PLAN. 8 DEVIATION FROM THESE PLANS & NOTES WITHOUT THE PRIOR CONSENT OF THE OWNERS REPRESENTATIVE MAY BE CAUSE FOR THE WORK TO BE UNACCEPTABLE.
- 9 ALL WORK SHALL COMPLY WITH APPLICABLE STATE, FEDERAL, AND LOCAL CODES, & ALL NECESSARY LICENSES & PERMITS SHALL BE OBTAINED BY THE CONTRACTOR AT HIS EXPENSE UNLESS PREVIOUSLY OBTAINED BY THE OWNER/DEVELOPER.
- 10 FOR THE WORK ON THE STATE OR CITY RIGHT-OF-WAY, THE CONTRACTOR SHALL: A. NOT STORE MATERIAL, EXCESS DIRT OR EQUIPMENT ON THE SHOULDERS OF PAVEMENT IN CASE OF MULTI-LANE HIGHWAYS, IN THE MEDIAN STRIPS. THE PAVEMENT SHALL BE KEPT FREE FROM ANY MUD OR EXCAVATION WASTE FROM TRUCKS OR OTHER EQUIPMENT. ON COMPLETION OF THE WORK ALL EXCESS MATERIAL SHALL BE REMOVED FROM THE R/W.
- B. SHALL PROVIDE ALL NECESSARY & ADEQUATE SAFETY PRECAUTIONS SUCH AS SIGNS, FLAGS, LIGHTS, BARRICADES & FLAG MEN AS REQUIRTE SAFETY PRECAUTIONS SUCH AS SIGNS, FLAGS, LIGHTS, BARRICADES & FLAG MEN AS REQUIRED BY THE LOCAL AUTHORITIES & IN ACCORDANCE WITH THE MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR & HOLD HARMLESS THE STATE OF TENNESSEE DEPARTMENT OF TRANSPORTATION, THE CITY OF CHATTANOOGA & THE OWNER FROM ANY CLAIMS FOR DAMAGE DONE TO EXISTING PRIVATE PROPERTY, PUBLIC UTILITIES, OR TO THE TRAVELING PUBLIC.
- C. SHALL COMPLETE THE WORK TO THE SATISFACTION OF THE CITY OF CHATTANOOGA OR DOT AND OBTAIN A LETTER FROM THE DEPARTMENT STATING THAT THE WORK IS ACCEPTABLE. D. POST NECESSARY BONDS AS REQUIRED BY THE CITY AND/OR STATE.
- 11 ALL WORK & MATERIALS SHALL COMPLY WITH CITY OF CHATTANOOGA REGULATIONS & CODES OF O.S.H.A. STANDARDS. 12 A MINIMUM CLEARANCE OF TWO FEET SHALL BE MAINTAINED BETWEEN THE FACE OF CURB & ANY PART OF A TRAFFIC SIGNAL OR LIGHT POLE.
- 13 NECESSARY & SUFFICIENT BARRICADES, LIGHTS, SIGNS & OTHER TRAFFIC CONTROL MEASURES AS MAY BE NECESSARY FOR THE PROTECTION AND SAFETY OF THE PUBLIC SHALL BE PROVIDED & MAINTAINED THROUGHOUT THE CONSTRUCTION PERIOD.
- 14 CONTRACTORS SHOULD NOT BE DOING ANY OPEN BURNING OF CONSTRUCTION MATERIALS OR DEBRIS WITHOUT A PERMIT FROM THE DEPARTMENT OF AIR POLLUTION CONTROL OR LOCAL AUTHORITY. IF A CONTRACTOR DESIRES TO PERFORM OPEN BURNING, HE MUST BE RESPONSIBLE FOR OBTAINING ANY PERMITS AND IS RESPONSIBLE FOR ANY VIOLATION OF THE AIR POLLUTION LAWS.
- 15 CONTRACTOR SHALL BE RESPONSIBLE DURING CONSTRUCTION FOR THE CONTINUOUS MAINTENANCE OF SEDIMENT & EROSION CONTROL MEASURES AS CALLED FOR ON THE DRAWINGS.
- 16 EROSION CONTROL MEASURES ARE TO BE MAINTAINED DURING ALL PHASES OF CONSTRUCTION (SEE GRADING & DRAINAGE PLAN AND/OR SEDIMENT & EROSION CONTROL PLAN).
- 17 EXISTING DRAINAGE STRUCTURES TO BE INSPECTED, REPAIRED AS NEEDED & CLEANED OUT TO REMOVE ALL SILT & DEBRIS.
- 18 THE CONTRACTOR SHALL REPAIR OR REPLACE IN-KIND ANY DAMAGE THAT OCCURS TO PROPERTY AS RESULT OF HIS WORK.
- 19 ALL PIPE LENGTHS & DISTANCES BETWEEN STRUCTURES ARE MEASURED FROM CENTER OF STRUCTURE TO CENTER OF STRUCTURE ALONG A HORIZONTAL PLANE. 20 THE CONTRACTOR SHALL PROVIDE ALL THE MATERIALS & APPURTENANCES NECESSARY FOR THE COMPLETE INSTALLATION OF THE STORM DRAINAGE, SEWER, WATER & UTILITY SYSTEMS. ALL PIPE & FITTINGS SHALL BE INSPECTED BY THE UTILITY DEPARTMENT INSPECTOR PRIOR TO BEING COVERED. THE INSPECTOR MUST ALSO BE PRESENT DURING PRESSURE TESTING & DISINFECTION OF LATERALS & HIS SIGNATURE OF APPROVAL IS REQUIRED.
- 21 THE CONTRACTOR SHALL MAKE ARRANGEMENTS WITH THE LOCAL UTILITY AUTHORITIES FOR CONNECTION TO THE EXISTING MAINS & PAY ALL APPLICABLE FEES.
- 22 UTILITY COORDINATION & COSTS SHALL BE INCLUDED IN THE PROJECT SCHEDULE & IT IS THE EXPLICIT RESPONSIBILITY OF THE CONTRACTOR TO ASSURE THAT THE PROJECT SCHEDULE INCLUDES THE NECESSARY RELOCATION. THE CONTRACTOR WILL NOT BE PAID ADDITIONALLY FOR THIS COORDINATION. THE CONTRACTOR SHOULD SEEK ASSISTANCE FROM ALL UTILITY COMPANIES TO LOCATE & PROTECT THEIR FACILITIES.
- 23 CONTRACTOR SHALL OBTAIN ALL PERMITS BEFORE CONSTRUCTION BEGINS.
- 24 DIMENSIONS ON BUILDINGS ARE FOR GRADING PURPOSES ONLY & ARE NOT TO BE USED TO LAYOUT FOOTINGS. REFER TO THE STRUCTURAL DRAWINGS FOR FOUNDATION INFORMATION. 25 ALL DIMENSIONS SHOWN ARE TO FACE OF CURB OR EDGE OF S/W UNLESS NOTED OTHERWISE.
- 26 CONTRACTOR SHALL VERIFY ALL DIMENSIONS PRIOR TO BEGINNING CONSTRUCTION.
- 27 JOINTS OR SCORE MARKS ARE TO BE SHARP & CLEAN WITHOUT SHOWING EDGES OF JOINT TOOL 28 THE CONTRACTOR SHALL PROVIDE FOR ANY NECESSARY BONDS AS REQUIRED BY GOVERNING AGENCIES.
- 29 AN AUTO CAD BASE PLAN MAY BE PROVIDED TO THE CONTRACTOR FOR CONSTRUCTION PURPOSES. 30 TEMPORARY BENCHMARK: TO BE ESTABLISHED PRIOR TO CONSTRUCTION.
- 31 TOPOGRAPHIC & BOUNDARY SURVEY BY OWNER DIRECTLY. NO PROFESSIONAL SURVEY PROVIDED.
- 32 CONTRACTOR SHALL PROVIDE A TEMPORARY 6' CHAIN LINK FENCE AROUND WORK ZONES WITH IN THE PARK, ADJUST LOCATION AS NECESSARY THROUGH THE PROJECT. 3 CONTRACTOR SHALL SEE PHASE II ENVIRONMENTAL STUDY FOR REQUIREMENTS REGARDING CAPPING AND EXPOSED CONTAMINATED SOILS. CONTAMINATED SOILS SHALL BE CAPPED WITH MIN 18" OF CLEAN SOIL OR HARDSCAPE ABOVE.

\wedge	1)	DRAWING NOTES 1-1/2" GRADE 'E' ASPHALTIC CONCRETE TOPPING, APPLY TACK COAT PRIOR TO PLACEMENT.
ADWAY	2	FOR CONCRETE ROADWAY: 8" MIN. (MATCH EXISTING) CLASS 'A' CONCRETE (4,000 P.S.I. MIN.), COURSE BROOM FINISH. CONCRETE SHALL BE COLORED, STAMPED AND TEXTURED TO MATCH ADJACENT SURFACE.
EXCAVATION WIDTH PLUS 2' MIN.	3	FLOWABLE FILL (COMPRESSIVE STRENGTH 200-250 P.S.I. IN 48 HOURS), 4 FOOT MINIMUM OR TO WITHIN 6 INCHES ABOVE TOP OF PIPE. CONCRETE ROADWAYS: FILL TO THE BOTTOM OF THE EXISTING CONCRETE ROADBED. ASPHALT ROADWAYS: FILL TO WITHIN 1-1/2" OF FINISHED GRADE.
	4	1/4" LIME DUST, 1/8" MINUS, MANUFACTURED SAND OR 1/2" WASHED STONE.
	5	BEDDING MATERIAL - SEE SD-307.01.
	1.	GENERAL REQUIREMENTS ALL STREET CUTS MUST BE BACKFILLED WITH FLOWABLE FILL WITH A COMPRESSIVE STRENGTH OF 200-250 PSI IN 48 HOURS.
	2.	FLOWABLE FILL SHALL BE IN PLACE FOR A MINIMUM OF 48 HOURS PRIOR TO PLACING ASPHALT OR CONCRETE TOPPING.
4' MINIMUM OR TO 6" ABOVE TOP OF PIPE/ CONDUIT, WHICHEVER IS LESS.		WHERE IT IS IMPRACTICAL TO USE FLOWABLE FILL DUE TO TERRAIN, SLOPE, WIDTH OF TRENCH, OR OTHER SITUATIONS, THE MATERIAL FOR THE BACKFILL IN THE ROADWAY AREAS MAY BE CEMENT TREATED (5% BY UNIT WEIGHT) AGGREGATE BASE AT THE SOLE DISCRETION OF THE CITY TRANSPORTATION ENGINEER/STREETCUT INSPECTOR. BACKFILL SHALL BE PLACED IN 8" LIFTS AND SHALL BE THOROUGHLY COMPACTED BY MEANS OF A MECHANICAL TAMP.
	4.	WHERE LONGITUDINAL CUTS ARE MADE, THE OWNER RESERVES THE RIGHT TO REQUIRE ADDITIONAL RESURFACING BEYOND THE LIMITS OF THE REPAIR TO ENSURE THE PROPER RIDING CHARACTERISTICS AND THE STABILITY OF THE PAVEMENT.
		BACKFILL OF TRENCHES WITHIN THE SIDEWALK AREAS SHALL BE COMPACTED GRADED AGGREGATE BASE (NOT LOOSE WASHED STONE). BACKFILL SHALL BE PLACED IN 8" LIFTS AND SHALL BE THOROUGHLY COMPACTED BY MEANS OF A MECHANICAL TAMP.
		IF A PERPENDICULAR CUT TRENCH REACHES THE CENTERLINE OF THE ROADWAY, THE ASPHALT MUST BE REPLACED FROM CURB TO CURB AND BE A MINIMUM OF TEN (10) FEET ON EACH SIDE OF THE CENTERLINE OF EXCAVATION. (SEE PLAN VIEW DETAIL, THIS SHEET)
	7.	ALL REFERENCES TO MATERIALS ARE DESCRIBED IN DETAIL IN THE CITY OF CHATTANOOGA'S STANDARD SPECIFICATIONS. THESE SPECIFICATIONS MUST BE USED AS A REFERENCE WHEN ORDERING MATERIALS.
	8.	ANY SUBSTITUTIONS TO THE MATERIALS REFERENCED HEREON MUST BE APPROVED BY THE CITY TRANSPORTATION ENGINEER OR STREETCUT INSPECTOR PRIOR TO INSTALLATION.
- EXCAVATION - MIDTH 6"MIN., SEE _	9.	EXISTING CONCRETE STREETS THAT HAVE BEEN OVERLAID WITH ASPHALT SHALL BE REPAIRED WITH CONCRETE HAVING A DEPTH EQUAL TO THE EXISTING CONCRETE PLUS THE ADJACENT EXISTING ASPHALT OVERLAY.
SD-307.01 <u>SECTION VIEW</u>	10.	WHERE EXISTING CONSTRUCTION AND EXPANSION JOINTS ARE ENCOUNTERED IN CONCRETE PAVEMENT CUTS, THE ENGINEER/INSPECTOR SHALL DESIGNATE LOCATION, SIZE, AND MATERIALS TO CONSTRUCT JOINTS IN THE NEW CONCRETE SURFACE.
	11.	ALL STREETCUTS SHALL BE SAWCJT THE FULL DEPTH OF CONCRETE OR DEPTH OF ASPHALT TOPPING (1-1/2" TYP.) PRIOR TO ANY OTHER DEMOLITION METHODS BEING USED.
CITY OF CHATTANOC)GA	AND HAMILTON COUNTY
REPAIR	DETA	ILS (ROADWAYS)

I CONTRACTOR SHALL VERIFY ALL DIMENSIONS BEFORE BEGINNING CONSTRUCTION.

2 FOR EXACT BUILDING DIMENSIONS SEE ARCHITECTURAL PLANS. 3 DIMENSIONS ON BUILDINGS ARE FOR GRADING PURPOSES ONLY & ARE NOT TO BE USED TO LAYOUT FOOTINGS. REFER TO THE STRUCTURAL DRAWINGS FOR FOUNDATION INFORMATION.

4 ALL DIMENSIONS SHOWN ARE TO FACE OF CURB, EDGE OF SIDEWALK, OR FACE OF BUILDING UNLESS NOTED OTHERWISE. 5 A 1' CURB TAPER SHALL BE FORMED AT ALL PLACES WHERE CURB & GUTTER MEETS AN ADJACENT CONCRETE SIDEWALK OR PARKING AREA WHICH IS 0.5' LOWER THAN THE TOP OF CURB ELEVATION.

6 CONTRACTOR TO MAINTAIN 6-FT SITE SECURITY FENCE AROUND WORK ZONES. **7** REFER ALSO TO GENERAL NOTES FOR ADDITIONAL REQUIREMENTS.

1 THE CONTRACTOR SHALL BE RESPONSIBLE FOR OBTAINING DEMOLITION PERMITS AS WELL AS OTHER ASSOCIATED PERMITS PRIOR TO CONSTRUCTION.

DIMENSIONS ON BUILDINGS ARE FOR GRADING PURPOSES ONLY & ARE NOT TO BE USED TO LAYOUT FOOTINGS. REFER TO THE STRUCTURAL DRAWINGS FOR FOUNDATION INFORMATION. 3 ALL DEMOLITION DIMENSIONS SHOWN ARE APPROXIMATE & SHALL BE FIELD VERIFIED PRIOR TO CONSTRUCTION

4 THE CONTRACTOR SHALL SAW-CUT TIE-INS AT EXISTING PAVEMENT OR CONC. AREAS AS NECESSARY TO ENSURE SMOOTH TRANSITIONS THE CONTRACTOR SHALL SAW-CUT AND TRANSITION TO MEET EXISTING PAVEMENT AS NECESSARY & AS DIRECTED BY THE INSPECTOR TO ENSURE POSITIVE DRAINAGE (TYPICAL AT ALL INTERSECTIONS). INSTALL EXPANSION JOINTS AT ALL CONC. SAW-CUT TIE-INS. 5 ALL EXISTING TREES, VEGETATION & ORGANIC TOPSOIL SHALL BE STRIPPED & REMOVED FROM THE CONSTRUCTION AREA, AS REQUIRED. 6 EXISTING STRUCTURES WITHIN CONSTRUCTION LIMITS ARE TO BE ABANDONED, REMOVED, OR RELOCATED AS REQUIRED. COORDINATE WITH PROPER AUTHORITIES AND/OR UTILITY COMPANIES. **7** REFER ALSO TO GENERAL NOTES FOR ADDITIONAL REQUIREMENTS.

DRAINAGE & GRADING NOTES:

SITE NOTES:

DEMOLITION NOTES

1 CONTRACTOR SHALL OBTAIN ALL PERMITS BEFORE CONSTRUCTION BEGINS. 2 NEW FINISHED CONTOURS SHOWN ARE TOP OF NEW PAVING IN AREAS TO RECEIVE PAVEMENT & TOP OF TOPSOIL IN AREAS TO BE SEEDED. 3 PROPOSED CONTOUR INTERVALS ARE AS LABELED. ALL PROPOSED CONTOURS ARE FINISHED GRADE. CONTRACTOR SHALL NOTIFY & COOPERATE WITH ALL UTILITY COMPANIES OR FIRMS HAVING FACILITIES ON OR ADJACENT TO THE SITE BEFORE DISTURBING, ALTERING, REMOVING, RELOCATING, ADJUSTING OR CONNECTING TO SAID FACILITIES. CONTRACTOR SHALL PAY ALL COSTS IN CONNECTION WITH THE ALTERNATION OF OR RELOCATION OF THE FACILITIES. CONTRACTOR SHALL RAISE OR LOWER TOPS OF EXISTING MANHOLES AS REQUIRED TO MATCH FINISHED GRADES. 5 A QUALIFIED SOILS LABORATORY SHALL DETERMINE THE SUITABILITY OF THE EXISTING SUB-GRADE & EXISTING ON SITE MATERIAL PRIOR TO BEGINNING ANY FILLING OPERATION. 6 ALL WASTE RESULTING FROM DEMOLITION, CLEARING & GRUBBING SHALL BE DISPOSED OF OFF SITE BY THE CONTRACTOR AT AN APPROVED LOCATION.

BEFORE ANY MACHINE WORK IS DONE, CONTRACTOR SHALL STAKE OUT & MARK THE ITEMS ESTABLISHED BY THE SITE PLAN. CONTROL POINTS SHALL BE PRESERVED AT ALL TIMES DURING THE COURSE OF THE PROJECT. LACK OF PROPER WORKING POINTS AND GRADE STAKES MAY REQUIRE CESSATION OF OPERATIONS UNTIL SUCH POINTS & GRADES HAVE BEEN PLACED TO THE OWNER'S SATISFACTION.

COMPACTION OF THE BACK FILL OF ALL TRENCHES SHALL BE COMPACTED TO THE DENSITY OF 95% OF THEORETICAL MAXIMUM DRY DENSITY (ASTM D698). BACK FILL MATERIAL SHALL BE FREE FROM ROOTS, STUMPS, OR OTHER FOREIGN DEBRIS & SHALL BE PLACED AT OR NEAR OPTIMUM MOISTURE. CORRECTION OF ANY TRENCH SETTLEMENT WITHIN A YEAR FROM THE DATE OF APPROVAL WILL BE THE RESPONSIBILITY OF THE CONTRACTOR. 9 ALL FILL MATERIAL TO BE UTILIZED ON THE PROJECT SHALL BE FREE OF ORGANIC OR OTHERWISE DELETERIOUS MATERIALS & COMPACTED TO MINIMUM DRY DENSITIES CORRESPONDING TO 95% OF MAXIMUM DRY DENSITY AS OBTAINED BY STANDARD PROCTOR, ASTM D698 AT LEAST 98% OF STANDARD PROCTOR WITHIN 1 FOOT BELOW PAVEMENT SUBGRADE. FILL SHALL BE PLACED IN LIFTS NO TO EXCEED 6 INCHES IN COMPACTED FILL THICKNESS. A REPORT FROM A GEOTECHNICAL ENGINEER MAY BE REQUIRED BY THE OWNER.

10 THE CONTRACTOR WILL INSURE THAT POSITIVE & ADEQUATE DRAINAGE IS MAINTAINED AT ALL TIMES WITHIN THE PROJECT LIMITS. THIS MAY INCLUDE, BUT NOT BE LIMITED TO, REPLACEMENT OR RECONSTRUCTION OF EXISTING DRAINAGE STRUCTURES THAT HAVE BEEN DAMAGED OR REMOVED OR RECONSTRUCTED AS REQUIRED BY THE ENGINEER, EXCEPT FOR THOSE DRAINAGE ITEMS SHOWN AT SPECIFIC LOCATIONS IN & HAVING SPECIFIC PAY ITEMS IN THE DETAILED ESTIMATE. NO SEPARATE PAYMENT WILL BE MADE AT ANY COSTS INCURRED TO COMPLY WITH THIS REQUIREMENT.

11 THE CONTRACTOR SHALL PROVIDE ANY EXCAVATION & MATERIAL SAMPLES NECESSARY TO CONDUCT REQUIRED SOIL TESTS. ALL ARRANGEMENTS & SCHEDULING FOR THE TESTING SHALL BE THE CONTRACTOR'S RESPONSIBILITY. 12 PRIOR TO CONSTRUCTION THE CONTRACTOR SHALL VERIFY EXISTING GRADES ESPECIALLY WITHIN & ALONG DRAINAGE WAYS. THE CONTRACTOR SHALL NOTIFY THE ENGINEER OF ANY DISCREPANCIES PRIOR TO COMMENCEMENT OF WORK. 13 MAXIMUM EMBANKMENT SLOPES TO BE AS FOLLOWS: CUT AREA - 3:1; FILL AREAS 3:1 (UNLESS NOTED OTHERWISE).

14 IT IS THE INTENT OF THIS PROJECT FOR THE CONTRACTOR TO VERIFY & MATCH EXISTING CONDITIONS UNLESS OTHERWISE NOTED. THE CONTRACTOR SHALL NOTIFY THE ENGINEER/ARCHITECT OF ANY ITEMS THAT DO NOT EXIST AS SHOWN. 15 STORM DRAIN PIPE TO BE CLASS III REINFORCED CONCRETE CONFORMING TO ASTM C-76, OR ADS N-12 WITH SOIL TIGHT GASKET AS SHOWN ON DRAWINGS.

16 PRE CAST STRUCTURES MAY BE USED AT THE CONTRACTORS OPTION. ALL CONCRETE TO HAVE A MINIMUM 28 DAY COMPRESSIVE STRENGTH OF 3000 P.S.I. 17 CONTRACTOR SHALL BLEND ALL SLOPES WITH THE SURROUNDING ENVIRONMENT. 18 THE CONTRACTOR SHALL COORDINATE WITH THE PROJECT ENGINEER FOR ANY FIELD GRADE ADJUSTMENTS NEEDED DUE TO ACTUAL TOPOGRAPHY VARYING FROM THE TOPOGRAPHIC SURVEY.

19 REFER ALSO TO GENERAL NOTES FOR ADDITIONAL REQUIREMENTS. CITY OF CHATTANOOGA STORM WATER NOTES & CLARIFICATIONS:

IN ADDITION TO ALL EXISTING REQUIREMENTS THE FOLLOWING ITEMS WILL BE ENFORCED EFFECTIVE IMMEDIATELY. THESE REQUIREMENTS ARE ALREADY AUTHORIZED BY CITY CODE SECTION 31. PLEASE BE AWARE THAT THESE REQUIREMENTS ARE CITY REQUIREMENTS. STATE OF TENNESSEE NPDES PERMIT REQUIREMENTS MAY BE DIFFERENT.

ALL PERMIT APPLICATIONS AND REPORTS MUST BE SIGNED AS FOLLOWS: A. CORPORATION: A PRESIDENT, SECRETARY, TREASURER, OR VICE PRESIDENT OF THE CORPORATION OR OTHER PERSON WHO PERFORMS SIMILAR POLICY- OR DECISION-MAKING FUNCTIONS FOR THE CORPORATION B. PARTNERSHIP OR SOLE PROPRIETORSHIP: BY A GENERAL PARTNER OR THE PROPRIETOR.

PUBLIC FACILITY: A PRINCIPAL EXECUTIVE OFFICER OR THE CHIEF EXECUTIVE OFFICER OF THE AGENCY OR A SENIOR EXECUTIVE OFFICER HAVING RESPONSIBILITY FOR THE OVERALL OPERATIONS OF A PRINCIPAL GEOGRAPHIC UNIT OF THE AGENCY. SIGNATURES WILL BE ACCEPTED ONLY FROM PROPERTY OWNERS AND/OR THE GENERAL CONTRACTORS. IN CASE OF A FILL PERMIT, WRITTEN AUTHORIZATION FROM THE PROPERTY OWNER MUST BE INCLUDED WITH THE APPLICATION. ALL ENFORCEMENT RESULTING FROM PERMIT OR POLLUTION VIOLATIONS WILL BE JOINTLY APPLIED TO BOTH THE PROPERTY OWNER AND GENERAL CONTRACTOR.

THE APPLICANT MUST SUBMIT THE NAME AND ADDRESS OF THE CONTRACTOR AND ANY SUBCONTRACTORS WHO SHALL PERFORM THE LAND DISTURBING ACTIVITY AND WHO SHALL IMPLEMENT THE EROSION CONTROL PLAN. ON SITES WHERE A NPDES PERMIT IS REQUIRED, A NOTICE OF INTENT MUST BE SUBMITTED BEFORE A LAND DISTURBING PERMIT CAN BE ISSUED. A NOTICE OF COVERAGE MUST BE FAXED TO THE STORM WATER OFFICE BEFORE GRADING WORK IS AUTHORIZED TO BEGIN. 3 ON SITES THAT DISCHARGE INTO SINKHOLES, WRITTEN APPROVAL FROM THE TDEC OFFICE OF WATER SUPPLY MUST BE SUBMITTED BEFORE A LAND DISTURBING PERMIT IS ISSUED. ⁴ ALL OUTFALLS MUST BE NOTED ON THE SUBMITTED EROSION CONTROL PLAN. DISCHARGE FROM ANY ADDITIONAL OUTFALLS WILL BE CONSIDERED A PERMIT VIOLATION.

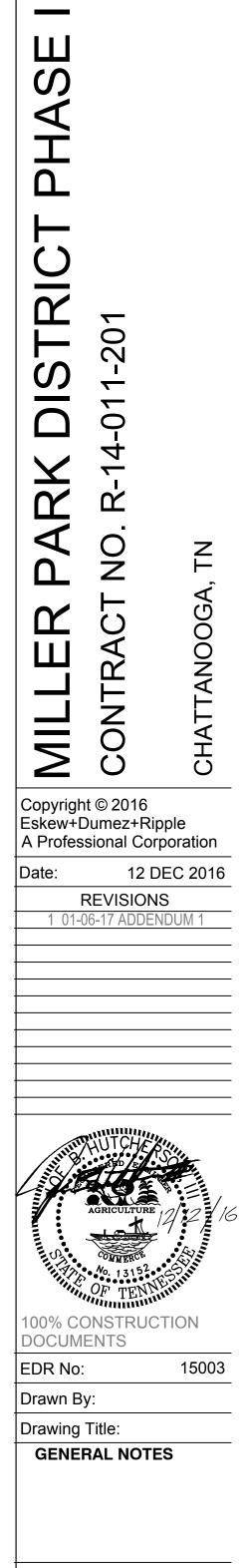
5 A LOCATION MUST BE NOTED ON THE PLANS FOR CONCRETE TRUCK WASH AREAS. THE DISCHARGE OF CONCRETE CHUTE WASH WATER AND ALL OTHER NON-STORM WATER DISCHARGES SUCH AS PAINT BRUSH WASH WATER ARE AN ILLEGAL DISCHARGE. 6 PERIMETER EROSION AND SEDIMENT CONTROL MEASURES MUST BE IN PLACE AND FUNCTIONAL BEFORE EARTH MOVING OPERATIONS BEGIN.

7 ANY DISTURBED AREAS THAT ARE TO REMAIN BARE FOR LONGER THAN 15-DAYS MUST BE TEMPORARILY STABILIZED., 8 A SPECIFIC INDIVIDUAL SHALL BE DESIGNATED TO BE RESPONSIBLE FOR EROSION AND SEDIMENT CONTROLS ON EACH SITE. THIS PERSON MUST BE IDENTIFIED, ALONG WITH A PHONE NUMBER, IN THE APPLICATION FOR LAND DISTURBANCE PERMIT.

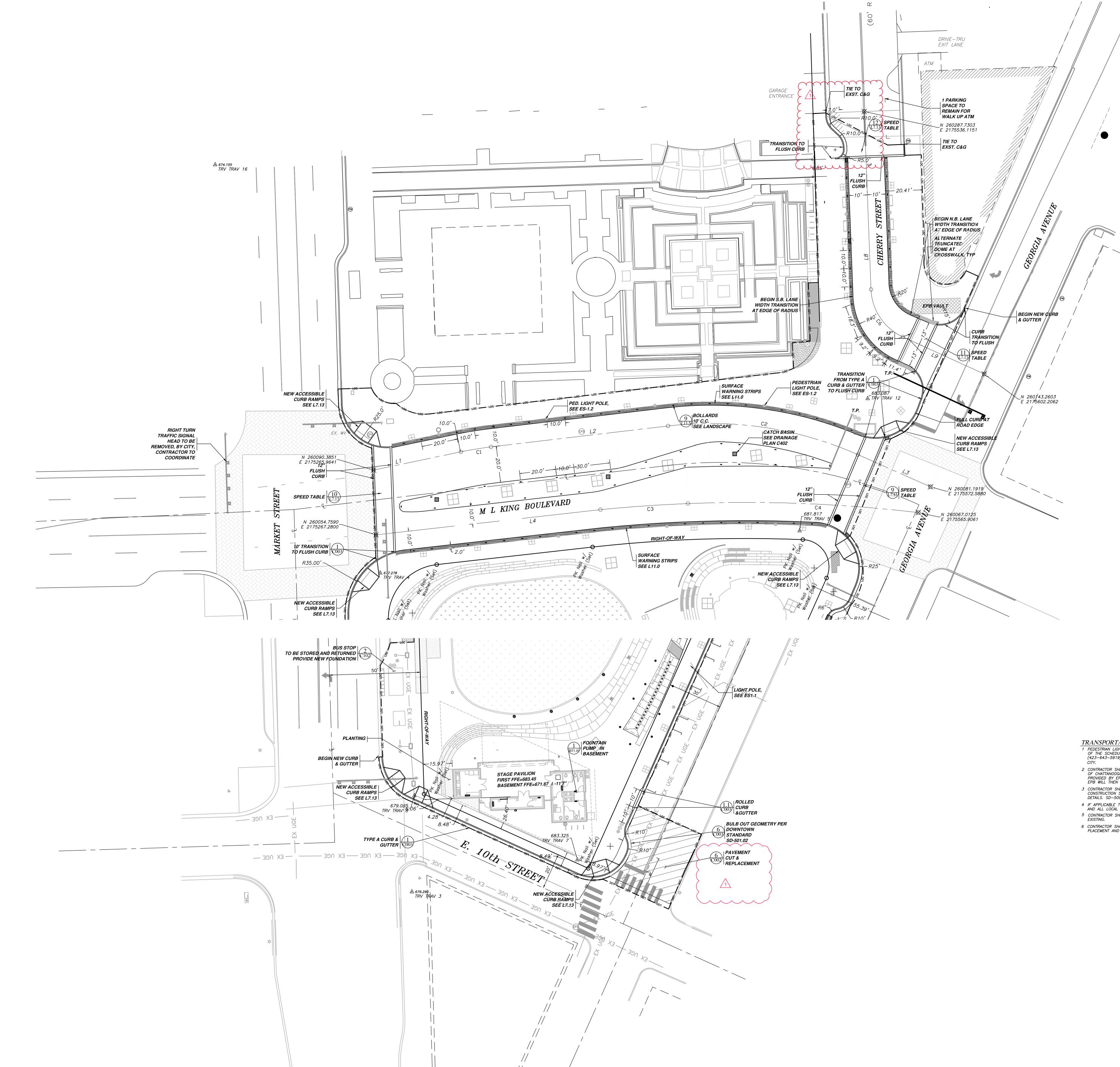
9 AT A MINIMUM, ALL EROSION AND SEDIMENT CONTROL MEASURES MUST BE CHECKED AND, IF NECESSARY REPAIRED, WEEKLY AND WITHIN 24-HOURS AFTER A RAINFALL EVENT GREATER THAN 0.5-INCHES. THE PERMITTEE SHALL MAINTAIN RECORD OF SUCH CHECKS AND REPAIRS. THESE RECORDS MUST BE KEPT ON-SITE OR IN THE OFFICE OF THE RESPONSIBLE PERSON AND AVAILABLE FOR REVIEW AT ANY TIME BY STORM WATER PERSONNEL. THESE RECORDS MUST BE SUBMITTED TO THE STORM WATER OFFICE ON A YEARLY BASIS. PROJECTS PERMITTED UNDER THE STATE NPDES PERMIT PROGRAM MUST FOLLOW ITS REQUIREMENTS. USE OF THAT INSPECTION FORM IS PERMITTED INSTEAD OF CITY SELF-INSPECTION FORM.

10 UPON COMPLETION OF THE REQUIRED IMPROVEMENTS, AND PRIOR TO FINAL ACCEPTANCE BY THE CITY ENGINEER, THE DEVELOPER/CONTRACTOR WILL FURNISH "AS BUILT" DRAWINGS OF ALL SANITARY SEWER AND STORMWATER STRUCTURES. THE DEVELOPER/CONTRACTOR WILL HAVE A REGISTERED LAND SURVEYOR CERTIFY THAT THE INFORMATION FURNISHED IS A TRUE AND COMPLETE REPRESENTATION OF THE IMPROVEMENTS THAT WERE CONSTRUCTED. THE ENGINEER WILL REVIEW THE CERTIFIED "AS BUILT" DRAWINGS FOR COMPLIANCE WITH THE ORIGINAL CONSTRUCTION DOCUMENTS. THE "AS BUILT" DRAWINGS SHALL BE PROVIDED PER CITY OF CHATTANOOGA STANDARDS AND SPECIFICATIONS. UTILITY NOTES:

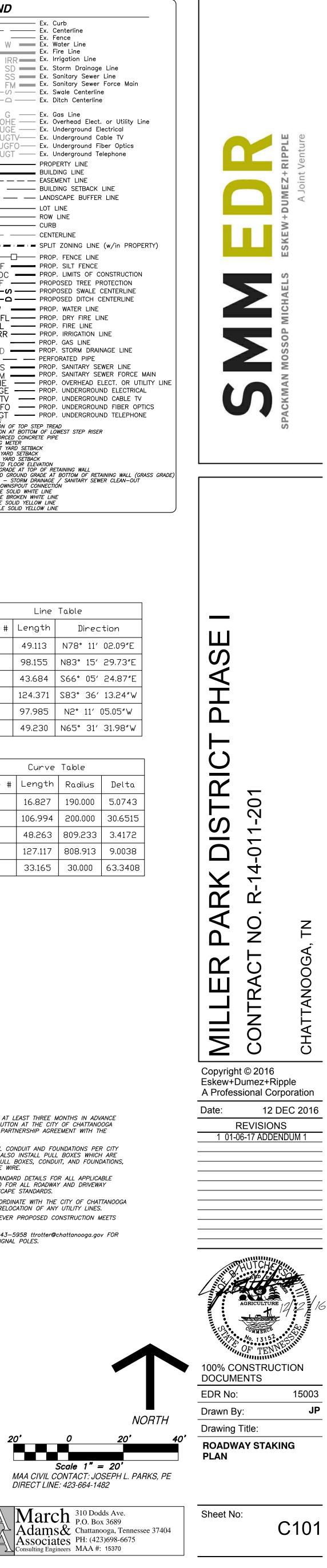
1 EXISTING UTILITIES SHALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW PIPELINES.

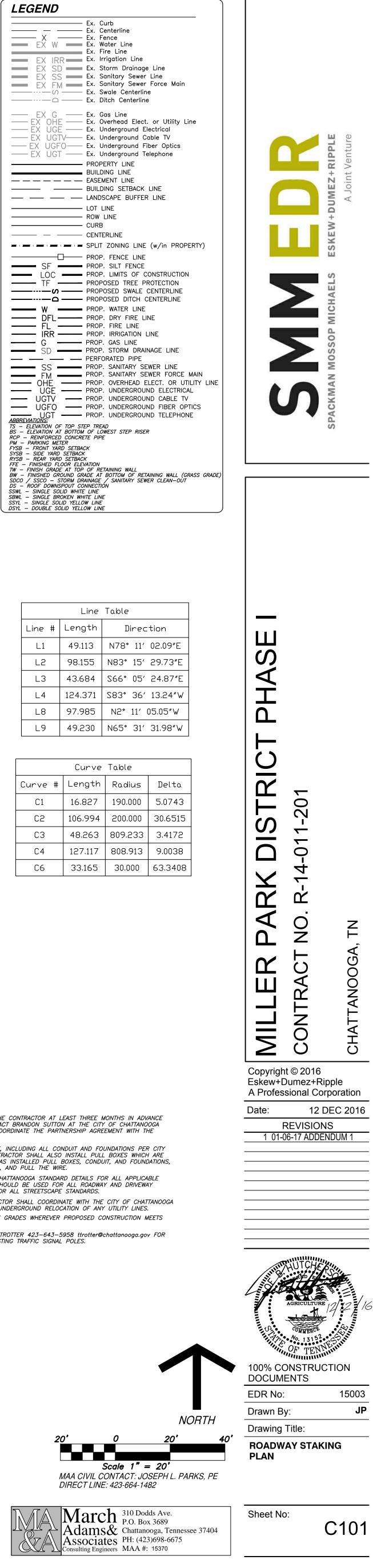

- 2 ALL SERVICE LATERALS SHALL BE MARKED WITH MAGNETIC TAPE. 3 LINES UNDERGROUND SHALL BE INSTALLED, TESTED & APPROVED BEFORE BACKFILLING. PRESSURE & LEAKAGE TESTS SHALL BE PERFORMED IN ACCORDANCE WITH CURRENT AWWA STANDARD C600 AND/OR MANUFACTURER'S PROCEDURE. 4 PRE CAST STRUCTURES MAY BE USED AT THE CONTRACTORS OPTION.
- 5 ALL CONCRETE TO HAVE A MINIMUM 28 DAY COMPRESSIVE STRENGTH OF 3000 P.S.I. UNLESS OTHERWISE NOTED
- 6 THE SITE UTILITY CONTRACTOR SHALL COOPERATE & WORK WITH OTHER CONTRACTORS PERFORMING WORK ON THIS PROJECT TO INSURE PROPER & TIMELY COMPLETION OF THIS PROJECT. 7 LUBRICANTS SHALL BE NON-TOXIC & SHALL NOT PROMOTE BIOLOGICAL GROWTH SOLVENT CEMENTED JOINTS NOT PERMITTED.
- 8 WHERE PROPOSED WATER LINE EXTENDS UNDER ANY PAVED SURFACED, THE TRENCH MUST BE BACK FILLED WITH APPROVED STONE. 9 ALL VALVES (G.V.) SHALL BE GATE VALVES WITH CAST IRON BOXES.
- 10 WATER INSTALLATION SHALL BE IN ACCORDANCE WITH "TEN STATES STANDARDS" & TENNESSEE AMERICAN WATER COMPANY STANDARDS & REGULATIONS. 11 CONNECTION TO THE EX WATER MAIN SHALL BE MADE UNDER THE SUPERVISION OF THE LOCAL WATER UTILITY.
- 12 RADIUS (DEFLECT) WATER LINES IN LIEU OF FITTINGS IN ACCORDANCE WITH THE MANUFACTURER'S SPECIFICATIONS. 13 ALL WATER LINES SHALL HAVE A MINIMUM COVER OF 36".
- 14 WHERE WATER PIPING CROSSES THE SANITARY SEWER LINE, THE WATER SERVICE WITHIN 10-FEET OF THE POINT OF CROSSING SHALL BE AT LEAST 18-INCHES ABOVE THE TOP OF THE SEWER LINE. THE SEWER LINE SHALL BE OF DUCTILE IRON WITH MECHANICAL JOINTS AT LEAST 10 FEET ON BOTH SIDES OF THE CROSSING.
- 15 WATER MUST BE CONSTRUCTED BY A LICENSED MUNICIPAL UTILITY CONTRACTOR (CLASSIFICATION MU).
- 16 ALL MATERIALS SHALL BE UI LISTED & FACTORY MUTUAL APPROVED UNLESS OTHERWISE DIRECTED BY THE ENGINEER. 17 THRUST BLOCKS SHALL BE PROVIDED AT ALL TEES, ELBOW & BENDS OF SUFFICIENT SIZE TO COMPLY WITH MINIMUM STANDARDS OF N.F.P.A. #24 — EXISTING SOIL CONDITIONS. 18 THE CONTRACTOR SHALL NOTIFY THE WATER, SEWER, UTILITY & THE ENGINEER PRIOR TO BEGINNING CONSTRUCTION.
- A CONCRETE ANCHOR BLOCK AS SHOWN ON THE UTILITY DETAIL SHEET SHALL BE POURED AROUND THE FIRST BELL & SPIGOT PIPE JOINT RESTRAINT FROM THE END OF THE WATERLINE. THE MECHANICAL RESTRAINT SECURING THE JOINT SHALL BE WRAPPED WITH PLASTIC PRIOR TO THE POURING OF THE CONCRETE. THE INTENT OF THE CONCRETE ANCHOR BLOCK WILL HELP KEEP THE JOINTS FROM SEPARATING NEAR THE END OF THE WATERLINE. 20 ALL DUCTILE IRON PIPE TO BE AWWA C-151-81, CLASS 50
- 21 ALL UNDERGROUND FITTINGS TO BE MECH JOINT AWWA C110/A21.10, CLASS 250
- 22 ALL UNDERGROUND VALVES TO BE MECH JOINT AWWA C509, CLASS 250 23 ALL UNDERGROUND JOINTS TO BE TESTED & FLUSHED AS PER NFPA #24
- 24 THE CONTRACTOR SHALL ADJUST LOCATION OF PROPOSED WATER LINES AS REQUIRED TO AVOID CONFLICTS WITH STORM & OTHER UTILITIES
- 25 PROCEDURE FOR DISINFECTING POTABLE WATER LINES SHALL CONFORM TO THE REQUIREMENTS OF AWWA C601. 26 ALL PIPING FROM THE "POINT OF SERVICE" INCLUDING UNDERGROUND USED FOR SPRINKLER OR STANDPIPE SYSTEM MUST BE INSTALLED BY A TENNESSEE REGISTERED SPRINKLER CONTRACTOR. [RULE 0780-2-7-08] 27 REFER ALSO TO GENERAL NOTES FOR ADDITIONAL REQUIREMENTS.

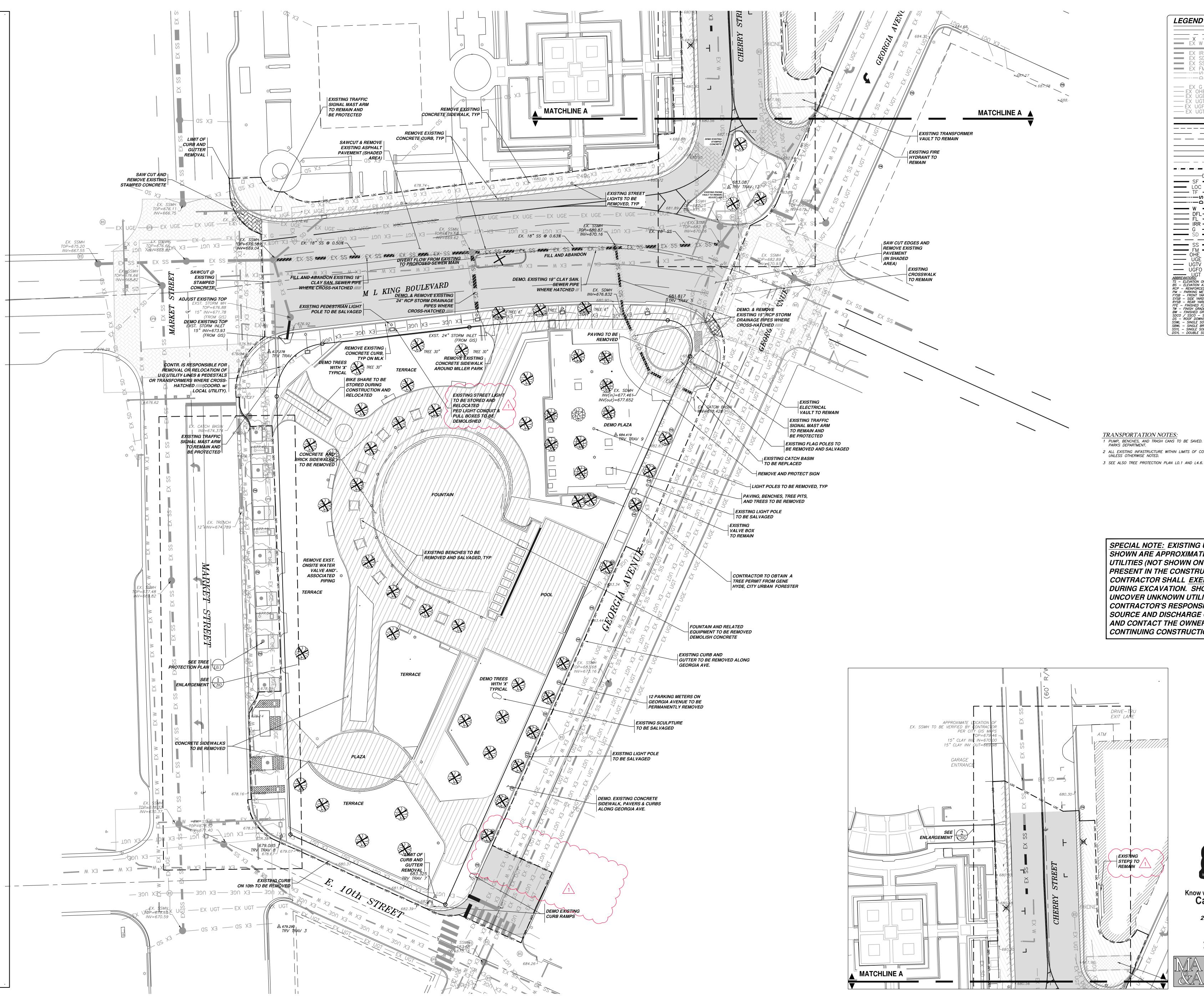
ADDITIONAL SANITARY SEWER SYSTEM NOTES

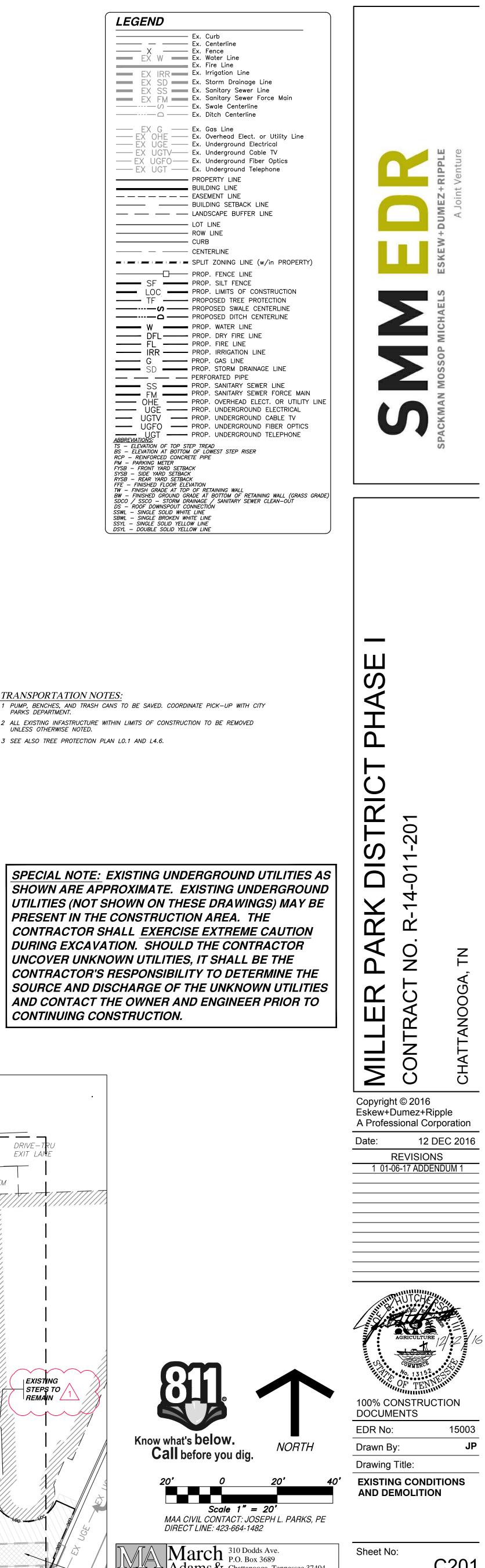

- EXISTING UTILITIES SHALL BE VERIFIED IN FIELD PRIOR TO INSTALLATION OF ANY NEW PIPELINES. ALL SERVICE LATERALS SHALL BE MARKED WITH MAGNETIC TAPE. LINES UNDERGROUND SHALL BE INSTALLED, TESTED & APPROVED BEFORE BACKFILLING.
- 4 ALL MANHOLES REQUIRE "KOR-N-SEAL" OR EQUAL RUBBER SEALS. SEWER PIPE SHALL HAVE GRAVEL BEDDING IN ACCORDANCE WITH CITY SANITARY SEWER TRENCH DETAILS. 5 PRE CAST STRUCTURES MAY BE USED AT THE CONTRACTORS OPTION.
- 6 CONCRETE RELATED TO SANITARY SEWER CONSTRUCTION TO HAVE A MINIMUM 28 DAY COMPRESSIVE STRENGTH OF 4000 P.S.I.
- 7 THE SITE UTILITY CONTRACTOR SHALL COOPERATE & WORK WITH OTHER CONTRACTORS PERFORMING WORK ON THIS PROJECT TO INSURE PROPER & TIMELY COMPLETION OF THIS PROJECT. 8 CONCENTRIC MANHOLES ONLY ARE TO BE USED ON THIS PROJECT. NO ECCENTRIC MANHOLES ARE TO BE INSTALLED.
- LUBRICANTS SHALL BE NON-TOXIC & SHALL NOT PROMOTE BIOLOGICAL GROWTH SOLVENT CEMENTED JOINTS NOT PERMITTED. 10 ALL SERVICE LATERALS SHALL BE MARKED WITH MAGNETIC TAPE.
- THE SANITARY SEWER SYSTEM INSTALLATION SHALL BE IN ACCORDANCE WITH TDEC STANDARDS & REGULATIONS & THE CITY OF CHATTANOOGA/ HAMILTON COUNTY STANDARD DETAILS & SPECIFICATIONS.
 SANITARY SEWER SERVICE LINES SHOWN AS 6" P.V.C. (UNLESS NOTED TO BE D.I.P.) & SHALL BE LAID ON A MINIMUM SLOPE OF 1.10%.
- 13 SANITARY SEWER SERVICE LINES SHOWN AS 4" P.V.C. (UNLESS NOTED TO BE D.I.P.) & SHALL BE LAID ON A MINIMUM SLOPE OF 1.10%.
- 14 NO MANHOLE COVERS OR CLEANOUTS ARE TO BE LOCATED IN THE CURB & GUTTER. **15** REFER ALSO TO GENERAL NOTES FOR ADDITIONAL REQUIREMENTS.

Sheet No:

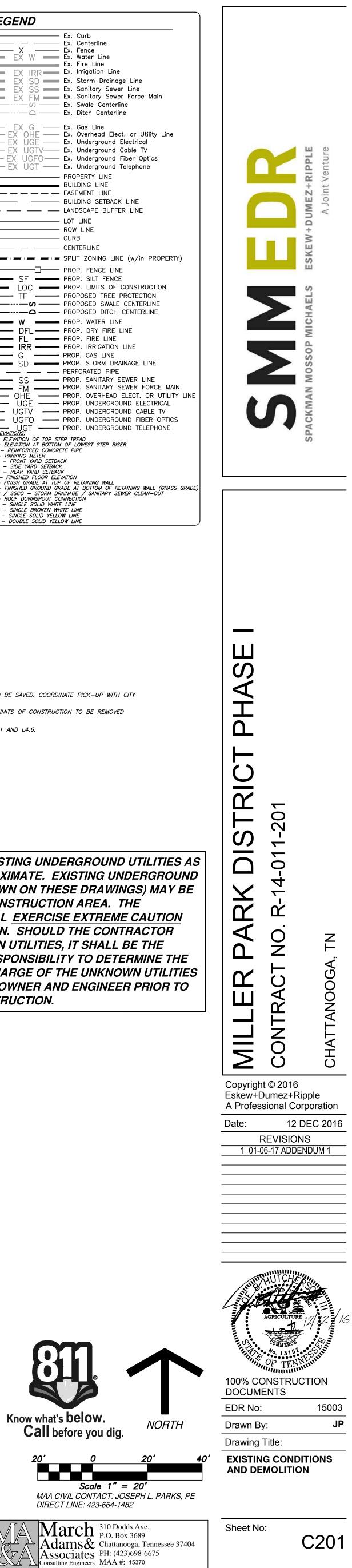

LEGEND	
EX W EX IRR EX SD	Ex. Curb Ex. Centerline Ex. Fence Ex. Water Line Ex. Fire Line Ex. Irrigation I Ex. Storm Dra Ex. Sanitary S Ex. Sanitary S Ex. Swale Cen Ex. Ditch Cent
	 Ex. Undergroup Ex. Undergroup Ex. Undergroup Ex. Undergroup PROPERTY LINI BUILDING LINE EASEMENT LINI BUILDING SETE
	 PROP. SILT FE PROP. LIMITS PROPOSED TRI
FL IRR G SD SD SD FM	 PROP. FIRE LI PROP. IRRIGAT PROP. GAS LIN PROP. STORM PERFORATED P PROP. SANITAR PROP. SANITAR PROP. OVERHE
OHE UGE UGF UGFO UGT UGT UGT UGT DGT DGT	PROP. UNDERC PROP. UNDERC PROP. UNDERC PROP. UNDERC PROP. UNDERC TEP TREAD OF LOWEST STEP
PM – PARKING METER FYSB – FRONT YARD SETBAC SYSB – SIDE YARD SETBAC RYSB – REAR YARD SETBAC FFE – FINISHED FLOOR ELE TW – FINISH GRADE AT TOP BW – FINISHED GROUND GI SDCO / SSCO – STORM DI DS – ROOF DOWNSPOUT G	ACK K CX TVATION P OF RETAINING WA RADE AT BOTTOM O RAINAGE / SANITAR ONNECTION E LINE HITE LINE

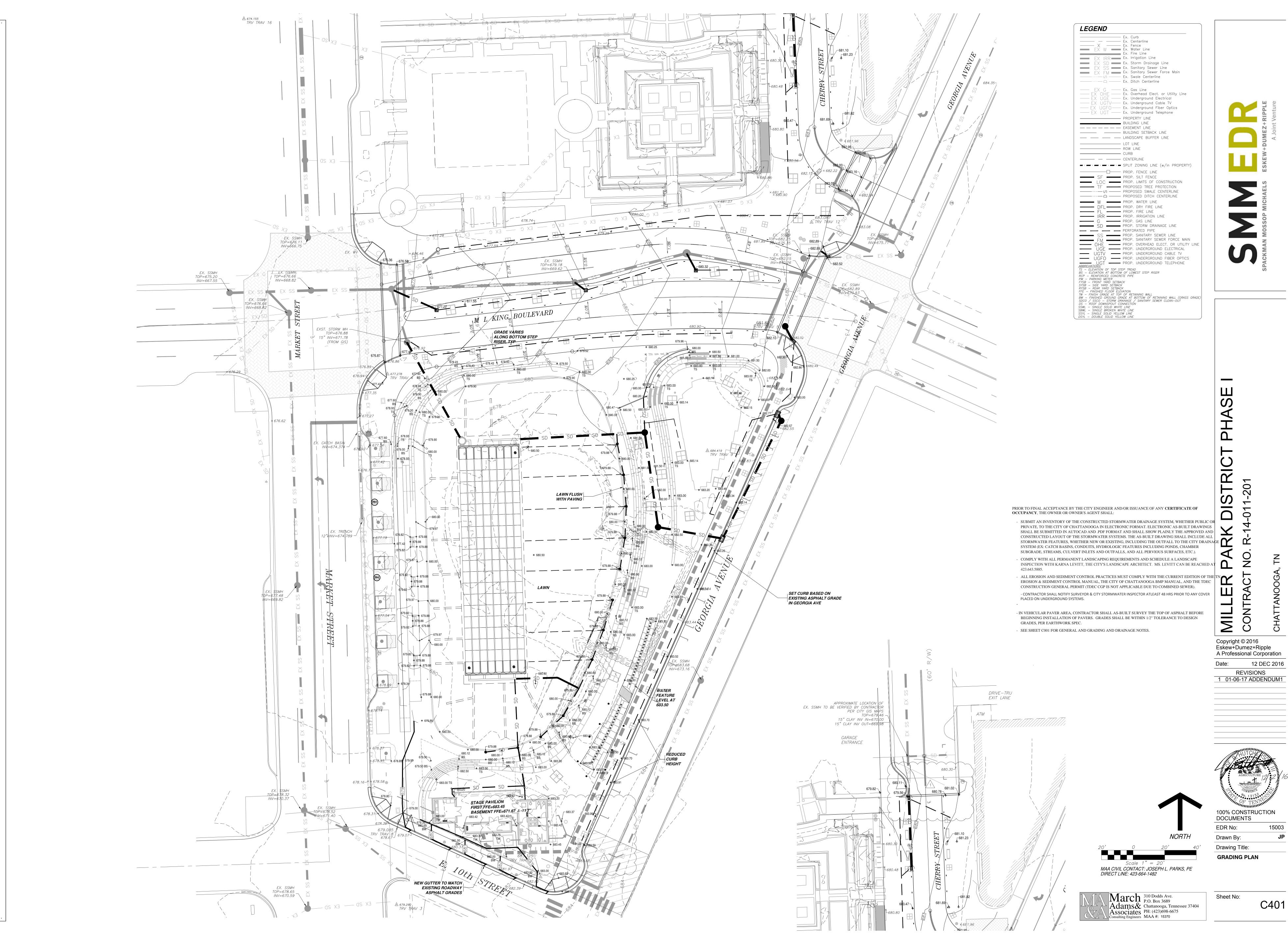

	Line	Table
Line #	Length	Dir
L1	49.113	N78°
L2	98.155	N83° (
L3	43.684	S66° (
L4	124.371	283• 3
L8	97,985	N2° 1
L9	49.230	N65° 3

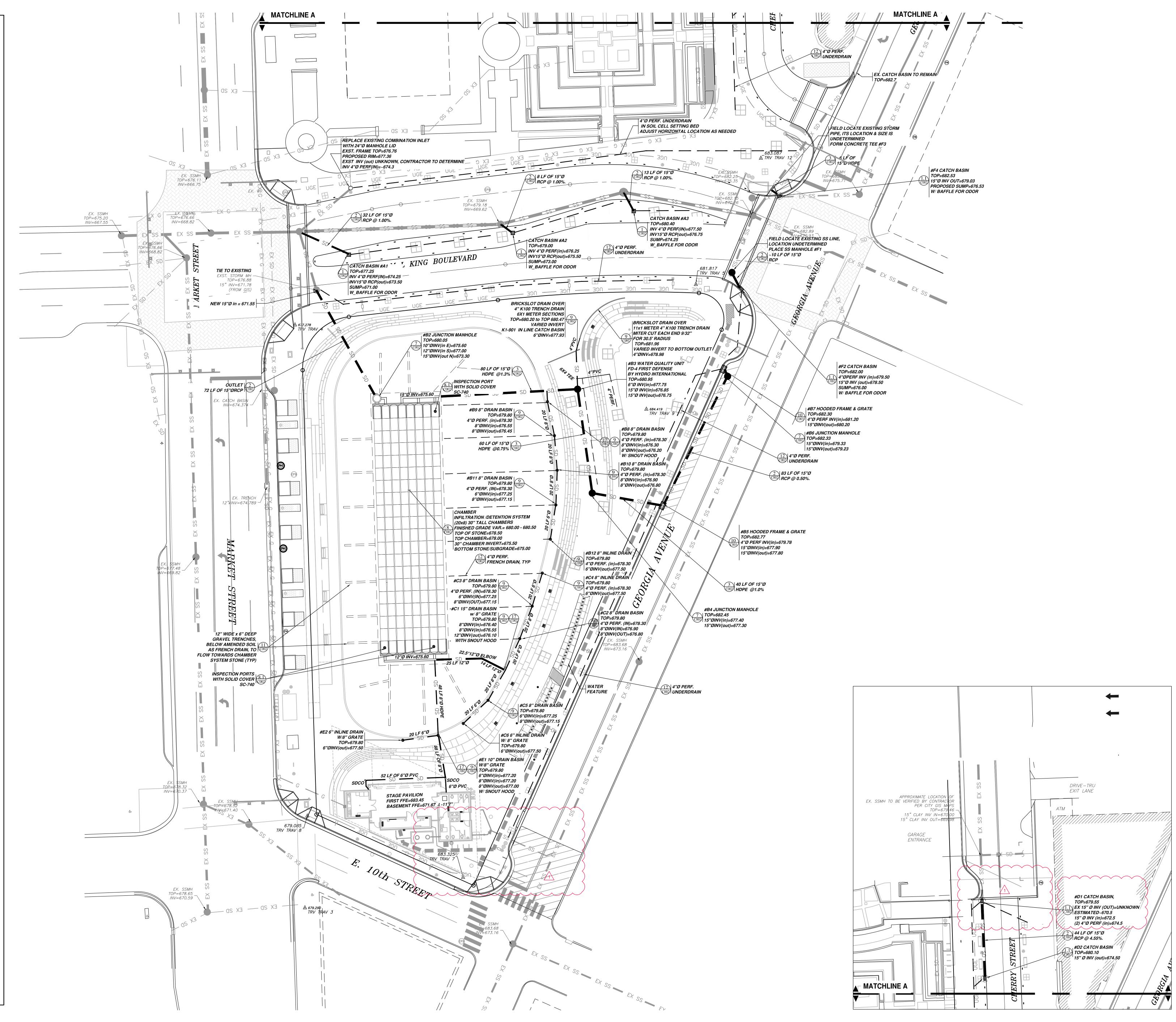

	Curve	Table
Curve #	Length	Radiu
C1	16.827	190.00
С2	106.994	200.00
СЗ	48.263	809.23
C4	127.117	808.9
C6	33.165	30.00

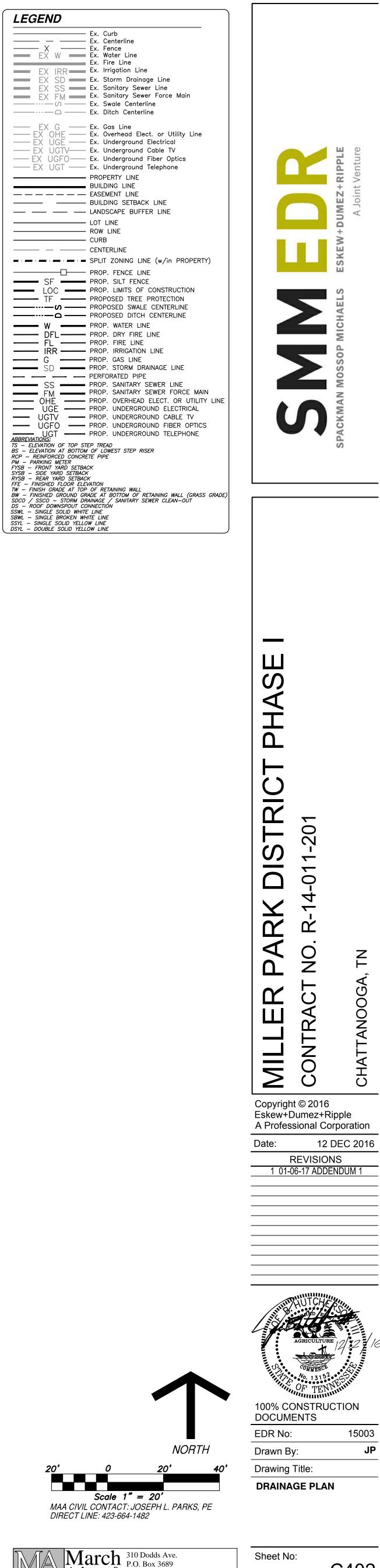

TRANSPORTATION NOTES:

- 1 PEDESTRIAN LIGHTS SHALL BE ORDERED BY THE CONTRACTOR AT LEAST THREE MONTHS IN ADVANCE OF THE SCHEDULED INSTALLATION DATE. CONTACT BRANDON SUTTON AT THE CITY OF CHATTANOOGA (423–643–5919) IN ORDER TO PLACE AND COORDINATE THE PARTNERSHIP AGREEMENT WITH THE
- 2 CONTRACTOR SHALL INSTALL THE STREETSCAPE, INCLUDING ALL CONDUIT AND FOUNDATIONS PER CITY OF CHATTANOOGA STANDARD SD-507.01. CONTRACTOR SHALL ALSO INSTALL PULL BOXES WHICH ARE PROVIDED BY EPB. AFTER THE CONTRACTOR HAS INSTALLED PULL BOXES, CONDUIT, AND FOUNDATIONS, EPB WILL THEN INSTALL THE POLES, FIXTURES, AND PULL THE WIRE.
- 3 CONTRACTOR SHALL REFER TO THE CITY OF CHATTANOOGA STANDARD DETAILS FOR ALL APPLICABLE CONSTRUCTION STANDARDS. SD–200 SERIES SHOULD BE USED FOR ALL ROADWAY AND DRIVEWAY DETAILS. SD–500 SERIES SHOULD BE USED FOR ALL STREETSCAPE STANDARDS.
- 4 IF APPLICABLE TO THE PROJECT, THE CONTRACTOR SHALL COORDINATE WITH THE CITY OF CHATTANOOGA AND ALL LOCAL UTILITY COMPANIES FOR THE UNDERGROUND RELOCATION OF ANY UTILITY LINES.
- 5 CONTRACTOR SHALL MATCH EXISTING SIDEWALK GRADES WHEREVER PROPOSED CONSTRUCTION MEETS
- 6 CONTRACTOR SHALL COORDINATE WITH TOMMY TROTTER 423–643–5958 ttrotter@chattanooga.gov FOR PLACEMENT AND TIMING OF REVISIONS TO EXISTING TRAFFIC SIGNAL POLES.

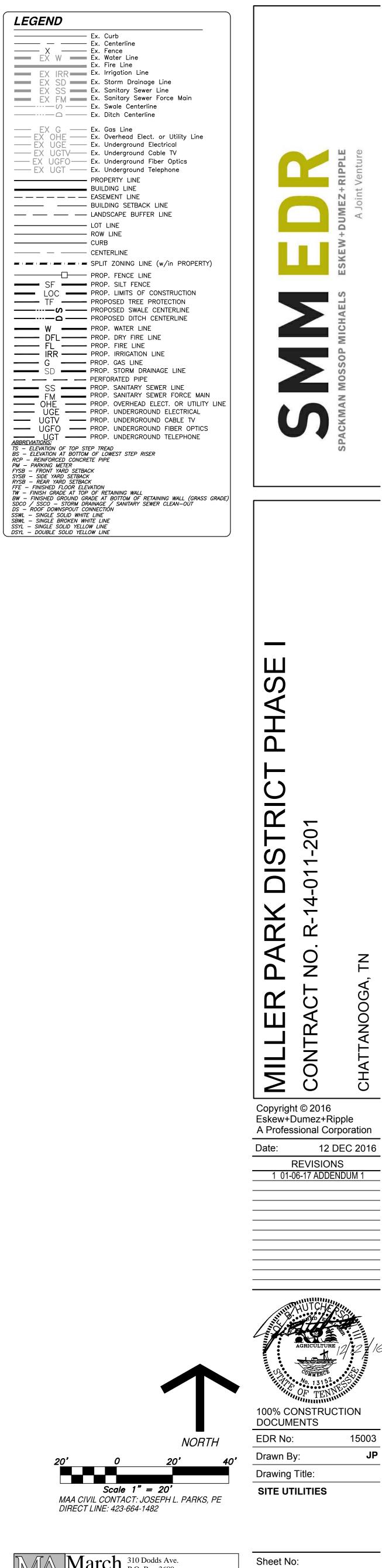




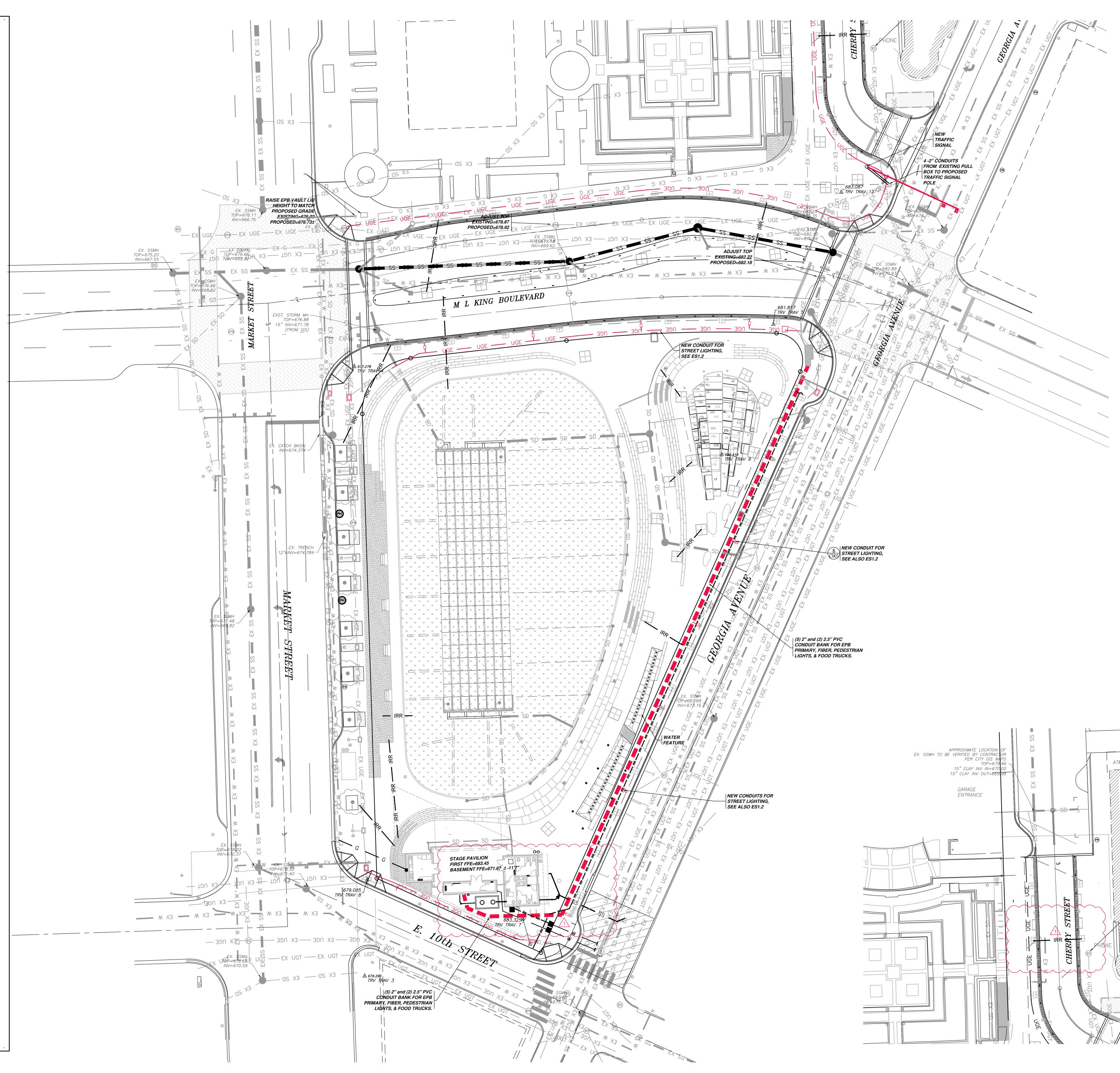

TRANSPORTATION NOTES:

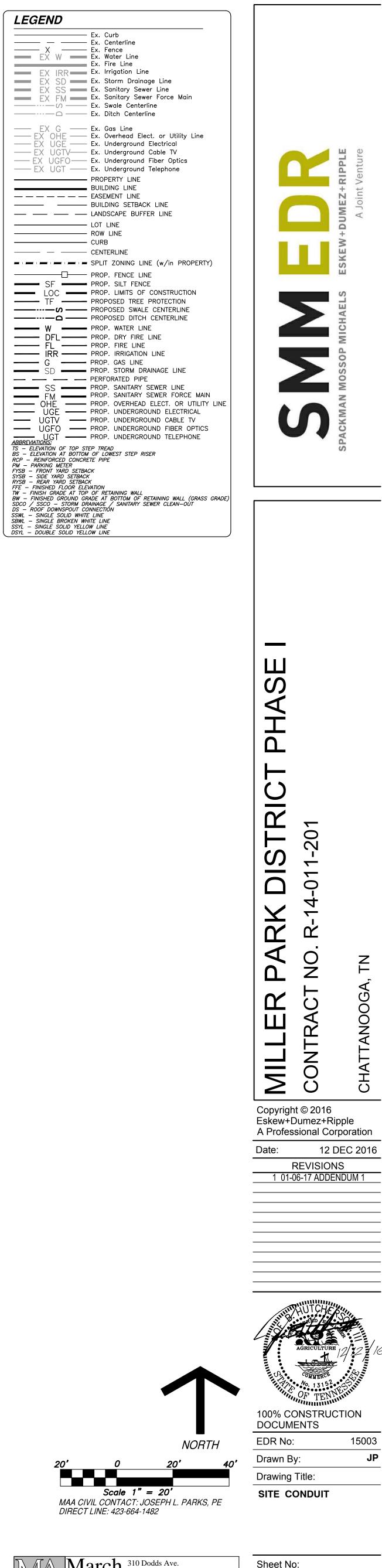

2 ALL EXISTING INFASTRUCTURE WITHIN LIMITS OF CONSTRUCTION TO BE REMOVED UNLESS OTHERWISE NOTED.

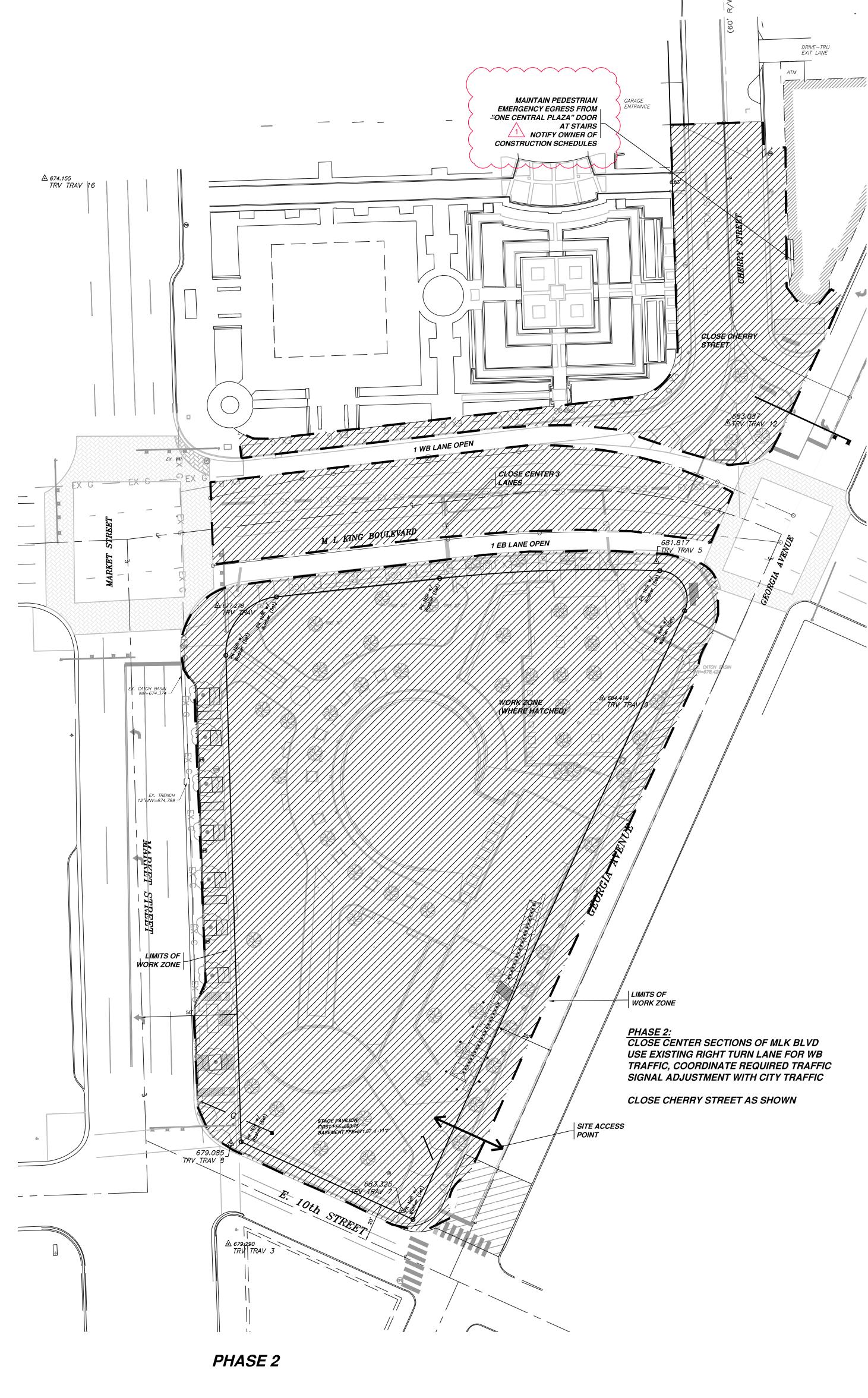
SHOWN ARE APPROXIMATE. EXISTING UNDERGROUND UTILITIES (NOT SHOWN ON THESE DRAWINGS) MAY BE PRESENT IN THE CONSTRUCTION AREA. THE CONTRACTOR SHALL EXERCISE EXTREME CAUTION DURING EXCAVATION. SHOULD THE CONTRACTOR UNCOVER UNKNOWN UTILITIES, IT SHALL BE THE CONTRACTOR'S RESPONSIBILITY TO DETERMINE THE SOURCE AND DISCHARGE OF THE UNKNOWN UTILITIES AND CONTACT THE OWNER AND ENGINEER PRIOR TO CONTINUING CONSTRUCTION.

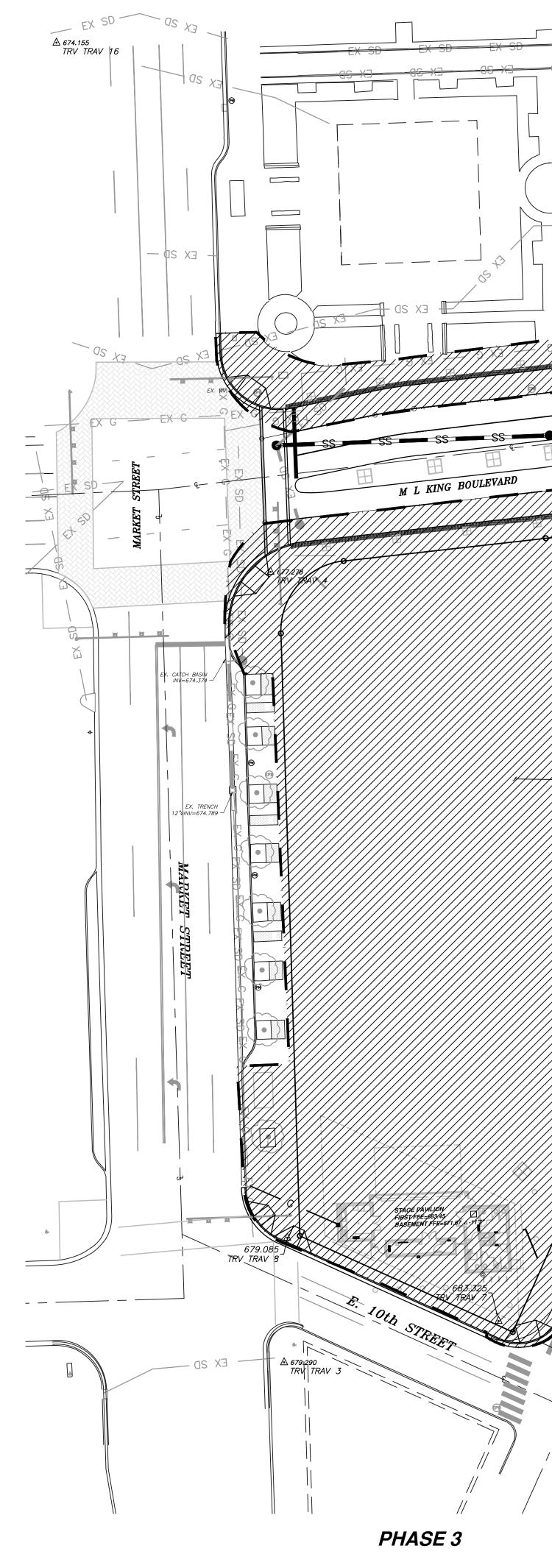


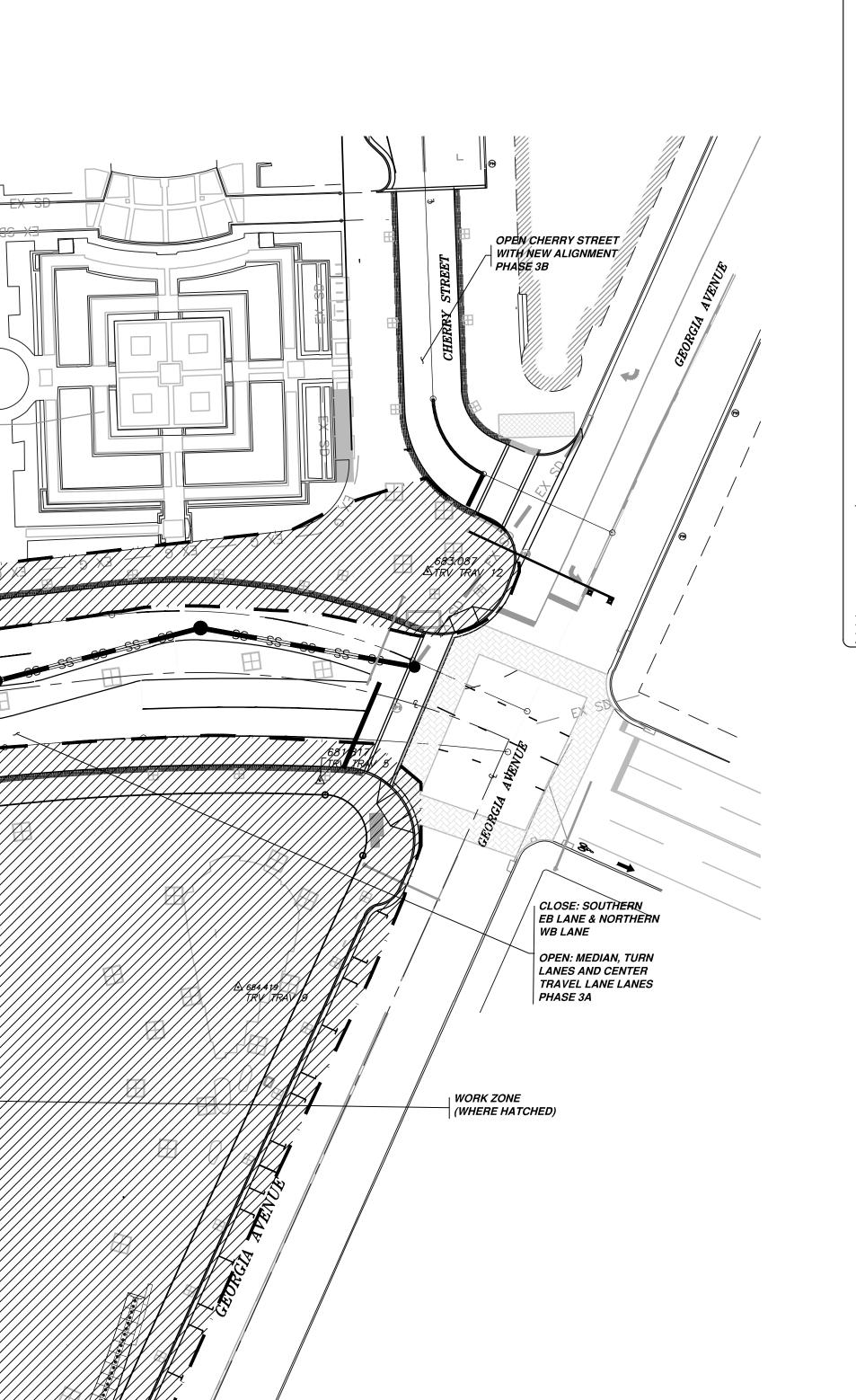
Adams& Chattanooga, Tennessee 37404

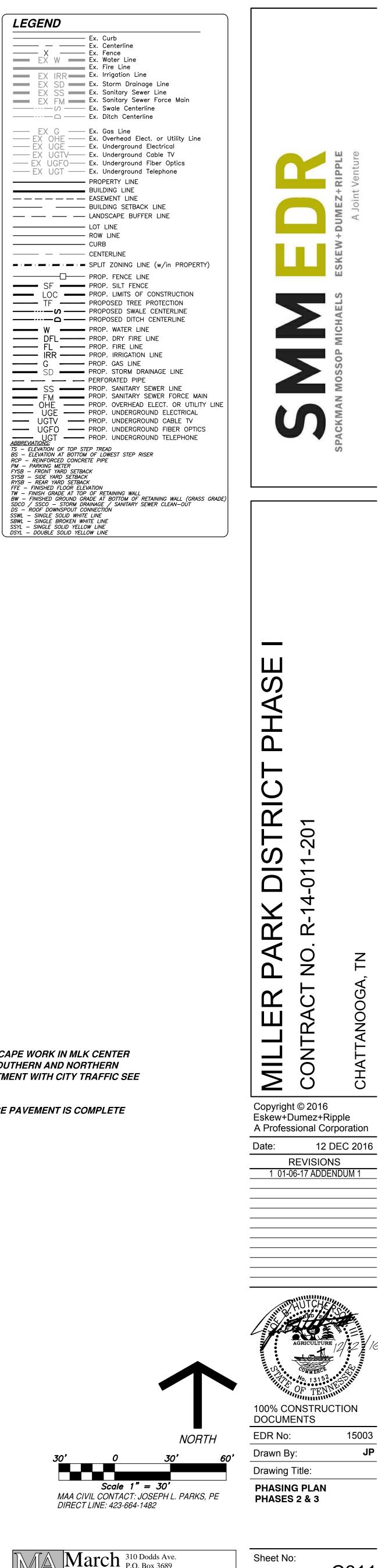

Associates Consulting Engineers PH: (423)698-6675 MAA #: 15370



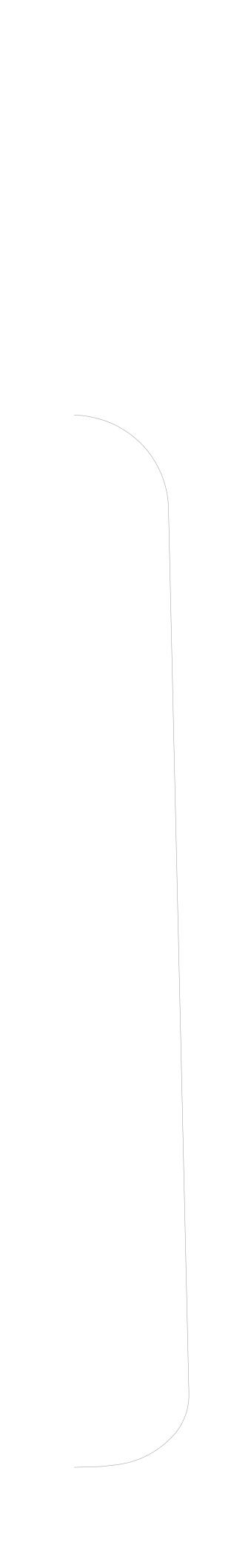

DRIVE-TRU EXIT LANE ATM ADJUST TOP PROPOSED=681.47 ~






∙ŇE₩

Sheet No:


<u>PHASE 3:</u> AFTER COMPLETION OF SEWER & PAVMENT/ LANDSCAPE WORK IN MLK CENTER LANES OPEN CENTER LANES AND MEDIAN CLOSE SOUTHERN AND NORTHERN MOST LANES COORDINATE TRAFFIC SIGNAL ADJUSTMENT WITH CITY TRAFFIC SEE TRAFFIC CONTROL PLANS

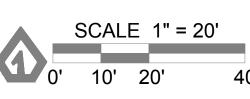
OPEN CHERRY STREET UP ON NEW ALIGNMENT ONCE PAVEMENT IS COMPLETE

C611

IRRIGATION_SCHEDULE

SYMBOL	MANUFACTURER/MODEL
A 0.25	HUNTER RZWS-18-CV ROOT ZONE WATERING SYSTEM
SYMPOL	
<u>SYMBOL</u>	
	HUNTER ICZ-101-40 DRIP VALVE
	HUNTER ICZ-151-40 DRIP VALVE
۲	PIPE/DRIP TRANSITION POINT ABOVE GRADE
	AREA TO RECEIVE DRIPLINE HUNTER ECO-MAT SUBSURFACE. PROVIDE TEMPORARY OVERHEAD IRRIGATION TO LAWN AREA UNTIL GRASS ROOTS CAN BE IRRIGATED BY SUB SURFACE MAT.
	AREA TO RECEIVE DRIPLINE HUNTER PLD-06-18 (24)
<u>SYMBOL</u>	MANUFACTURER/MODEL
	HUNTER PGV-100G RCV
Ť	GATE VALVE (MAINLINE SIZE)
BF	FEBCO 825Y RPZ BACKFLOW PREVENTER 1"
С	HUNTER I-CORE CONTROLLER
SS	HUNTER WSS WIRELESS SOLAR SYNC
М	WATER METER 1"
	IRRIGATION LATERAL LINE: PVC CLASS 200 SDR 21
	IRRIGATION MAINLINE- 1 ¹ /2": PVC CLASS 200 SDR 21
	PIPE SLEEVE: PVC SCHEDULE 40
Va	alve Callout
# •	Valve Number
#₩ #●	Valve Flow
	Valve Size
REFERENCE NOT	ES SCHEDULE
SYMBOL DESCRIPTION	Į

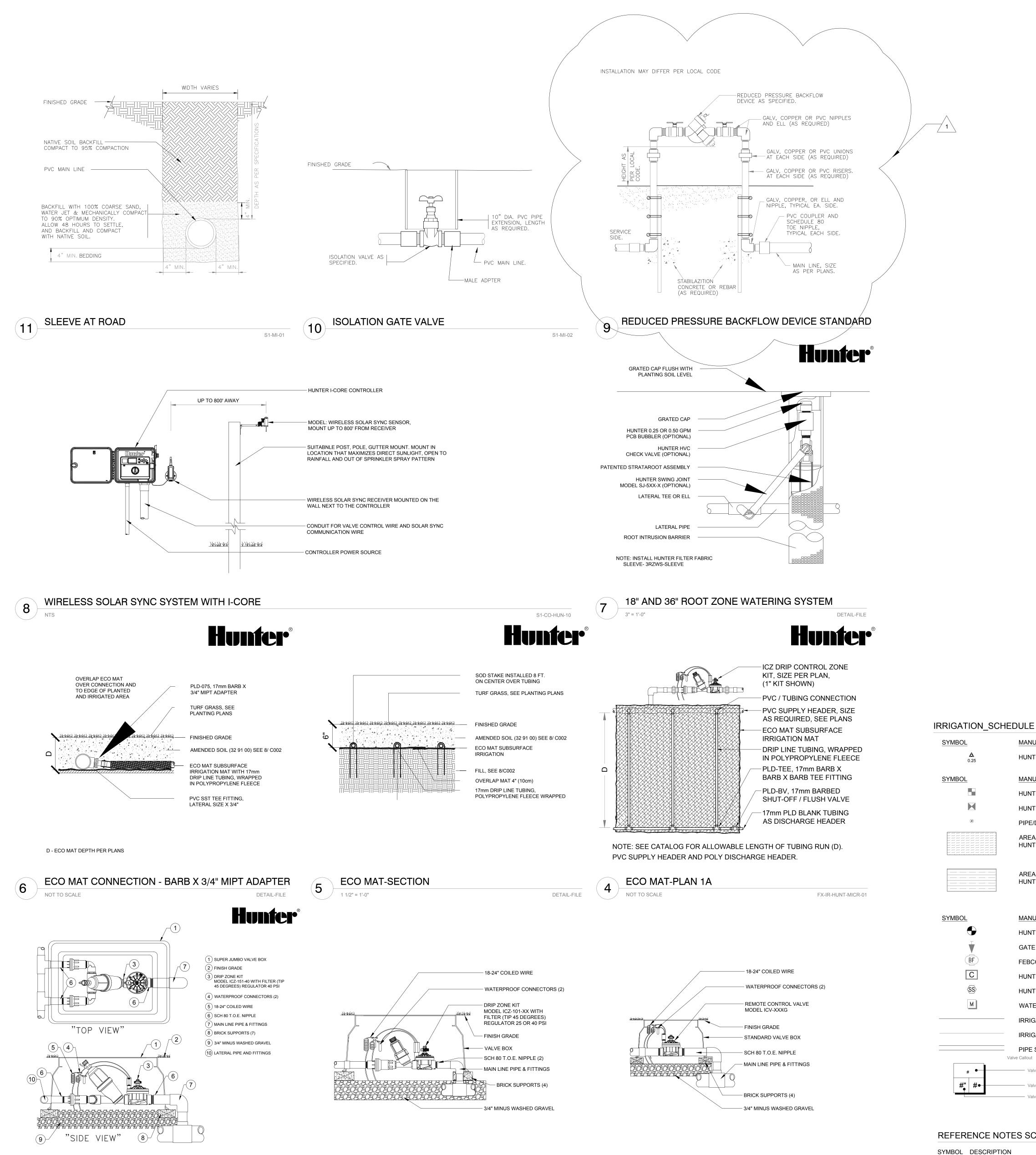
2


1

PIPING AND EQUIPMENT SHOWN TO THE SIDE FOR CLARITY CONTRACTOR TO SUPPLY TEMPORARY OVERHEAD IRRIGATION DURING ESTABLISHMENT OF TURF GRASS

IRRIGATION NOTES (32 84 00)

- 1. IRRIGATION SYSTEM DESIGN BASED ON 30 GPM AT 70 PSI.
- IRRIGATION DESIGN IS FROM THE POINT OF CONNECTION(POC)ONLY. THE DESIGN IS BASED ON GALLONS PER MINUTE(GPM)AND POUNDS PER SQUARE INCH(PSI)FURNISHED BY OTHERS.
- 3. IRRIGATION CONTRACTOR IS TO VERIFY POINT OF CONNECTION IN THE FIELD. INSTALLER IS TO CONFIRM THE MINIMUM
- DISCHARGE REQUIREMENTS OF THE POINT OF CONNECTION AS INDICATED ON THE LEGEND PRIOR TO INSTALLATION. 4. THE PRESSURE REQUIREMENT AT THE POINT OF CONNECTION IS BASED ON NO MORE THAN 5-FEET OF ELEVATION CHANGE
- IN THE AREAS OF IRRIGATION.
- 5. ALL PRODUCTS SHALL BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS AND ACCORDING TO LOCAL BUILDING, ELECTRICAL AND PLUMBING CODES.
- 6. IRRIGATION CONTRACTOR WILL ARRANGE INSPECTIONS REQUIRED BY LOCAL AGENCIES AND ORDINANCES DURING THE COURSE OF CONSTRUCTION AS REQUIRED. ALL WIRING TO BE PER LOCAL CODE. BACKFLOW PREVENTION PER LOCAL CODE.
- 7. LOCATION OF IRRIGATION COMPONENTS SHOWN ON DRAWINGS IS APPROXIMATE. ACTUAL PLACEMENT MAY VARY SLIGHTLY AS REQUIRED TO ACHIEVE FULL, EVEN COVERAGE.
- 8. ALL SPRINKLER HEADS SHALL BE INSTALLED PERPENDICULAR TO FINISH GRADES, EXCEPT AS OTHERWISE INDICATED.
- 9. INSTALL IRRIGATION MAINS WITH A MINIMUM 18" OF COVER BASED ON FINISH GRADES. INSTALL IRRIGATION LATERAL WITH A MINIMUM 12" OF COVER BASED ON FINISH GRADES.
- 10. PIPE LOCATIONS ARE DIAGRAMATIC. VALVES AND MAINLINE SHOWN IN PAVED AREAS ARE FOR GRAPHIC CLARITY ONLY.
- 11. THE IRRIGATION CONTRACTOR SHALL COMPLY WITH PIPE SIZES AS INDICATED.
- 12. ALL WIRE SPLICES OR CONNECTIONS SHALL BE MADE WITH APPROVED WATERPROOF WIRE CONNECTORS AND BE IN A VALVE OR SPLICE BOX. 13. ALL CONTROL WIRING DOWNSTREAM OF THE CONTROLLER IS TO BE 14AWG, UL APPROVED DIRECT BURY.
- 14. SURGE PROTECTION TO BE INSTALLED PER MANUFACTURER'S RECOMMENDATION.
- 15. THE DESIGN IS BASED ON THE SITE INFORMATION AND/OR DRAWING SUPPLIED WITH THE DESIGN CRITERIA BEING SET(AREA TO BE IRRIGATED, EQUIPMENT MANUFACTURER AND MODEL TO BE USED, WATER SOURCE INFORMATION, ELECTRICAL POWER AVAILABILITY, ETC...). SITEONE LANDSCAPE SUPPLY BEARS NO RESPONSIBILITY OR LIABILITY FOR ANY ERRORS IN DESIGN OR INSTALLATION THAT ARISE DUE TO INACCURACIES IN THE ABOVE REFERENCED INFORMATION SUPPLIED TO SITEONE LANDSCAPE SUPPLY IN RELATION TO THIS PROJECT, UNLESS OTHERWISE NOTED.
- 16. CONTACT BRANDON COX AT 423-238-7273 FOR COMPLETE MATERIAL LIST AND QUOTE.



40'

ICZ-101 DRIP CONTROL ZONE

0

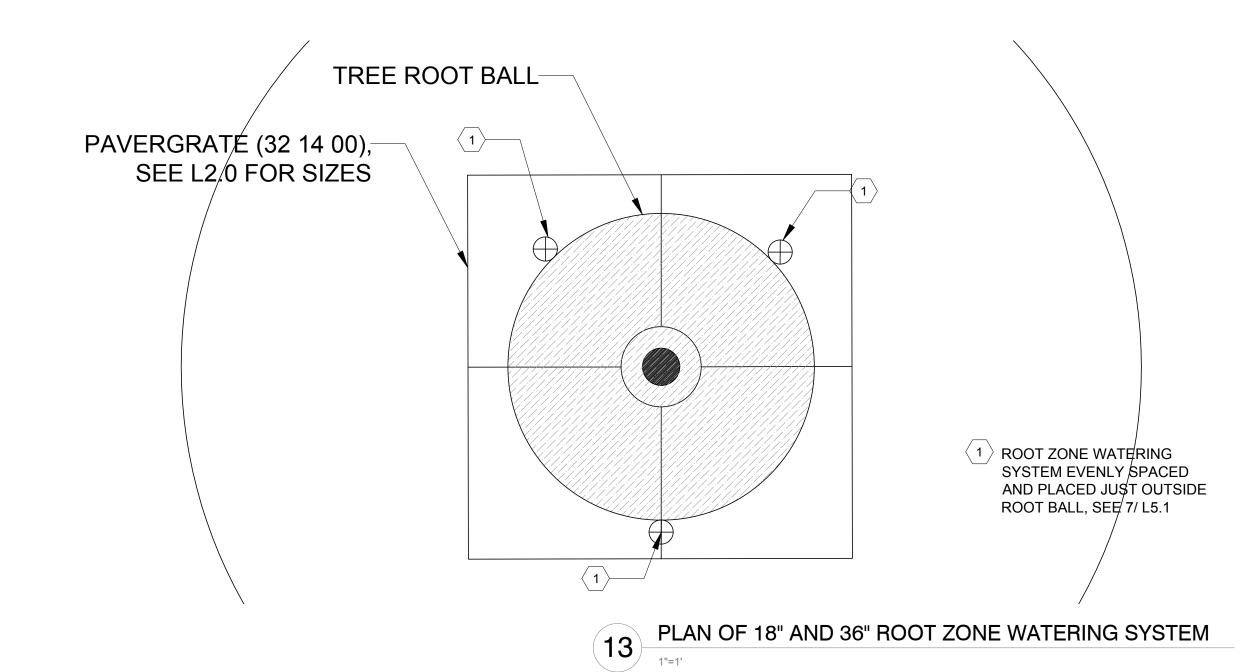
FX-IR-HUNT-DRIP-20

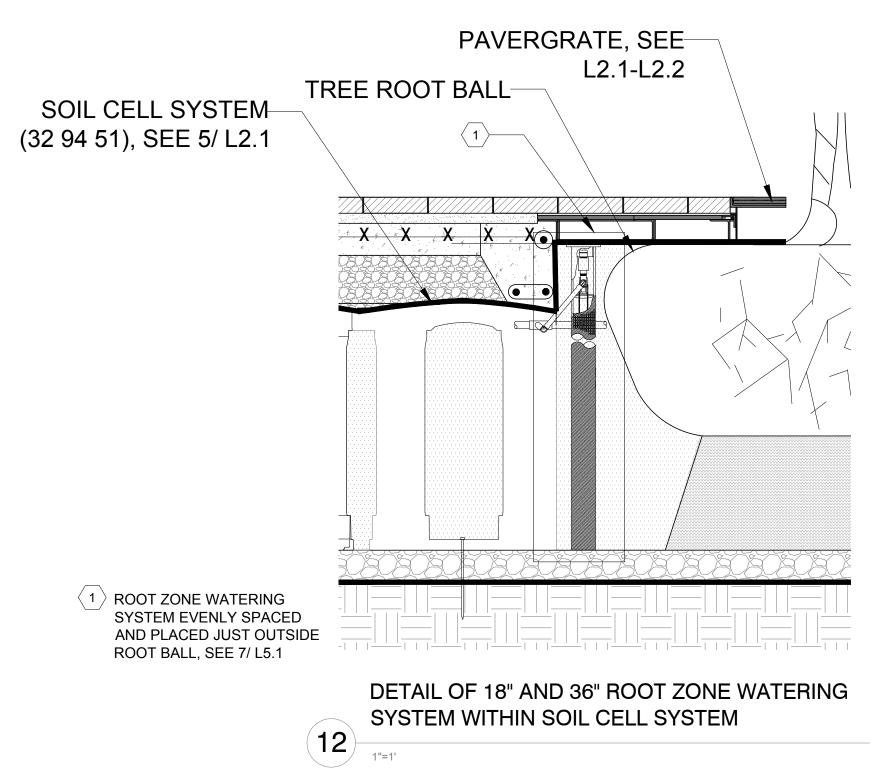
NTS

ICZ-151-40 DRIP CONTROL KIT

3

1 1/2" = 1'-0"


REFERENCE NOTES SCHEDULE SYMBOL DESCRIPTION 1 2 ESTABLISHMENT OF TURF GRASS


ICV GLOBE VALVE

NTS

S1-DR-HUN-02

S1-VA-HUN-03

MANUFACTURER/MODEL

HUNTER RZWS-18-CV ROOT ZONE WATERING SYSTEM

MANUFACTURER/MODEL

HUNTER ICZ-101-40 DRIP VALVE

HUNTER ICZ-151-40 DRIP VALVE

PIPE/DRIP TRANSITION POINT ABOVE GRADE

AREA TO RECEIVE DRIPLINE HUNTER ECO-MAT SUBSURFACE

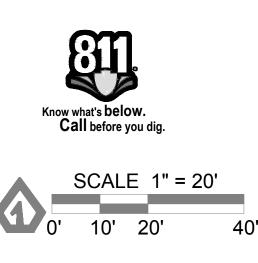
- AREA TO RECEIVE DRIPLINE

- HUNTER PLD-06-18 (24)
- MANUFACTURER/MODEL
- HUNTER PGV-100G RCV
- GATE VALVE (MAINLINE SIZE)

- FEBCO 825Y RPZ BACKFLOW PREVENTER 1"

- HUNTER I-CORE CONTROLLER
- HUNTER WSS WIRELESS SOLAR SYNC
- WATER METER 1"
- IRRIGATION LATERAL LINE: PVC CLASS 200 SDR 21
- IRRIGATION MAINLINE- 1-1/2": PVC CLASS 200 SDR 21

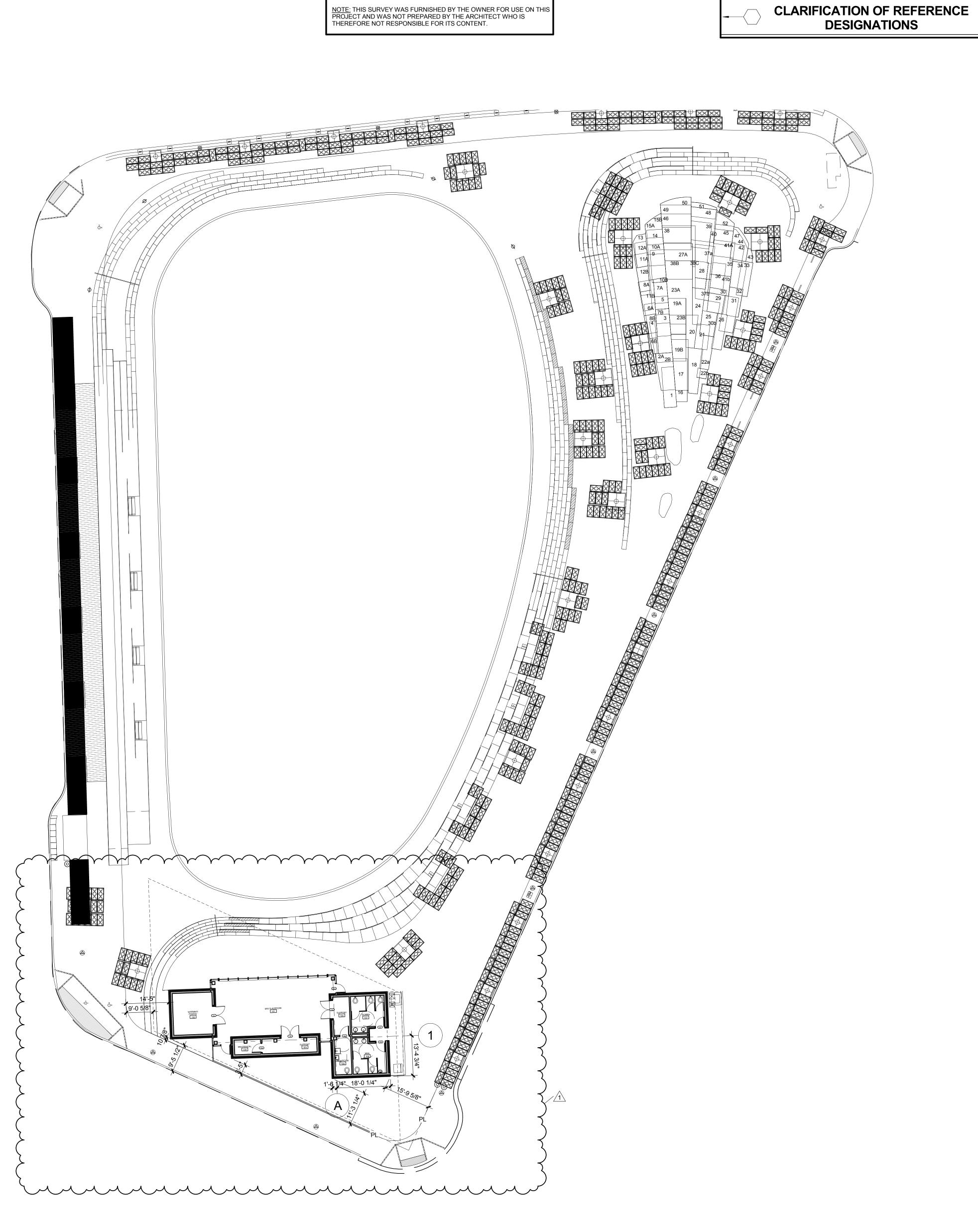
- PIPE SLEEVE: PVC SCHEDULE 40 Valve Callout
- Valve Number
- Valve Flow Valve Size


PIPING AND EQUIPMENT SHOWN TO THE SIDE FOR CLARITY CONTRACTOR TO SUPPLY TEMPORARY IRRIGATION DURING

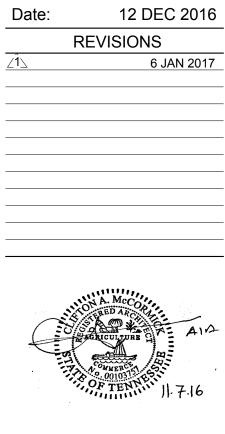
IRRIGATION NOTES (32 84 00)

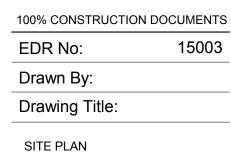
1. IRRIGATION SYSTEM DESIGN BASED ON 30 GPM AT 70 PSI.

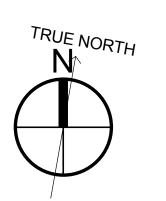
TO LOCAL BUILDING, ELECTRICAL AND PLUMBING CODES.

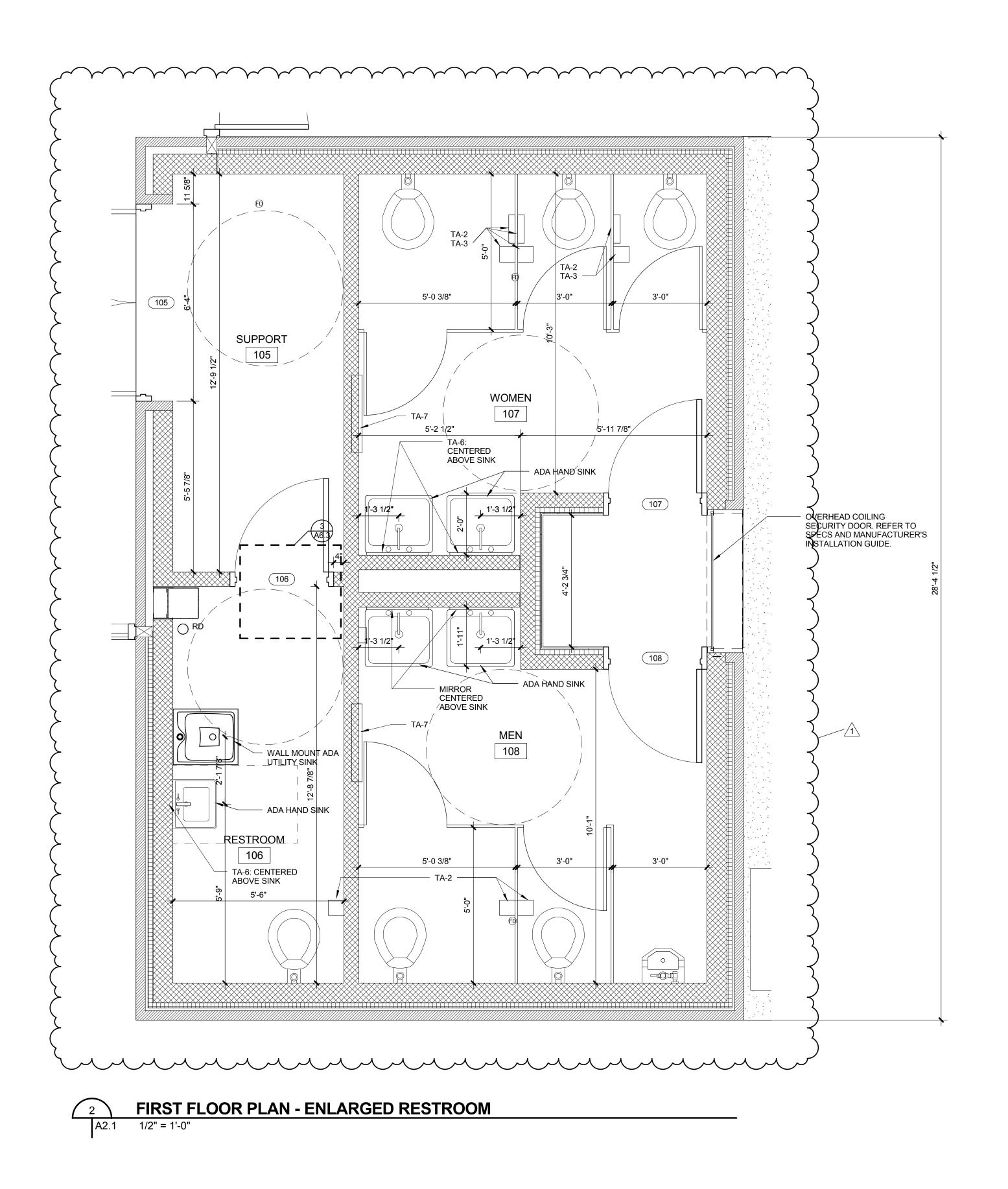

- 2. IRRIGATION DESIGN IS FROM THE POINT OF CONNECTION (POC) ONLY. THE DESIGN IS BASED ON GALLONS PER MINUTE(GPM)AND POUNDS PER SQUARE INCH(PSI)FURNISHED BY OTHERS.
- 3. IRRIGATION CONTRACTOR IS TO VERIFY POINT OF CONNECTION IN THE FIELD. INSTALLER IS TO CONFIRM THE MINIMUM DISCHARGE REQUIREMENTS OF THE POINT OF CONNECTION AS INDICATED ON THE LEGEND PRIOR TO INSTALLATION. 4. THE PRESSURE REQUIREMENT AT THE POINT OF CONNECTION IS BASED ON NO MORE THAN 5-FEET OF ELEVATION CHANGE
- IN THE AREAS OF IRRIGATION. 5. ALL PRODUCTS SHALL BE INSTALLED IN ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS AND ACCORDING
- 6. IRRIGATION CONTRACTOR WILL ARRANGE INSPECTIONS REQUIRED BY LOCAL AGENCIES AND ORDINANCES DURING THE COURSE OF CONSTRUCTION AS REQUIRED. ALL WIRING TO BE PER LOCAL CODE. BACKFLOW PREVENTION PER LOCAL CODE.
- 7. LOCATION OF IRRIGATION COMPONENTS SHOWN ON DRAWINGS IS APPROXIMATE. ACTUAL PLACEMENT MAY VARY SLIGHTLY AS REQUIRED TO ACHIEVE FULL, EVEN COVERAGE.
- 8. ALL SPRINKLER HEADS SHALL BE INSTALLED PERPENDICULAR TO FINISH GRADES, EXCEPT AS OTHERWISE INDICATED.
- 9. INSTALL IRRIGATION MAINS WITH A MINIMUM 18" OF COVER BASED ON FINISH GRADES. INSTALL IRRIGATION LATERAL WITH A MINIMUM 12" OF COVER BASED ON FINISH GRADES.
- 10. PIPE LOCATIONS ARE DIAGRAMATIC. VALVES AND MAINLINE SHOWN IN PAVED AREAS ARE FOR GRAPHIC CLARITY ONLY.
- 11. THE IRRIGATION CONTRACTOR SHALL COMPLY WITH PIPE SIZES AS INDICATED. 12. ALL WIRE SPLICES OR CONNECTIONS SHALL BE MADE WITH APPROVED WATERPROOF WIRE CONNECTORS AND BE IN A
- VALVE OR SPLICE BOX. 13. ALL CONTROL WIRING DOWNSTREAM OF THE CONTROLLER IS TO BE 14AWG, UL APPROVED DIRECT BURY.
- 14. SURGE PROTECTION TO BE INSTALLED PER MANUFACTURER'S RECOMMENDATION.
- 15. THE DESIGN IS BASED ON THE SITE INFORMATION AND/OR DRAWING SUPPLIED WITH THE DESIGN CRITERIA BEING SET(AREA TO BE IRRIGATED, EQUIPMENT MANUFACTURER AND MODEL TO BE USED, WATER SOURCE INFORMATION, ELECTRICAL POWER AVAILABILITY, ETC...). SITEONE LANDSCAPE SUPPLY BEARS NO RESPONSIBILITY OR LIABILITY FOR ANY ERRORS IN DESIGN OR INSTALLATION THAT ARISE DUE TO INACCURACIES IN THE ABOVE REFERENCED INFORMATION SUPPLIED TO SITEONE LANDSCAPE SUPPLY IN RELATION TO THIS PROJECT, UNLESS OTHERWISE NOTED.
- 16. CONTACT BRANDON COX AT 423-238-7273 FOR COMPLETE MATERIAL LIST AND QUOTE.

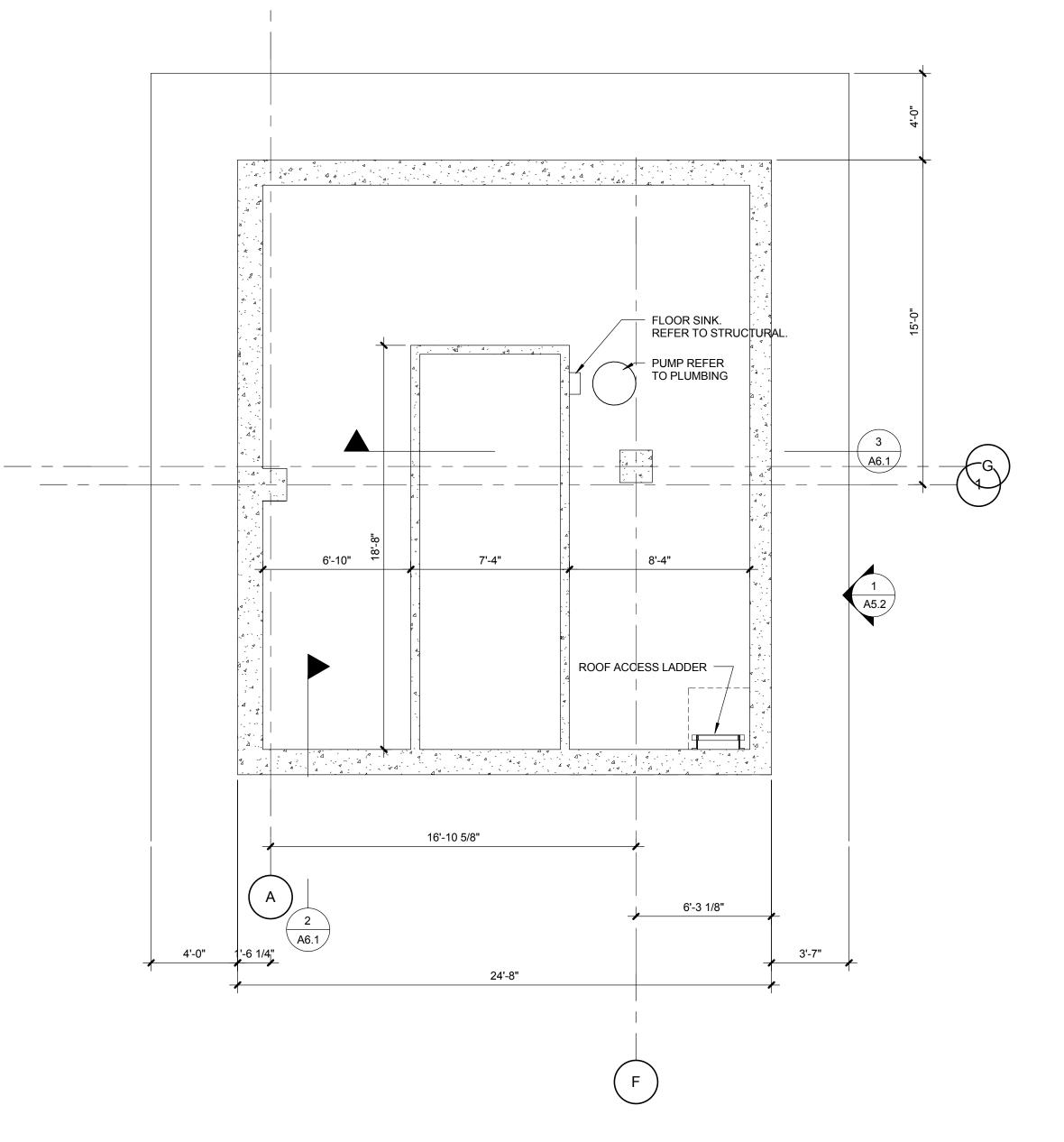
Sheet No:

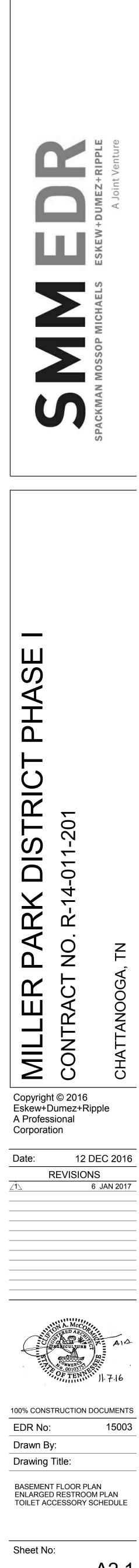




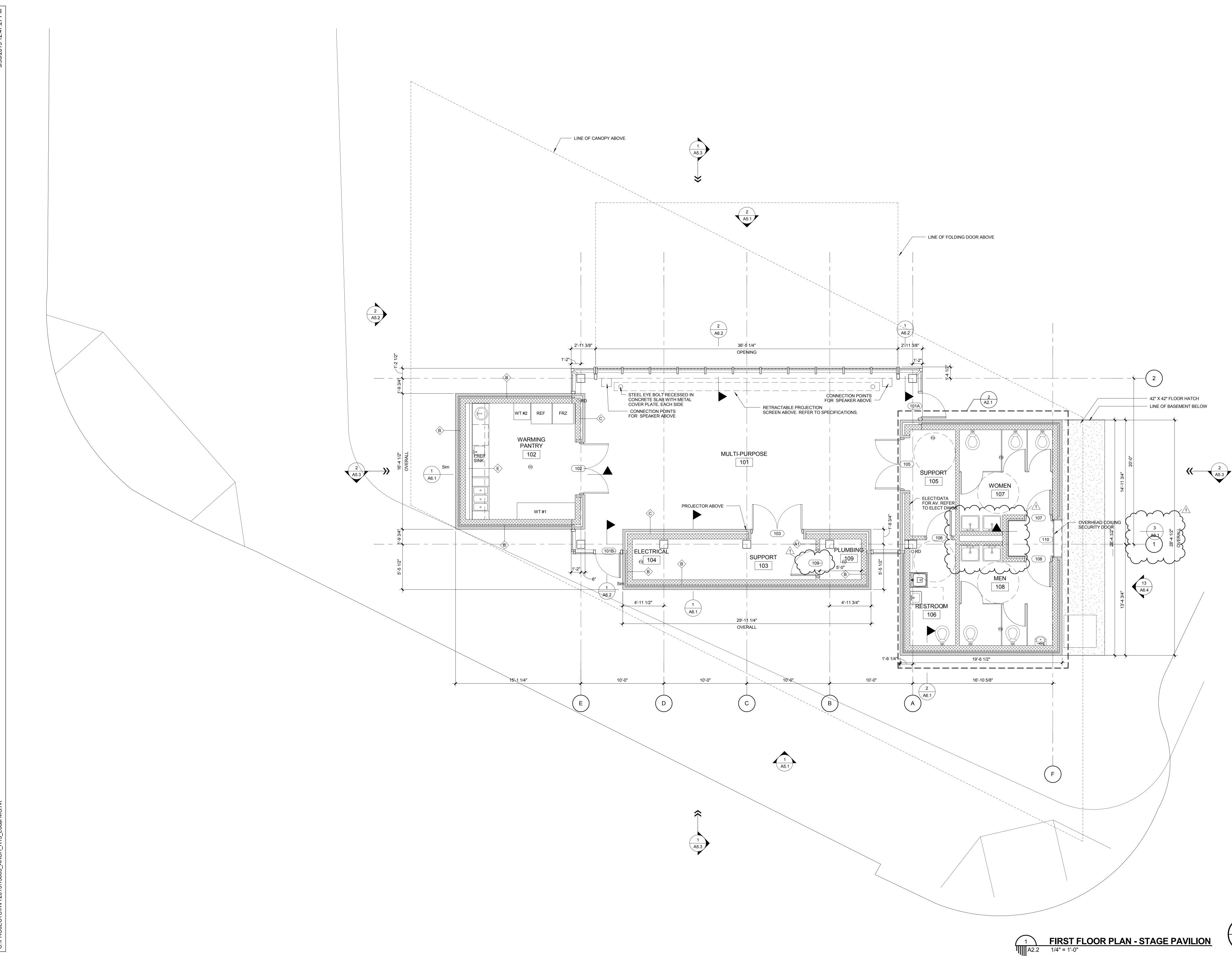


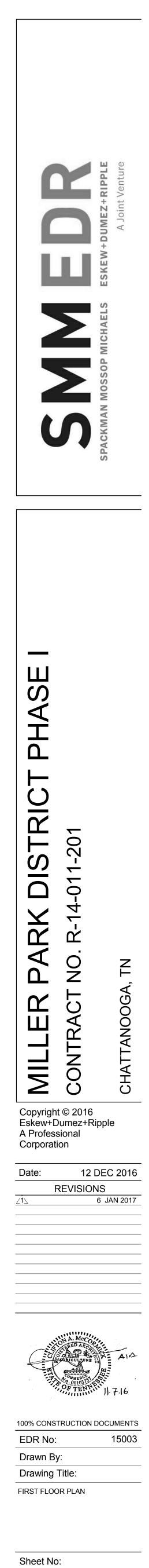





Sheet No:

A1.4


		MANUFACTURER				
REFERENCE NUMBER	ITEM DESCRIPTION	NAME	MODEL NUMBER			
TA-1	ELECTRIC HAND DRYER	BRADLEY	2921-S			
TA-2	TOILET PAPER DISPENSER	BOBRICK	B2888			
TA-3	SANITARY NAPKIN DISPOSAL	BOBRICK	B254			
TA-4	СОАТ НООК	BOBRICK	B233			
TA-5	SOAP DISPENSER	BOBRICK	B-8263			
TA-6	MIRROR	BOBRICK	B-165-2448			
TA-7	BABY CHANGING STATION	KOALA KARE	KB111-SSWM			
TA-10	GRAB BAR - SATIN FINISH	BOBRICK	B-5806 SERIES			
TA-11	GRAB BAR - SATIN FINISH	BOBRICK	B-5806 SERIES			
TA-12	GRAB BAR - SATIN FINISH	BOBRICK	B-5806 SERIES			



A2.1

A2.2

GENERAL NOTES PERTAINING TO INTERIOR PARTITIONS

UNLESS OTHERWISE INDICATED IN THE FOLLOWING "CLARIFICATION OF REFERENCE DESIGNATIONS FOR INTERIOR PARTITIONS" OR OTHERWISE "DRAWINGS", ALL INTERIOR PARTITIONS ARE GYPSUM BOARD AND METAL STUDS AND ARE TO BE CONSTRUCTED AS LISTED BELOW.

1. ALL METAL STUDS SHALL BE 3 5/8" DEEP AND MINIMUM 25 GAUGE. (FOR PARTITIONS REQUIRING HEAVIER GAUGE STUDS, SEE SPEC. SECTION

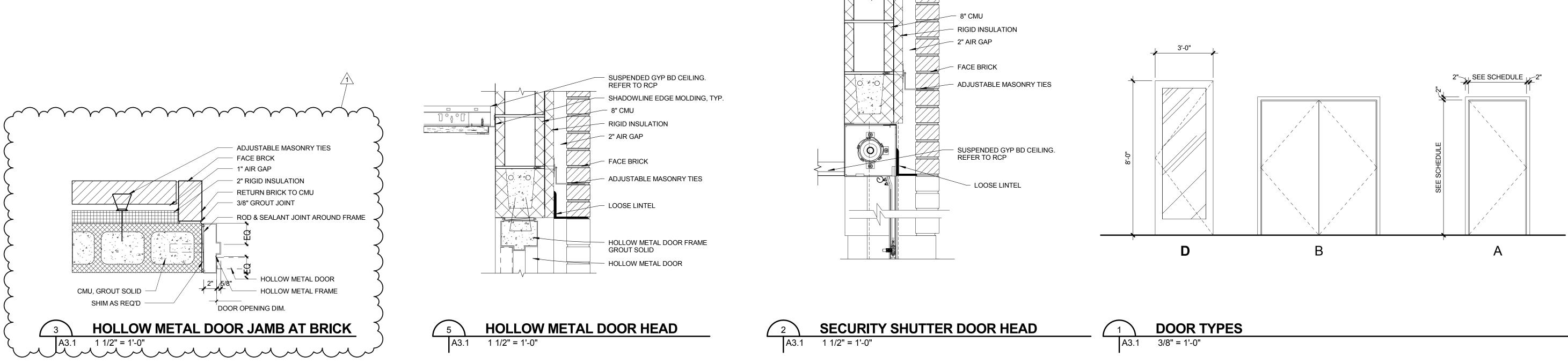
2. ALL METAL STUDS SHALL BE SPACED 16" O.C.

3. ALL METAL STUDS SHALL EXTEND FROM FLOOR STRUCTURE ABOVE. 4. ALL METAL STUDS SHALL HAVE ONE LAYER OF GYPSUM BOARD ON EACH SIDE OF STUD.

5. ALL GYPSUM BOARD SHALL BE MOLD-RESISTANT, TYPE X AND 5/8" THICK.

6. ALL GYPSUM BOARD, ON WALLS, SHALL TERMINATE AT THE UNDERSIDE OF GYPSUM BOARD CEILINGS AND MINIMUM OF 6" ABOVE OTHER TY CEILINGS DO NOT OCCUR, GYPSUM BOARD SHALL EXTEND TO THE STRUCTURE ABOVE.

7. ALL COMPONENTS OF FIRE RATED, SMOKE BARRIER, OR STC RATED PARTITION SYSTEMS SHALL EXTEND TO THE STRUCTURE ABOVE.


8. PARTITION SYSTEMS INDICATED TO HAVE STC-RATINGS MAY INCORPORATE SOUND ATTENUATION BLANKETS AND ACOUSTIC SEALANT TO AC RATING. REFERENCE SPEC. SECTION 092116

9. IF CONCRETE MASONRY UNITS ARE INDICATED, UNITS SHALL BE 7 5/8" THICK AND SHALL EXTEND FROM FLOOR TO STRUCTURE ABOVE.

10. THE THICKNESS OF PARTITIONS SHOWN ARE FINISH SURFACE TO FINISH SURFACE EXCLUDING THIN-SET CERAMIC TILE. 11. REFER TO SPECIFICATION SECTION 09 21 16 FOR GLASS MAT-FACED GYPSUM BOARD REQUIREMENTS IN WET AREAS.

WET AREAS WILL BE DEFINED AS: WALLS SUPPORTING SINKS, TOILETS AND URINALS, AND SHOWER AND TUB SURROUNDS, INCLUDING SHO 12. WHERE A REFERENCE DESIGNATION IS NOT INDICATED ON THE FLOOR PLANS, THE PARTITION TYPE SHALL BE TYPE 10.0.

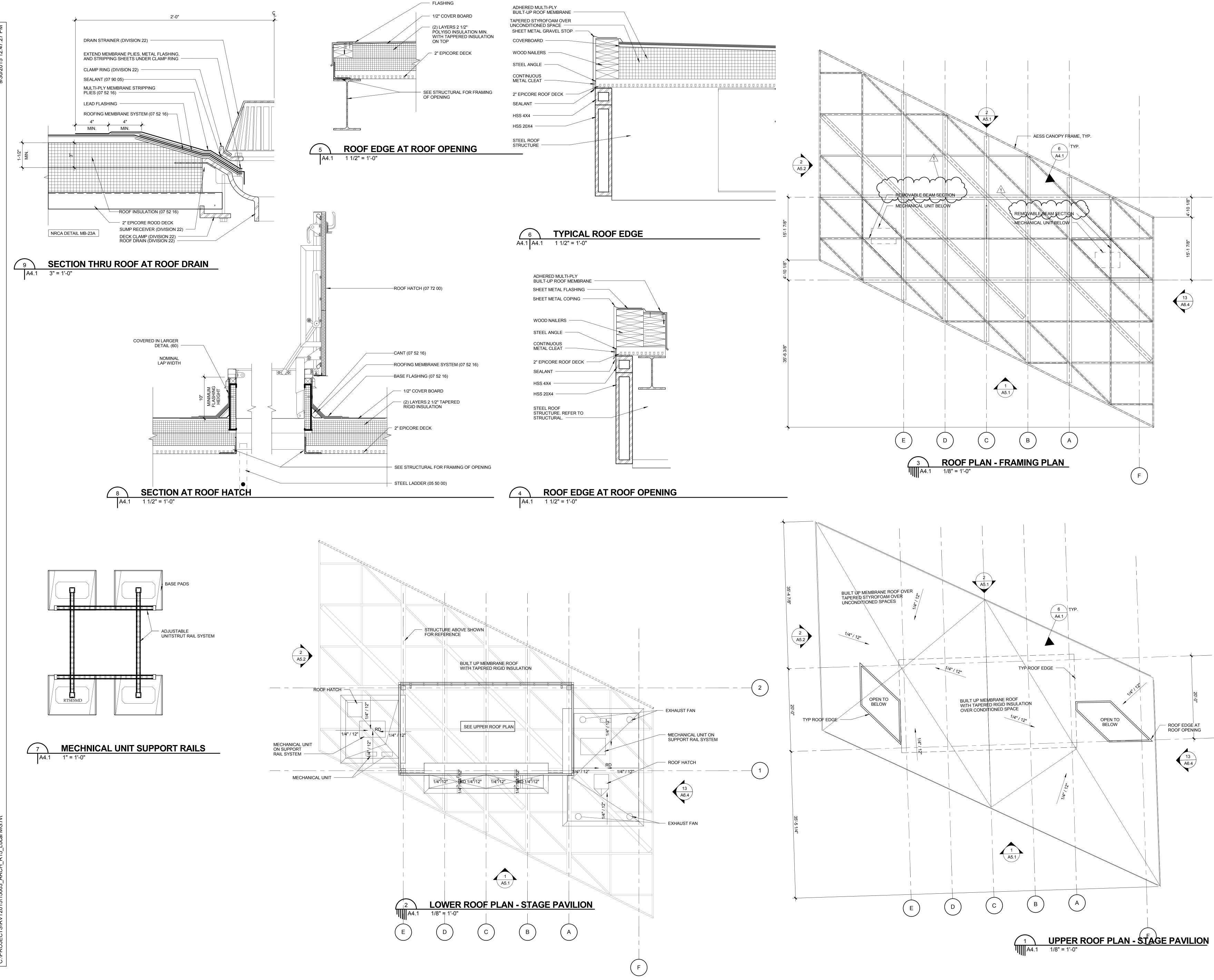
	0 2 77	"S" INDICAT	TYPE G IN HOURS. ES SMOKE PAR G (IF APPLICABL	TITION.	CLARIFICATION OF REFERENCE DESIGNATIONS FOR INTERIOR PARTITIONS
TYPE	FIRE RATING	STC Rating	Acoustic Test	DEPTH	DESCRIPTION
24	0			6 5/8"	ONE LAYER OF GYPSUM BOARD ON ONE SIDE OF 6" METAL STUDS, EXPOSED STUDS THE OTHER SIDE
				5 5 (0)	
A1	0			5 5/8"	6" NOMINAL CONCRETE MASONRY UNIT

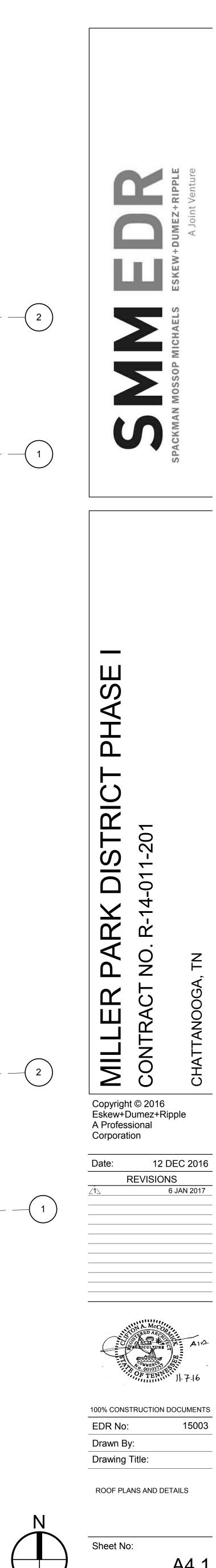
ISE INDICATED ELSEWHERE ON THE	
TON 092116).	
TYPE CEILINGS. WHERE	
OACHIEVE THE REQUIRED	
HOWER CEILING.	
IONS FOR	

	FINISH LEGEND	
MARK	MATERIAL	SPEC. REF
P-1	PAINT	
P-2	PAINT	
ST-1	STONE TILE	
WB-1	WOOD BASE	

					NO	FRAME AND DOOR SCHED 1. UNLESS OTHERWISE NOTED, ALL DOORS SHALL BE 2. FOR UNDERCUTTING AND/OR DOOR GRILLS, REFER			ALL BE HOLLOW	METAL.			
		FR	AME			DOOR							
MARK	OPE WIDTH	NING HEIGHT	MATERIAL	FINISH	TYPE	DOOR (OR OPENING) DESCRIPTION	MATERIAL	FINISH	DETAIL NUMBER	FIRE RATING	STC RATING	HARDWARE SET	REMARKS
101A	3'-0"	8'-0"			D	ALUMINUM AND GLASS ENTRANCE							
101B	3'-0"	8'-0"			D	ALUMINUM AND GLASS ENTRANCE							
102	6'-0"	7'-0"			В	FLUSH HOLLOW METAL							
103	6'-0"	7'-0"			В	FLUSH HOLLOW METAL							
105	6'-0"	7'-0"			В	FLUSH HOLLOW METAL							
106	3'-0"	6'-10"			A	FLUSH HOLLOW METAL							
107	3'-0"	6'-10"			A	FLUSH HOLLOW METAL							
108	3'-0"	6'-10"			A	FLUSH HOLLOW METAL							
109	ل 3'-0"	6'-10"			A	FLUSH HOLLOW METAL							
	4'-7 1/4"	9'-0"			109	Built to order metal slatted rolling doors secure openings above counters. Can fully close to the floor.							

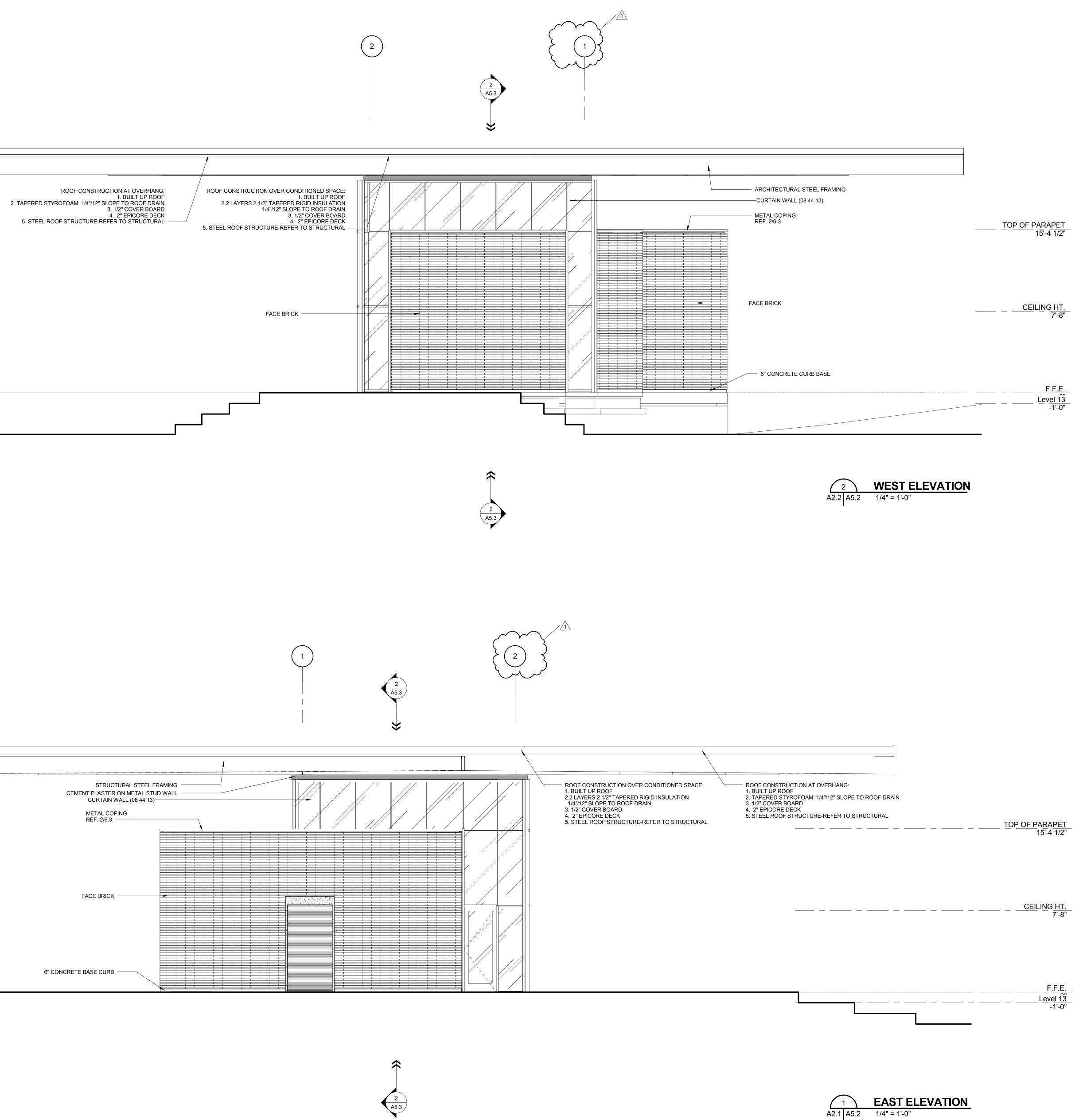
			FINI	SH SC	HEDUI	_E	
NO.	ROOM NAME	FLOOR	BASE	WALL	ACCENT WALL	CEILING	COMMENTS
Not Placed		I	1				
B101	PUMP ROOM	CC-01	(none)	(none)		(none)	
FIRST FLOOR 101 102	MULTI-PURPOSE WARMING PANTRY	CC-01 CC-01	(none) RB-01	(none) PT-01		(none) PT-01	
102	WARMING PANTRY	CC-01		PT-01		PT-01	
103	SUPPORT	CC-01	RB-01	PT-01		PT-01	
104	ELECTRICAL	CC-01	RB-01	PT-01		PT-01	
105	SUPPORT	CC-01	RB-01	PT-01		PT-01	
106	RESTROOM	CC-01	RB-01	TL-01		PT-01	
107	WOMEN	CC-01	MULTIPLE	ST-01		PT-01	
108	MEN	CC-01	RB-01	TL-01		PT-01	
109	PLUMBING	(none)	(none)	(none)		(none)	

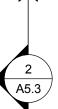


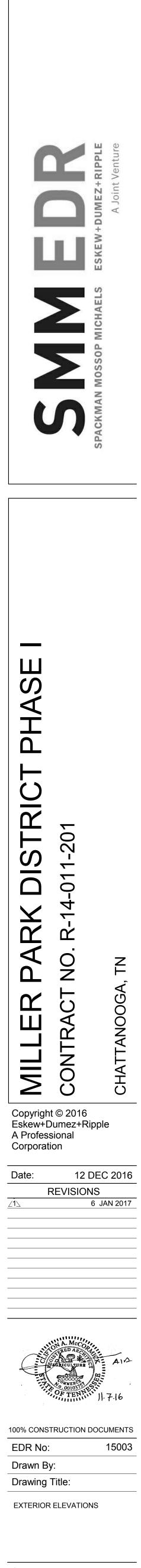


Drawn By: Drawing Title: FINSH SCHEDULE DOOR SCHEDULE DOOR DETAILS

Sheet No:






A4.1

6" CONCRETE BASE CURB --

Sheet No:

A5.2

Report of Geotechnical Exploration Miller Park District Chattanooga, Tennessee S&ME Project No. 1281-15-066

Prepared for: City of Chattanooga Division of Engineering Services 1250 Market Street, Suite 2100 Chattanooga, Tennessee 37402-2713

> Prepared by: S&ME, Inc. 4291 Highway 58, Suite 101 Chattanooga, TN 37416

> > November 25, 2015

November 25, 2015

City of Chattanooga Division of Engineering Services 1250 Market Street, Suite 2100 Chattanooga, Tennessee 37402-2713

Attention: Mr. Eric Booker

Reference: Report of Geotechnical Exploration Miller Park District Chattanooga, Tennessee S&ME Project No. 1281-15-066

Dear Mr. Booker:

This report presents the results of the geotechnical exploration for the Miller Park District site in Chattanooga, Tennessee. Our work was performed in general accordance with S&ME Proposal No. 121500520, dated October 19, 2015.

This report describes our understanding of the project, presents the results of the field exploration and laboratory testing, and discusses our conclusions and recommendations. S&ME appreciates this opportunity to be of service to you. Please call if you have questions concerning this report or any of our services.

Sincerely,

S&ME, Inc.

Drew Reed, PE Project Engineer

James P. McGirl, PE Principal Engineer

Table of Contents

1.0	Exec	utive Summary	2
2.0	Intro	oduction	3
3.0	Site	and Project Description	3
	3.1	Site Description	3
	3.2	Project Description	
4.0	Regi	onal Geology	4
5.0	Subs	surface Conditions	5
	5.1	Field Exploration Procedures	5
	5.2	Soil Stratification	5
	5.3	Water Levels	6
6.0	Labo	pratory Testing	6
7.0	Asse	ssment	6
8.0	Desi	gn Recommendations	7
	8.1	Limitations of Report	7
	8.2	Foundations	7
	8.3	Floor Slabs	8
	8.4	Groundwater	9
9.0	Cons	struction Considerations	9
	9.1	Site Preparation	9
	9.2	Fill Placement	10
	9.3	Drainage and Runoff Concerns	
10.0		ow-Up Services	44

Appendices

Appendix I	
	Figure 2 - Boring Location Plan
Appendix II	
	Test Boring Record Legend
	Test Boring Records
Appendix III	Laboratory Testing Procedures
	Laboratory Test Results
Appendix IV	ACI 302.1R-04 Guide For Concrete Floor and Slab Construction
	Important Information About Your Geotechnical Engineering Report

1.0 Executive Summary

This summary is presented for the convenience of the reader. The full report text should be studied and understood before preparing an estimation of quantities or preparing designs based on this report, as it contains important information and recommendations that are not included in this brief summary.

- 1. The geotechnical exploration included drilling and sampling of six test borings. The samples collected during our exploration were returned to our Chattanooga laboratory where they were further evaluated by a professional engineer.
- 2. Natural moisture content and Atterberg limits laboratory tests were performed on selected samples to aid our soil classification and to evaluate the on-site soil's volume change potential.
- 3. Subsurface conditions generally consisted of fill soils overlying residual soils. Fill soils were typically composed of silty clay, clayey silt, and foundry derived waste. Auger refusal was encountered in four of the test borings before penetrating the fill. Residual soils were encountered below the fill in borings B-4 and B-6 before encountering auger refusal. The residual soils were composed of stiff to very stiff clayey silt and silty clay with limestone fragments.
- 4. Auger refusal was encountered in each of the test borings at depths ranging from about $1\frac{1}{2}$ to $12\frac{1}{2}$ feet.
- **5.** Groundwater was not encountered in the test borings at the time of drilling. We do not expect groundwater control will be necessary during construction.
- 6. The site is adaptable for the proposed structures provided that necessary steps are taken during construction. This includes proper foundation preparation, site preparation and construction testing as outlined in this report.
- 7. If the foundations are prepared in accordance with Section 7.2 of this report, shallow foundations bearing on existing or newly placed fill may be used to support the pavilions. The bearing conditions at each of the foundation excavations should be observed by the geotechnical engineer. The purpose of these observations is to evaluate whether the bearing conditions are suitable for the design bearing pressure or if remedial measures will be required.
- 8. Due to its variable composition and unknown origin, the on-site fill soil is not acceptable for reuse as compacted soil fill.

2.0 Introduction

S&ME, Inc. has completed the geotechnical exploration at the Miller Park District in Chattanooga, Tennessee. Our work was performed in general accordance with S&ME Proposal Number 121500520 dated October 19, 2015. Our services were authorized by Mr. Dennis Malone of the City of Chattanooga on October 28, 2015.

The purpose of our work was to explore the subsurface soil conditions and groundwater level, provide feasible shallow foundation recommendations and provide applicable earthwork recommendations. This report describes our understanding of the project, presents the results of the field exploration and laboratory testing, and discusses our conclusions and recommendations relative to the above considerations.

A Site Location Plan and a Boring Location Plan are included in Appendix I. A discussion of the field investigative procedures, a legend of soil classification and symbols, and the Test Boring Records are included in Appendix II. Appendix III contains a discussion of the laboratory testing procedures and the laboratory test results. Appendix IV contains a copy of the ACI 302.1R-04 Guide for Concrete Floor and Slab Construction and a document titled "Important Information about Your Geotechnical Engineering Report".

3.0 Site and Project Description

Our understanding of the project is based on our discussions with Mr. Eric Booker and Mr. Dennis Malone of the City of Chattanooga. We were provided architectural drawings in the form of a 30 Percent Design Package prepared by Spackman Mossop and Michaels Landscape Architects, dated October 2, 2015. In addition, we have reviewed the geology underlying the project site and have visited the site.

3.1 Site Description

The project site is located in downtown Chattanooga between Georgia Avenue and Market Street, to the east and west, respectively, and between Martin Luther King Boulevard and East 10th Street, to the north and south, respectively.

The project site is relatively flat with about 5 to 6 feet of relief across the site. The northeast quadrant of the site is characterized by hardscaping in the form of brick paved and concrete sidewalks, walkways and steps. The central portion of the site is occupied by a large pond and fountain. The southern and eastern portion of the project site is characterized by a grass field and several large trees. Several planters are dispersed across the site.

3.2 Project Description

The project involves the construction of two new pavilions in conjunction with new renovations to the Miller Plaza District. The Café Pavilion is an approximately 4,300 square foot, triangular structure that will be located at the southwest corner of Georgia Avenue and Martin Luther King Jr. Boulevard. This pavilion will be comprised of an enclosed café and covered outdoor seating. The Stage Pavilion will be located at the southern perimeter of the site, between Market Street and Georgia Avenue, and to the north of E 10th Street. The Stage Pavilion will be comprised of a covered stage and an enclosed 450 square foot mechanical room and kiosk.

Project information relative to type of construction or foundation loading has not been developed. Based on the provided drawings, we expect both pavilions will have steel frames, grade supported concrete slabs, and shallow soil supported foundations. Maximum column and wall loads of 100 kips and 3 kips per linear foot are estimated based on the type of construction.

Spot elevation data was provided on sheet L2.1 of the provided drawings. Based on the provided information, it appears cut and fill depths in the proposed pavilion areas will be less than about 3 feet.

4.0 Regional Geology

Chattanooga, Tennessee is located in the Valley and Ridge Physiographic Province. Elongated ridges that trend in a northeast-southwest direction characterize this province. The ridges are typically formed on highly resistant sandstones and shales, while the valleys and rolling hills are formed on less resistant limestone, dolomite, and shales.

Based on our review of the Geologic Map of the Chattanooga Quadrangle, dated 1964, undifferentiated bedrock of the Knox Group underlies the site. The Knox Group is composed of various dolomite and siliceous limestone members. The rock is generally medium to dark gray, very hard, fine to coarsely crystalline rock. Residual soils derived from the Knox Group are typically red-brown to yellow-brown clays with locally heavy amounts of chert fragments. The strata of the Knox formations weather to form a thick cherty overburden typically in excess of 40 feet thick.

Limestone and dolomite, such as the strata underlying this site, are of great geologic age and have been subject to solution weathering over geologic time. Rainwater falling onto the surface and percolating downward through the soil and into cracks and fissures gradually dissolves the rock, producing insoluble impurities such as chert and clay. Since limestone and dolomite vary greatly in their resistance to weathering, the soil/bedrock contact may be extremely irregular. More soluble bedrock develops a thicker soil cover and a more irregular bedrock surface with pinnacles and slots, and less soluble bedrock usually develops a thinner soil cover and a less irregular soil-bedrock surface.

These large variations in bedrock depth are greatly enhanced by the presence of fractures, bedding planes, and faults, which provide an increased opportunity for a greater influx of percolating water. The weaknesses may form clay-filled cavities or enlarge into caves and may be connected by a network of passageways. If a cave forms close to the bedrock surface, its roof may collapse and the overlying soils may erode into the cave. Once the weight of the overlying soil exceeds the soil's arching strength, the soil collapses and an open hole or depression may appear at the ground surface. Such a feature is termed a sinkhole.

There is always some risk associated with developing any site underlain by carbonate bedrock. However, we have reviewed the USGS quadrangle map for this area. The map does not show a pattern of closed depressions that would indicate past sinkhole activity in near proximity to the site. We also observed successful development in the surrounding area. Therefore, we believe the risk of sinkhole development for this project is no greater than for surrounding successfully developed sites.

5.0 Subsurface Conditions

5.1 Field Exploration Procedures

The procedures used by S&ME, Inc. for field sampling and testing are in general accordance with ASTM procedures and established engineering practice in the State of Tennessee. Appendix II contains brief descriptions of the procedures used in this exploration.

S&ME, Inc. drilled six soil test borings to obtain subsurface information at the project site. Members of our engineering staff established the boring locations in the field by measuring distances and estimating right angles relative to on-site landmarks. Boring elevations were obtained from GIS aerial imagery. Therefore, both boring locations shown on Figure 2 – Boring Location Plan in Appendix I, and the elevations shown on the Test Boring Records in Appendix II, should be considered approximate.

The borings were advanced using hollow stem auguring techniques coupled with Standard Penetration Test (SPT) split-spoon sampling. After each boring was completed, we measured the groundwater level, if present. The borings were then backfilled with auger cuttings before leaving the site.

Our field representative packaged the soil samples in sealed containers, labeled them for identification, and returned them to the Chattanooga office where a geotechnical engineer further examined them. We visually classified the soils according to the Unified Soil Classification System (ASTM D 2488). The resulting soil descriptions are shown on the Test Boring and Test Pit Records in Appendix II. Samples were then selected for laboratory testing. A general description of the subsurface conditions encountered at the test boring locations is provided in the following report sections.

5.2 Soil Stratification

The results of our field testing program are summarized in the following paragraphs, and are shown on the Test Boring Records in Appendix II. These records present our interpretation of the subsurface conditions at specific boring locations at the time of our exploration. The stratification lines represent the approximate boundary between soil types. The actual transitions may be more gradual than implied.

SURFACE MATERIALS

Surface material consisting of about four to seven inches of topsoil was encountered at the ground surface in each of the borings with the exception of boring B-2. Brick pavers, the upper layer of which was removed prior to drilling, were encountered from the ground surface to a depth of about 1 foot in boring B-2.

<u>FILL</u>

Below the ground cover, fill was encountered in each of the borings to depths ranging from about 1¹/₂ to 12¹/₂ feet. Fill is material that has been transported to its present location by man. The fill was generally composed of silty clay (CL), clayey silt (ML), or foundry derived waste materials. Standard Penetration Test (SPT) N values in the fill ranged from 3 to greater than 50 blows per foot, indicating a soft to hard soil consistency in the fine grained soils and a dense to very dense relative density in the coarse grained soils.

RESIDUUM

Residual soils were encountered below the fill in borings B-4 and B-6 at a depth of 3 and 4 feet, respectively. Residual soil forms from the in-place weathering of the underlying bedrock. The residual soils encountered were composed of yellow-brown and brown clayey silt with limestone fragments. SPT N values for these soils ranged from 14 to 26 blows per foot, indicating a stiff to very stiff soil consistency.

AUGER REFUSAL

Auger refusal was encountered in each of the borings at depths ranging from about 1¹/₂ to 12¹/₂ feet. Only borings B-4 and B-6 penetrated the fill prior to encountering auger refusal.

5.3 Water Levels

The boreholes were observed for the presence of groundwater at the termination of boring. Groundwater was not observed in any of the borings. We do not expect groundwater to present any site development problems.

6.0 Laboratory Testing

Laboratory tests were performed on representative split-spoon samples obtained during the field exploration phase of this project. We conducted moisture content and Atterberg limits tests on selected samples to aid our soil classification and to evaluate the relative volume change potential of on-site soils. The resulting soil descriptions are shown on the Test Boring Records in Appendix II.

7.0 Assessment

On the basis of this geotechnical exploration, we conclude that this site is adaptable for the proposed construction. In order to develop and adapt this site, a few items should be addressed during the planning, design, and construction phases of the project.

Site preparation should include the stripping of topsoil and hardscaping from the construction areas. Structural areas that are to receive fill should be thoroughly proofrolled after the completion of stripping. Proofrolling should be performed using a fully loaded tandem axle dump truck or a similar piece of equipment. Areas deflecting under the weight of the proofroll should be undercut to suitable soil as recommended by the geotechnical engineer. Areas where undercutting is performed should be backfilled as specified in the Section 8.2 of this report.

The existing fill is composed of a variety of materials including foundry derived waste, and the fill appears to have been placed with variable compactive effort. Ideally, undercutting of the fill and replacement with compacted soil fill is the preferred solution to reduce the City's risk relative to excessive differential settlement. However, considering the foundry derived waste will likely be classified as special waste and will have to be disposed of in a regulated landfill, this option will be very expensive. If the City is willing to accept some additional risk relative to excessive differential settlement, the pavilions can be supported on the existing fill using shallow foundations if the foundation excavations are evaluated as described in Section 7.2 of this report.

We recommend the need to undercut foundations, or perform other remedial measures, be assessed at the time of construction. Foundation excavations should be observed by the geotechnical engineer or his representative prior to placing concrete. Floor slabs for the new structure may be supported on newly placed and compacted structural fill.

8.0 Design Recommendations

8.1 Limitations of Report

This report has been prepared in accordance with generally accepted geotechnical engineering practice for specific application to this project. The conclusions and recommendations contained in this report are based on applicable standards of our practice in this geographic area at the time this report was prepared. No other warranty, expressed or implied, is made.

The analyses and recommendations submitted herein are based, in part, on the data obtained from the subsurface exploration. The nature and the extent of variations between the widely-spaced borings will not become evident until the time of construction. If variations appear evident, then we will re-evaluate the recommendations of this report. In the event any changes in the nature, overall design, or finished floor elevations, grades, structural loads, or location of the building or parking areas are planned, the conclusions and recommendations contained in this report will not be considered valid unless the changes are reviewed and the conclusions verified or modified in writing.

We recommend S&ME be provided the opportunity to review the final design plans and specifications in order that earthwork and other recommendations are properly interpreted and implemented. The recommendations in this report are contingent on S&ME, Inc.'s observation and monitoring of grading and construction activities.

8.2 Foundations

SHALLOW SPREAD FOOTINGS

The subsurface exploration revealed that fill soils are present at the probable foundation bearing depths. Fill, such as that encountered in the subsurface investigation, does not provide a consistent bearing capacity for shallow spread foundation support because of the variability of fill material and inconsistent compactive effort. If the City is willing to accept additional risk relative to excessive differential settlement that can manifest as cracks in floor slabs or masonry walls, the pavilions can be supported on shallow fill supported foundations. The alternative to this approach is to undercut the existing fill to expose residual soils or rock.

If the City elects to support the pavilions on the existing fill, we recommend that foundation excavations be inspected by an experienced geotechnical engineer at the time of construction. The engineer will use a probe rod to assess the stiffness of the bearing soils and dynamic cone penetrometer (DCP) testing to assess the bearing capacity. The engineer will also perform hand auger borings or excavate test pits to further assess the foundation bearing conditions. Based on these observations, foundation preparation recommendations will provided. We recommend a contingency budget be established to account for undercutting about 3 feet of fill from beneath 50 percent of the foundations and backfilling the excavations with compacted soil fill. The recommendations in this report are contingent on S&ME observing and evaluating the foundation excavations prior to placing concrete.

If the site is prepared as described above and in accordance with Section 8.1 of this report, spread footings for the structures will bear on a combination of existing fill and newly placed and compacted soil fill. Assuming the city elects to leave the existing fill in place, we recommend shallow foundations bearing on existing or newly placed fill be designs using a reduced bearing pressure of 1,500 psf. A reduced bearing pressure is recommended to reduce foundation undercutting costs.

Shallow refusal was encountered in several of the borings. We were unable to determine the makeup of the refusal material. Based on the site geology, and based on deeper borings drilled during our environmental investigation, we believe that refusal may have been encountered on debris within the fill, or on subsurface structural elements of demolished buildings which occupied the site previously.

Although computed footing dimensions may be less, we recommend that continuous footings be a minimum of 18 inches wide and isolated spread footings be a minimum of 36 inches wide to reduce the possibility of a localized punching shear failure. Foundations should be placed a minimum of 18 inches below subgrade to protect against frost penetration and to provide adequate confinement.

Foundation excavations should be backfilled with concrete the same day they are opened. Footings should be poured "neat" to the excavation so that water cannot collect behind forms before backfilling. If soils exposed in the foundation excavations experience moisture variations prior to concrete placement, the affected bearing materials should be undercut as recommended by our geotechnical engineer. A 2-to 3-inch thick mud-mat of lean concrete may be used to protect the exposed support materials if the opened excavations cannot be backfilled with concrete the same day.

Undercut foundation excavations should be backfilled using either soil fill compacted to at least 95 percent of the standard Proctor (ASTM D 698) maximum dry density or a suitable material recommended by the geotechnical engineer. The foundation subgrade should be relatively level or suitably benched and free of loose soil or rock at the time of our observations.

8.3 Floor Slabs

The floor slab-on-grade should be supported on compacted select fill material. Prior to placement of the aggregate base, the exposed surface should be observed and proofrolled with a loaded, tandem-axle, dump truck, or rubber-tired construction equipment approved by the geotechnical engineer. Proofrolling should be observed by the geotechnical engineer. Areas that pump, rut, or deflect excessively under the loads of the proofroll should be undercut to suitable soils and replaced with compacted structural fill or crushed stone. A stiff subgrade is essential to good floor slab performance.

A four-inch thick (minimum) granular leveling course, preferably graded aggregate base, should be placed between the floor slab and subgrade. The granular layer will promote curing and help distribute concentrated floor slab loads as well as add uniformity and serve as a capillary barrier. The use of a vapor barrier should meet ACI 302 guidelines. We have included these guidelines in Appendix IV. Expansion/contraction and construction joints should be used to isolate the floor slab from load bearing walls and/or isolated columns and should conform to ACI guidelines.

To prevent the subgrade from drying or excessively wetting, we recommend protecting the subgrade before concrete is placed. Protection of the subgrade can be achieved by leaving the floor subgrade several inches above grade, and then making the final cut to subgrade shortly before floor construction.

The soil subgrade for the slabs should be crowned and sloped to drain toward the perimeter of the building. Positive site surface drainage should be provided to reduce infiltration of surface water around the perimeter of the building and beneath the floor slab and pavement areas. Surface drainage should be collected and discharged such that the water is not permitted to infiltrate the backfill and floor slab.

8.4 Groundwater

Groundwater was not encountered in the soil test borings during our drilling activities. Therefore, we do not anticipate that groundwater control will be necessary during construction.

9.0 Construction Considerations

9.1 Site Preparation

DEMOLITION

A number of existing structures and hardscaping will be demolished prior to construction. Abandoned utilities should be removed and replaced with compacted fill. Active utilities should be relocated outside of the construction area. If pipes are not removed from beneath the proposed construction, they may serve as conduits for subsurface erosion that could result in the formation of voids or depressions, with adverse effects on the foundations and floor slabs. Based on the results of our subsurface investigation, it is possible that some unknown existing structural elements of previous constructions may be encountered during the excavation of the foundations. The need to remove any existing structural elements should be determined by the engineer at the time of construction.

STRIPPING AND UNDERCUTTING

After completion of demolition, asphalt, gravel, concrete and topsoil should be stripped from the construction area and disposed of off-site. The depth of the topsoil encountered in the borings ranged from about four to seven inches. However, we expect the topsoil intervals may be greater in unexplored areas.

GENERAL

After completion of stripping in areas to receive fill, and once grade is achieved in cut areas, we recommend proofrolling the exposed surface of the subgrade soils. The purpose of proofrolling is to locate pockets of soft or unstable soils. Proofrolling should be performed using a fully loaded dump truck or other heavy equipment approved by our geotechnical engineer. The proofrolling paration should traffic the site with parallel passes of the vehicle starting at one side of the building pad and continuing to the other. Each pass should overlap the preceding pass to ensure complete coverage.

An engineer from S&ME should be present to observe the proofrolling operations and to provide recommendations should unstable soils be encountered. In general, unstable materials in the building areas should be undercut until stable materials are exposed. Backfill should consist of compacted soil as described in Section 8.2 of this report. After proofrolling and prior to placing fill on the site, the upper surface soils should be scarified and properly compacted.

Subgrade repair can be expected to be more extensive if grading operations are performed during wet periods of the year. The onsite soils are moisture sensitive and will be softened by rubber-tired construction traffic when wet. Once areas that need remediation have been repaired, the site may be brought to grade with structural fill. Depending on climatic conditions and the speed of contractor activities during the grading phase of this project, proofrolling may be required on multiple occasions.

9.2 Fill Placement

MATERIALS

Fill soils should consist of low to moderately plastic clay or silt with a plasticity index of less than thirty (PI<30) and a standard Proctor maximum dry density greater than 95 pounds per cubic foot. The fill should contain no rock fragments larger than 4 inches in any dimension, and no organic matter. Due to the variable nature of the existing fill encountered, onsite soils are not acceptable for use as engineered fill.

Soil fill operations should not begin until representative samples of proposed fill soils are collected and tested. The test results will be used to assess whether the proposed fill material meets the previously discussed plasticity and density criteria, and for quality control during grading. Please allow at least 3 to 5 days for testing before the fill operations begin.

COMPACTION

Fill should be placed in thin lifts with a maximum loose thickness of 8 inches, then compacted to 95 percent of the standard Proctor maximum dry density, with a moisture content within 3 percent of the optimum moisture content, depending on the shape of the Proctor curve. Wetting or drying of these soils may be required, depending on the time of year site grading is performed. We recommend the top one foot below grade supported slabs, and the top 2 feet beneath pavements be compacted to 100 percent standard Proctor compaction. The edge of the compacted fill should extend at least 10 feet beyond the outside building edge, and at least 5 feet beyond the outside edge of pavements before sloping. A representative of S&ME should test the density and moisture content of each lift before placing additional lifts.

In confined areas such as utility trenches, portable compaction equipment and thin lifts of 3 to 4 inches may be required to achieve specified degrees of compaction.

We recommend that fill placements be observed by one of S&ME's qualified soils technicians on a full time basis. Frequent fill density and moisture tests should be performed to evaluate that the specified degree of compaction is being achieved. However, the actual testing frequency should be determined by the geotechnical engineer based on the type of soil being placed, the equipment being used, and the time of year the fill is being placed. More frequent testing should be performed in confined areas. Any areas that do not meet the compaction specification should be re-compacted to achieve compliance.

9.3 Drainage and Runoff Concerns

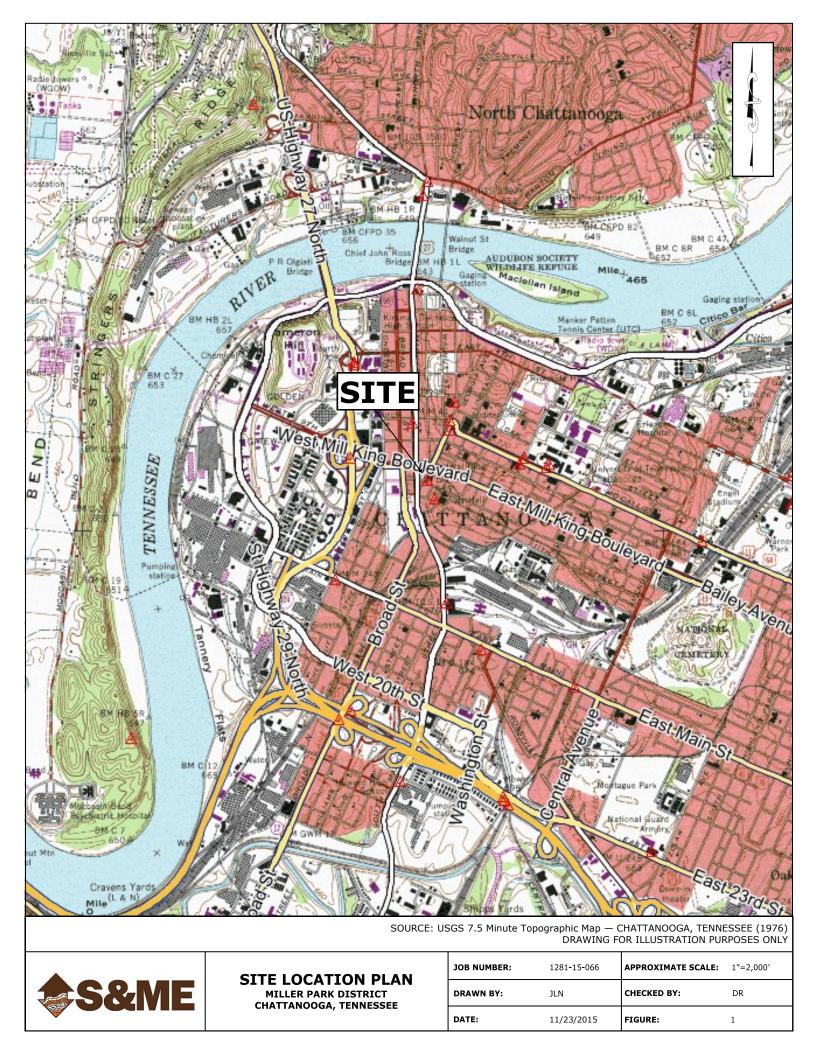
In the Tennessee Valley Region, frequent and sometimes substantial rainfalls occur from November through May. These rainy months can greatly influence the cost and schedule of construction projects, particularly earthwork and work in confined excavations. The clay soils present at the site will be difficult

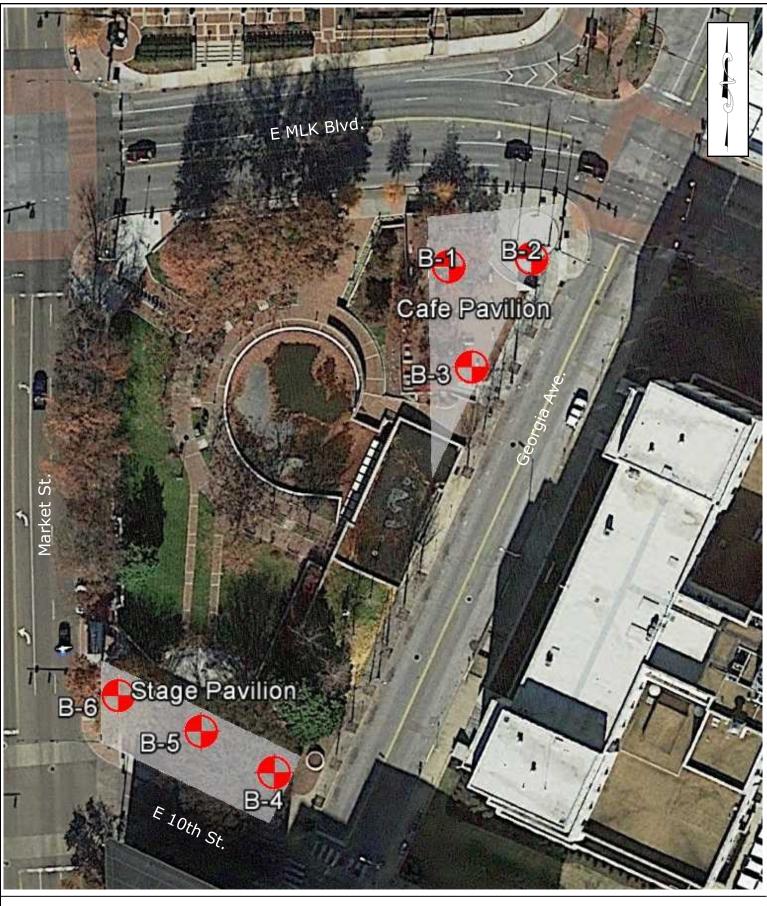
to work in periods of wet weather. Construction traffic repeatedly crossing exposed wet soil subgrades can damage the subgrades to the point that over-excavation may be required.

The contractor should be prepared to provide adequate methods to control the infiltration of surface water into open excavations. We recommend subgrades be sufficiently sloped to provide rapid drainage. Water that collects in excavations should be removed as soon as possible to prevent softening the subgrade soils.

Maintenance of the exposed subgrade surface will be important to achieve moisture control and to prevent softening of the surface soils due to rainwater infiltration. We recommend keeping the ground surface free from depressions or ruts that would hold water, and sealing the surface using rubber tired equipment to reduce water infiltration.

10.0 Follow-Up Services


Our services should not end with the submission of this geotechnical report. S&ME should be kept involved throughout the design and construction process to maintain continuity and to determine if our recommendations are properly interpreted and implemented. To achieve this, we should review project plans and specifications with the designers to see that our recommendations are fully incorporated and have not been misinterpreted. We also should be retained by the owner to monitor and test the site preparation and foundation construction.


S&ME's familiarity with the site and foundation recommendations makes us a valuable part of your construction quality assurance team. S&ME recommends that we be retained by the owner on a full time basis to observe earthwork and foundation construction. Our personnel are uniquely qualified to recognize unanticipated ground conditions and can offer responsive remedial recommendations should these unanticipated conditions occur.

Appendix I -

Figure 1 - Site Location Plan

Figure 2 - Boring Location Plan

SOURCE: Google Earth Aerial Imagery (Nov.27,2013)

BORING LOCATION PLAN
Miller Park District
Chattanooga, Tennessee

JOB NUMBER:	1281-15-066	APPROXIMATE SCALE:	1″=50′
DRAWN BY:	DR	CHECKED BY:	JPM
DATE:	November 23, 2015	FIGURE:	2

Appendix II

Field Exploration Procedures

Test Boring Record Legend

Test Boring Records

HOLLOW STEM AUGERING PROCEDURES WITH STANDARD PENETRATION RESISTANCE TESTING ASTM D 1586

The borings were advanced using auger drilling techniques. At regular intervals, soil samples were obtained with a standard 1.4-inch I.D., 2.0-inch O.D., split-tube sampler. The sampler was initially seated 6 inches to penetrate any loose cuttings and then driven an additional foot with blows of a 140-pound hammer falling 30 inches. The number of hammer blows required to drive the sampler the final foot is the standard penetration resistance. Standard penetration resistance, when properly evaluated, is an index to the soil's strength and density. The criteria used during this exploration are presented on the Test Boring Record Legend.

Representative portions of the soil samples, thus obtained, were placed in sealed containers and transported to the laboratory. The engineer selected samples for laboratory testing. The Test Boring Records in this Appendix provide the soil descriptions and penetration resistances.

Soil drilling and sampling equipment may not be capable of penetrating hard cemented soils, thin rock seams, large boulders, waste materials, weathered rock, or sound continuous rock. Refusal is the term applied to materials that cannot be penetrated with soil drilling equipment or where the standard penetration resistance exceeds 100 blows per foot. Core drilling is needed to determine the character and continuity of the refusal materials.

TEST BORING/PIT RECORD LEGEND

	FINE	AND COARS		SOIL INFO	RMATION		
	AINED SOILS GRAVELS)		GRAINED SC ILTS & CLAYS		PARTI	CLE SIZE	
<u>N</u>	Relative Density	N	<u>Consistency</u>	Qu, KSF <u>Estimated</u>	Boulders	Greater than 300 mm (12 in)	
0-4	Very Loose	0-1	Very Soft	0-0.5	Cobbles	75 mm to 300 mm (3 to 12 in)	
5-10	Loose	2-4	Soft	0.5-1	Gravel	4.74 mm to 75 mm (3/16 to 3 in)	
11-20	Firm	5-8	Firm	1-2	Coarse Sand	2 mm to 4.75 mm	
21-30	Very Firm	9-15	Stiff	2-4	Medium Sand	0.425 mm to 2 mm	
31-50	Dense	16-30	Very Stiff	4-8	Fine Sand	0.075 mm to 0.425 mm	
Over 50	Very Dense	Over 31	Hard	8+	Silts & Clays	Less than 0.075 mm	
and testing and to o driven three 6-inch actuated by a rope	obtain relative density a increments with a 140	and consistenc lb. hammer fa w counts requi tables.	y information. alling 30 inche ired to drive t	A standard es. The ham he sampler th	1.4-inch I.D./2-i mer can either	bed soil sample for examination nch O.D. split-barrel sampler is be of a trip, free-fall design, or ements are added together and	
		RO		RTIES			
	ALITY DESIGNATION (RQD)		_	ROCK HARD		
Percent RQD	Quality		Very Hard:		broken by heavy h		
0-25	Very Poor		Hard:	moderate har	nmer blows.	b pressure, but can be broken by	
25-50	Poor		Moderately Hard:			along sharp edges by considerable oken with light hammer blows.	
50-75 75-90	Fair Good		Soft:	Rock is coher	ent but breaks ver	y easily with thumb pressure at firm hand pressure.	
90-100	Excellent		Very Soft:	Rock disintegrates or easily compresses when touched; can be hard to very hard soil.			
RQD = Sum o	f 4 in. and longer Rock Pie	ces Recovered	X100 4	43 RQD		Diameter Inches	
Recovery =	Length of Core Run Length of Rock Core Rec	n covered	X100	NQ	E	3Q 1-7/16 NQ 1-7/8	
	Length of Core Ru	n		63 REC	ŀ	IQ 2-1/2	
			SYMBOL	5			
	KEY TO MAT	FERIAL TYPES	;			L PROPERTY SYMBOLS	
	7771 Llich Dissticity	5771				ndard Penetration, BPF	
Topsoil	High Plasticity Inorganic Silt or	Peat		Schist		sture Content, %	
<u>∞.⊽</u> repeen	Clay	F 1	<u>,</u> ,	o on not	LL: Liqu	uid Limit %	
						iid Limit, %	
Asphalt	Organic Silts/Clays		one	Amphibolite	PI: Pla	sticity Index, %	
Asphalt Crushed	Silts/Clays Well-Graded	Limesto			PI: Plas Qp: Poo	sticity Index, % ket Penetrometer Value, TSF confined Compressive Strength	
	Silts/Clays Well-Graded Gravel	Sandst	one	Metagraywack	PI: Plas Qp: Poo e Qu: Uno Esti	sticity Index, % ket Penetrometer Value, TSF confined Compressive Strength mated Qu, TSF	
Crushed Limestone	Silts/Clays Well-Graded		one		PI: Plas Qp: Poo e Qu: Uno Esti γ _{D:} Dry	sticity Index, % ket Penetrometer Value, TSF confined Compressive Strength mated Qu, TSF Unit Weight, PCF	
Crushed Limestone Fill Material	Silts/Clays Well-Graded Gravel O Poorly-Graded	Sandst	one	Metagraywack	PI: Plas Qp: Poo e Qu: Uno Esti γ _{D:} Dry F: Fine	sticity Index, % ket Penetrometer Value, TSF confined Compressive Strength mated Qu, TSF	
Crushed Limestone Fill Material Shot-rock Fill Low Plasticity	Silts/Clays Well-Graded Gravel O Poorly-Graded Gravel	Sandst	one	Metagraywack	PI: Plas Qp: Poo e Qu: Uno Esti ^γ _{D:} Dry F: Fino	sticity Index, % ket Penetrometer Value, TSF confined Compressive Strength mated Qu, TSF Unit Weight, PCF es Content SAMPLING SYMBOLS disturbed O No Sample	
Crushed Limestone Fill Material Shot-rock Fill Low Plasticity Inorganic Silt	Silts/Clays Well-Graded Gravel Poorly-Graded Gravel Silty Gravel Clayey Gravel Well-Graded	Sandst	one le	Metagraywack	PI: Plas Qp: Poo e Qu: Uno Esti ^γ _{D:} Dry F: Fino	sticity Index, % ket Penetrometer Value, TSF confined Compressive Strength mated Qu, TSF Unit Weight, PCF es Content SAMPLING SYMBOLS	
Crushed Limestone Fill Material Shot-rock Fill Low Plasticity Inorganic Silt High Plasticity Inorganic Silt Low Plasticity	Silts/Clays Well-Graded Gravel Poorly-Graded Gravel Silty Gravel Clayey Gravel Well-Graded Sand Poorly-Graded	Sandst	one ne	Metagraywack	PI: Plas Qp: Poo Qu: Unc Esti γ_{D} : Dry F: Find Sar Spl	sticity Index, % ket Penetrometer Value, TSF confined Compressive Strength mated Qu, TSF Unit Weight, PCF es Content SAMPLING SYMBOLS disturbed O No Sample	
Crushed Limestone Fill Material Shot-rock Fill Low Plasticity Inorganic Silt High Plasticity Inorganic Silt	Silts/Clays Well-Graded Gravel Poorly-Graded Gravel Silty Gravel Clayey Gravel Well-Graded Sand	Sandst Siltston Shale Claysto Weathe Rock	one he one ered te	Metagraywack	PI: Plas Qp: Poo Qu: Unc Esti γ_{D} Dry F: Fine Unc Sar Sar Sar FT Roc	sticity Index, % ket Penetrometer Value, TSF confined Compressive Strength mated Qu, TSF Unit Weight, PCF es Content SAMPLING SYMBOLS disturbed nple No Sample Recovery t-Spoon nple Vater Level	

PROJECT: Miller Park District						JOB NO: 1281-15-066 SHEET				
PROJECT LOCATION	I: Chattanooga, Tenne	ssee					_			
ELEVATION: 686 fee	et ±	BORING STARTED: 1	1/10/201	5		RIG TYPE:Geo-Probe	BORING [DIA. (IN): 2¼		
DRILLING METHOD:	Hollow-Stem Augers	BORING COMPLETED: 1	1/10/201	5		HAMMER: Automatic				
GROUNDWATER: Dry ATD		Remarks:								
ELEV.DEPTH (FT.) (FT.)	MATERIAL	DESCRIPTION L S R			PI	STANDARD PENET RESISTANCE 0 10 20 30 40		BLOWS/6"		
686.0 0 0 0.4 685.6 0 0.4 685.0 0 11 11 11 	, GRAVEL SILTY CLAY (CL) organics and foun yellow-brown and stiff	with gravel, sand, dry derived waste, dark brown, firm to				•5 •5	38	1 - 2 - 3 (5) 2 - 3 - 2 (5) 3 - 6 - 9 (15) 12 - 16 - 22 (3 8		
673.4- 15 	Auger refusal at 1 terminated	2.6 feet, boring								

Project Manager: D. Reed, PE

PROJECT: Miller Park District						D: 1281-15-066	SHEET 1 OF 1
PROJECT	LOCATION	Chattanooga, Tennes	ssee				
ELEVATIC	N: 684 feet	t±	BORING STARTED:	11/10/2015		RIG TYPE:Geo-Probe	BORING DIA. (IN): 21/4
DRILLING	METHOD: H	Hollow-Stem Augers	BORING COMPLETED	0:11/10/2015		HAMMER: Automatic	
GROUND\ Dry ATD	WATER:		Remarks:				
ELEV (FT.)	.DEPTH (FT.)	MATERIAL	DESCRIPTION	LSF	R M PI		RATION N) BLOWS/6" 50 60 70 80 90 100
684.0. 683.0 682.4	0 1' -	BRICKS SILTY CLAY (CL) brick fragments ar waste, brown, har Auger refusal at 1 terminated	d				<pre>>>●50/3 (50+)</pre>

PROJECT: Miller Park District	JOB NO: 1281-15-066	SHEET 1 OF 1				
PROJECT LOCATION: Chattanooga, Tenne	ssee					
ELEVATION: 686 feet ±	BORING STARTED: 11/10/2015	RIG TYPE:Geo-Probe BORING DIA. (IN):				
DRILLING METHOD: Hollow-Stem Augers	BORING COMPLETED: 11/10/2015	HAMMER: Automatic				
GROUNDWATER: Dry ATD	Remarks:					
ELEV DEPTH (FT.) (FT.) MATERIAL	DESCRIPTION L S R	I LEGIO I ALOE				
gravel, dark brow soft to firm - -	L) with fine sand and n, very moist to wet,		1 - 2 - 1 (3) 2 - 2 - 3 (5) 11 - 16 - 17 (33 11 - 46 - 28 (74			
Auger refusal at 1 - 15 	12.7 feet, boring					

Project Manager: D. Reed, PE

PROJECT: Miller Park District							JOE	B NC): 1281-15-066	SHEE	T 1 OF 1					
PROJE	CT L	.OCAT	ION:	Chattanooga, Tennes	ssee											
ELEVAT	TION	I: 684	feet	±	BORING	STARTED:	11/	/10/2	201	5			RIG TYPE:Geo-Probe	BORIN	NG DIA. (IN): 21/	
DRILLING METHOD: Hollow-Stem Augers BORING COMPLETED: 11/10/2015						5			HAMMER: Automatic							
GROUN Dry ATE		ATER				Remarks:										
G ELI	G ELEV.DEPTH MATERIAL D				DESCRIPT	ΓΙΟΝ		L	S	R	М	ΡI	STANDARD PENETF RESISTANCE (0 10 20 30 40			
683	14.0 13.4- 11.0-	- 0 -	0.6'	TOPSOIL SILTY CLAY (CL) brick fragments, re foundry derived w and dark brown, s	aste, yello tiff	ow-brown	FILL		× × × × × ×				•14		4 - 7 - 7 (14)	
		- 5 -	-	brown, stiff to very	/ stiff		RESIDUUM						•14		7 - 8 - 6 (14) 5 - 7 - 10 (17)	
675	5.6	- 10		Auger refusal at 8 terminated	.4 feet, bo	bring	J [

Project Manager: D. Reed, PE

PROJECT: Miller Park District						J	OB NC	D: 1281-15-066	SHEET 1 OF 1
PR	OJECT	LOCATION:	Chattanooga, Tennes	ssee					
ELE	EVATIO	N: 683 feet	±	BORING STARTED: 1	1/10/201	5		RIG TYPE:Geo-Probe	BORING DIA. (IN): 21/4
DR	ILLING	METHOD: H	lollow-Stem Augers	BORING COMPLETED: 1	1/10/201	5		HAMMER: Automatic	
	OUNDV ATD	VATER:		Remarks:					
G	ELEV (FT.)	DEPTH (FT.)	MATERIAL	DESCRIPTION	L S	R	M PI		
	683.0_ 682.4- 680.0- 677.7-	0.6' 	TOPSOIL SILTY CLAY (CL) sand, yellow-brow SILTY CLAY (CL) and foundry derive yellow-brown and Auger refusal at 5 terminated	with sand, gravel ed waste, dark brown, hard					3 - 4 - 7 (11)

PROJECT: Miller Park	District	JOB NO	D: 1281-15-066	SHEET 1 OF 1	
PROJECT LOCATION: (Chattanooga, Tennes	ssee			
ELEVATION: 681 feet :	£	BORING STARTED: 1	1/10/2015	RIG TYPE:Geo-Probe	BORING DIA. (IN): 21/4
DRILLING METHOD: H	ollow-Stem Augers	BORING COMPLETED: 1	1/10/2015	HAMMER: Automatic	•
GROUNDWATER: Dry ATD		Remarks:			
G ELEV.DEPTH (FT.) (FT.)	MATERIAL	DESCRIPTION	L S R M PI	STANDARD PENET RESISTANCE (0 10 20 30 40	
	TOPSOIL SILTY CLAY (CL) and brick fragmen yellow-brown, very CLAYEY SILT (MI FRAGMENTS, bro stiff Auger refusal at 5 terminated	y stiff L) and LIMESTONE own and gray, very			4 - 7 - 9 (16) 4 - 11 - 15 (26)

Appendix III

Laboratory Test Procedures

Laboratory Test Results

NATURAL MOISTURE ASTM D 2216, EM 1110-2-1906

The moisture content of soils is an indicator of various physical properties, including strength and compressibility. Selected samples obtained during exploratory drilling were taken from their sealed containers. Each sample was weighed and then placed in an oven heated to 110oC + 5o. The sample remained in the oven until the free moisture had evaporated. The dried sample was removed from the oven, allowed to cool, and re-weighed. The moisture content was computed by dividing the weight of evaporated water by the weight of the dry sample. The results, expressed as a percent, are shown on the attached Laboratory Test Results Summary.

ATTERBERG LIMITS DETERMINATION ASTM D 4318/AASHTO T89/T90

Representative samples were subjected to Atterberg limits testing to determine the soil's plasticity characteristics. The plasticity index (PI) is the range of moisture content over which the soil deforms as a plastic material. The liquid limit (LL) marks the transition from the plastic state to the liquid state. The plastic limit (PL) marks the transition from the plastic state to the solid state.

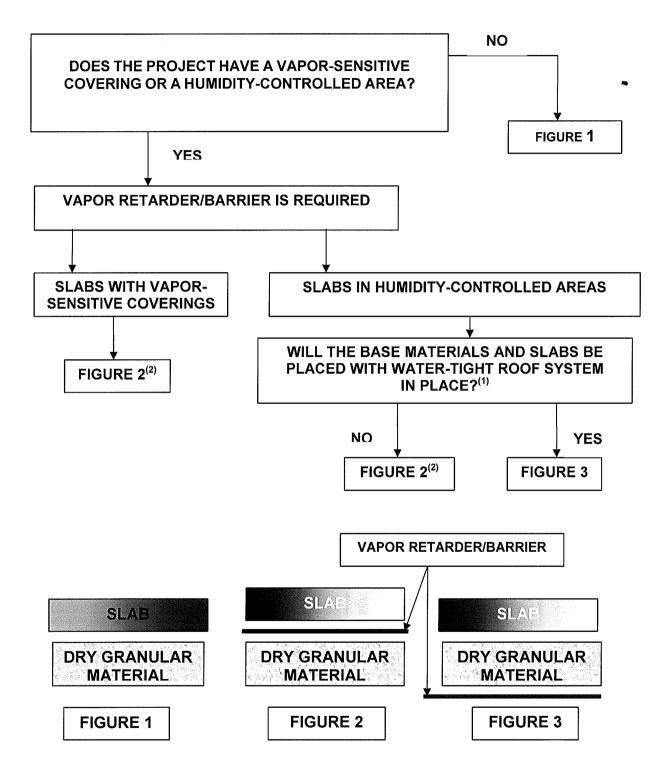
To determine the liquid limit, a soil specimen is wetted until it is in a viscous fluid state. A portion of this soil is then placed in a brass cup of standardized dimensions, and a groove made through the middle of the soil specimen with a grooving tool of standardized dimensions. The cup is attached to a cam that lifts the cup 10 mm, and then allows the cup to fall and strike a rubber base of standardized hardness. The cam is rotated at about 2 drops per second until the two halves of the soil specimen come in contact at the bottom of the groove along a distance of 13 mm. The number of blows required to make this degree of contact is recorded, and a portion of the specimen is subjected to a moisture content determination. Additional water is added to the remainder of the specimen, and the grooving process and cam action process repeated. This testing sequence is repeated until the soil flows as a heavy viscous fluid. The number of blows vs. moisture content is then plotted on semi-logarithmic graph paper, and the moisture content corresponding to 25 blows is designated the liquid limit.

The plastic limit is the lowest moisture content at which the soil is sufficiently plastic to be manually rolled into threads 3 mm in diameter. It is determined by taking a pat of soil remaining from the liquid limit test, and repeatedly rolling, kneading, and air drying the specimen until the soil breaks into threads about 3 mm in diameter and 3 to 10 mm long. The moisture content of these soil threads is then determined, and is designated the plastic limit. The results of these tests are presented on the Laboratory Test Results Summary.

Miller Park District Chattanooga, Tennessee S&ME Project No. 1281-15-066

Laboratory Test Results Summary

		Comple	Moisture	ATTERBERG LIMITS			
Boring Number	Sample Type	Sample Depth (ft)	Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	
B-1	SPT	1	22.2				
B-1	SPT	31/2	20.8	39	23	16	
B-1	SPT	6	17.1				
B-1	SPT	81/2	12.5				
B-4	SPT	1	15.7				
B-4	SPT	31⁄2	16.1	32	19	13	
B-4	SPT	6	17.4				
B-5	SPT	1	17.2				
B-5	SPT	31/2	12.6				


SPT – Standard Penetration Test Sample

Appendix IV

ACI 302.1R-04 Guide for Concrete Floor and Slab Construction

Important Information about Your Geotechnical Engineering Report

ACI 302.1R-04 DECISION FLOW CHART FOR LOCATION OF VAPOR RETARDER/BARRIER

NOTES:

- (1) IF GRANULAR MATERIAL IS SUBJECT TO FUTURE MOISTURE INFILTRATION, USE FIGURE 2.
- (2) IF FIGURE 2 IS USED, A REDUCED JOINT SPACING, A LOW SHRINKAGE MIX DESIGN, OR OTHER MEASURES TO MINIMIZE SLAB CURL WILL LIKELY BE REQUIRED.

Important Information About Your Geotechnical Engineering Report

Variations in subsurface conditions can be a principal cause of construction delays, cost overruns and claims. The following information is provided to assist you in understanding and managing the risk of these variations.

Geotechnical Findings Are Professional Opinions

Geotechnical engineers cannot specify material properties as other design engineers do. Geotechnical material properties have a far broader range on a given site than any manufactured construction material, and some geotechnical material properties may change over time because of exposure to air and water, or human activity.

Site exploration identifies subsurface conditions at the time of exploration and only at the points where subsurface tests are performed or samples obtained. Geotechnical engineers review field and laboratory data and then apply their judgment to render professional opinions about site subsurface conditions. Their recommendations rely upon these professional opinions. Variations in the vertical and lateral extent of subsurface materials may be encountered during construction that significantly impact construction schedules, methods and material volumes. While higher levels of subsurface exploration can mitigate the risk of encountering unanticipated subsurface conditions, no level of subsurface exploration can eliminate this risk.

Scope of Geotechnical Services

Professional geotechnical engineering judgment is required to develop a geotechnical exploration scope to obtain information necessary to support design and construction. A number of unique project factors are considered in developing the scope of geotechnical services, such as the exploration objective; the location, type, size and weight of the proposed structure; proposed site grades and improvements; the construction schedule and sequence; and the site geology.

Geotechnical engineers apply their experience with construction methods, subsurface conditions and exploration methods to develop the exploration scope. The scope of each exploration is unique based on available project and site information. Incomplete project information or constraints on the scope of exploration increases the risk of variations in subsurface conditions not being identified and addressed in the geotechnical report.

Services Are Performed for Specific Projects

Because the scope of each geotechnical exploration is unique, each geotechnical report is unique. Subsurface conditions are explored and recommendations are made for a specific project. Subsurface information and recommendations may not be adequate for other uses. Changes in a proposed structure location, foundation loads, grades, schedule, etc. may require additional geotechnical exploration, analyses, and consultation. The geotechnical engineer should be consulted to determine if additional services are required in response to changes in proposed construction, location, loads, grades, schedule, etc.

Geo-Environmental Issues

The equipment, techniques, and personnel used to perform a geo-environmental study differ significantly from those used for a geotechnical exploration. Indications of environmental contamination may be encountered incidental to performance of a geotechnical exploration but go unrecognized. Determination of the presence, type or extent of environmental contamination is beyond the scope of a geotechnical exploration.

Geotechnical Recommendations Are Not Final

Recommendations are developed based on the geotechnical engineer's understanding of the proposed construction and professional opinion of site subsurface conditions. Observations and tests must be performed during construction to confirm subsurface conditions exposed by construction excavations are consistent with those assumed in development of recommendations. It is advisable to retain the geotechnical engineer that performed the exploration and developed the geotechnical recommendations to conduct tests and observations during construction. This may reduce the risk that variations in subsurface conditions will not be addressed as recommended in the geotechnical report.

Report of Limited Phase II Environmental Site Assessment Miller Park 928 South Market Street Chattanooga, Tennessee S&ME Project No. 4181-15-036A

Prepared for: City of Chattanooga-Department of Public Works-Engineering Division 274 East 10th Street Chattanooga, Tennessee 37402

> Prepared by: S&ME, Inc. 4291 Highway 58, Suite 101 Chattanooga, TN 37416

> > December 10, 2015

December 10, 2015

City of Chattanooga-Department of Public Works-Engineering Division 274 East 10th Street Chattanooga, Tennessee 37402

Attention: Mr. Dennis Malone

Reference: **Report of Limited Phase II Environmental Site Assessment** Miller Park – 928 Market Street Chattanooga, Tennessee S&ME Project No. 4181-15-036A

Dear Mr. Malone:

S&ME, Inc. (S&ME) is pleased to submit this report of the Limited Phase II Environmental Site Assessment (ESA) for the Miller Park located 928 Market Street in Chattanooga, Hamilton County, Tennessee. This report discusses background information, assessment purpose and scope of services, execution of work, conclusions, and recommendations for the subject property.

This report is intended for the use of the City of Chattanooga-Department of Public Works, only. The services reported in this Limited Phase II ESA were performed in general accordance with S&ME Proposal No. 41-1500390 CO1R, dated October 27, 2015 and formally authorized by Mr. Dennis Malone of City of Chattanooga-Department of Public Works on October 28, 2015.

Mr. Malone, we appreciate your selection of S&ME for this project and look forward to assisting you on future projects. If you have any questions, please do not hesitate to contact either of the undersigned.

Sincerely,

S&ME, Inc.

Pat Gribben, PG Staff Geologist

Senior Environmental Engineer

Table of Contents

*	Exe	ecutiv	e Summary1
1.0	IN	ΓROI	OUCTION
	1.1	Purj	20se
	1.2	Clie	nt's Objectives
	1.3	Spec	cial Terms and Conditions
	1.4	Lim	itations and Exceptions of Assessment4
	1.5	Lim	iting Conditions and Methodology Used4
2.0	Bac	ckgro	und5
	2.1	Phys	sical Setting
		2.1.1	Surface Drainage
		2.1.2	Geologic Setting
		2.1.3	Groundwater
3.0	Lin	nited	Phase II ESA Activities8
	3.1	Scop	be of the Assessment
		3.1.1	Health and Safety and Utilities9
		3.1.2	Conceptual Site Model and Sampling Plan9
		3.1.3	Deviations from the Scope
	3.2	Sub	surface Assessment Activities11
		3.2.1	Soil Borings
		3.2.2	Temporary Monitoring Well Installation
		3.2.3	Soil Gas Sampling
	3.3	Veri	fication of the Conceptual Site Model14
	3.4	Oth	er Field Procedures
4.0	An	alytic	al Results15
	4.1	Soil	Analytical Results
		4.1.1	Volatile Organic Compounds (VOCs)15
		4.1.2	Polycyclic Aromatic Hydrocarbons (PAHs)16
		4.1.3	Extractable Petroleum Hydrocarbons (EPH)16
		4.1.4	Pesticides

	4	4.1.5 RCRA Metals	
	4.2	Groundwater Analytical Results	
		Soil Gas Analytical Results	
5.0	Fine	dings	19
	5.1	Soil	
	5.2	Groundwater	
	5.3	Soil Gas	20
6.0	Con	nclusions	20
7.0	Ref	erences and Sources of Information	

List of Figures

Figure 1- Site Vicinity Map Figure 2-Site Location with Identified RECs Figure 3-Boring Location Map

List of Tables

Table 1: Summary of Detected Compounds and Results of Soil AnalysisTable 2: Summary of Detected Compounds and Results of Groundwater AnalysisTable 3: Summary of Detected Compounds and Results of Soil Gas Analysis

Appendices

Appendix A

Soil Boring Logs with Well Construction Details, Groundwater Data Sheets, and Soil Gas Field Log

Appendix **B**

Laboratory Analytical Results and Chain of Custody Documentation

Executive Summary

The City of Chattanooga-Department of Public Works has authorized S&ME, Inc. (S&ME) to perform a Limited Phase II Environmental Site Assessment (ESA) for Miller Park, "subject property", located at 928 Market Street in Chattanooga, Hamilton County, Tennessee (subject property). We understand these activities were requested to reduce uncertainty regarding previously identified onsite and offsite *recognized environmental conditions* prior to commencement of planned improvements at the subject property.

The subject property consists of Miller Park, located at 928 South Market Street, and includes the five lanes of West Martin Luther King Boulevard to the north. The subject property is bound to the north by Miller Plaza; to the east by Georgia Avenue; to the south by East 10th Street; and to the west by South Market Street. Surrounding properties are consistent with downtown settings, and primarily include multi-story, private and government office buildings, with occasional multi-story, residential structures.

Historical information reviewed indicates that the subject property parcels have been commercially developed since at least the late 1800s. Review of available historical sources identified numbers *recognized environmental conditions* based on the historical operations of dry cleaners on the subject property and adjoining the subject property to the north, west, and south. Additional subject property use included several exterminating companies and a gas tank. Additional surrounding properties of concern included historical petroleum-related operations to the east, south and southwest.

S&ME's Phase I ESA concluded that additional information, including subsurface exploration, was warranted to better understand the potential presence of petroleum or hazardous substances associated with or attributable to the identified *recognized environmental conditions*.

Based on the Phase I ESA findings and recommendations, together with the communicated objectives provided by the City of Chattanooga, S&ME proposed and was authorized to conduct a Limited Phase II ESA. The authorized scope of assessment included installation of eight soil borings and conversion of up to three soil borings to temporary monitoring wells to allow for collection of soil and groundwater samples as well as the installation of seven soil gas sampling points to allow for active collection of soil gas.

S&ME's conclusions, based on the results of field activities and laboratory analytical results documented in this Limited Phase II ESA and in consideration of our understanding of your objectives, are summarized as follows:

This assessment, has identified the presence of petroleum-related or hazardous substances in soil, groundwater, and soil gas. Site conditions as defined by this assessment are not unexpected conditions, given the history (over a century of developed use) and nature of historical dry cleaning operations at and nearby the subject property. Given the history of the site (early developed use and varied commercial uses) as well as limitations related to boring locations (no borings within the street right of way), it should not be unexpected that areas of higher concentrations may be encountered in other locations not sampled.

Soil

No VOCs, PAHs, EPH or pesticides were identified in excess of the corresponding comparison criteria in the eight soil samples submitted for analysis. With the exception of arsenic detected in in each of the eight soil samples (B-2, B-4, B-5, B-6, B-7, B-8, B1(GEO), and B3(GEO)) analyzed for RCRA metals, detected concentrations did not exceed corresponding comparison criteria.

- In the case of arsenic, while above the corresponding commercial screening level, the detected concentrations are within the range of concentrations typically considered representative of naturally occurring concentrations in Hamilton County, Tennessee.
- Based on the observation of foundry sand in geotechnical borings installed in the northeastern region of the site, future disturbance of this area should be managed under the observation of an environmental professional and using best management practices, including implementation of measures that will reduce the potential for contact with foundry sand such as placement under 18 to 24 inches of clean soil cap, or below hardscaping. If foundry derived material is intended for offsite disposal, foundry derived material and soil commingled with foundry derived materials will require approval to dispose as Special Waste. Additional analysis may be necessary to determine actual concentrations within a stockpiled volume. Once redevelopment plans and final grading plans have been completed, a soil management plan should be prepared to outline best management practices to address disposal and minimize worker exposure in the event these areas are disturbed.

Groundwater

No detectable concentrations of VOCs or PAHs were identified in excess of the laboratory detection limit. Three RCRA metals (barium, lead and mercury) were identified in the excess of the laboratory detection limit in groundwater samples collected from B-1C and B-3. With the exception of mercury, none of the detected constituents exceeded the corresponding comparison criteria.

• In the case of mercury, the detected concentration exceeded the corresponding RSLtap but not the MCL.

Soil Gas

With the exception of two volatile organic compounds (VOCs), benzene and chloroform, detected in two of seven soil gas samples (SG-5 and SG-7), detected concentrations did not exceed corresponding comparison criteria. In each case where detected above a corresponding comparison criteria, the detected concentration exceeded the corresponding residential screening level, but was below the corresponding commercial screening level.

Based on the magnitude of detected concentrations and our understanding that intended use as a park with commercial-type use of structures (excludes residential use), analytical results do not indicate vapor intrusion risk above 1×10^{-6} under a commercial use scenario. Additional assessment of soil gas does not appear warranted. Should the City's redevelopment objectives change, to allow for residential use, additional evaluation would be warranted.

This summary is for convenience only and should not be relied upon without first reading the full contents of this report, including the appendix materials.

1.0 **INTRODUCTION**

1.1 Purpose

S&ME understands these activities were requested prior to commencement of planned renovations and redevelopment of the subject property. The purpose of this Phase II ESA was to reduce uncertainty regarding the potential presence of petroleum products or hazardous substances associated with certain specified recognized environmental conditions and/or business environmental risk¹ in connection with the subject property. With respect to the former, this assessment was intended to assist the user in satisfying the applicable standard of "all appropriate inquiry" by providing information that may help to support one of the threshold criteria for satisfying one or more defenses to Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA) landowner liability protections (LLPs²). With respect to the environmental condition about the user in gathering reliable information about the environmental condition of the subject property to guide the user's business decisions.

1.2 Client's Objectives

S&ME understands the objective of the Limited Phase II ESA is to reduce uncertainty regarding the potential presence of petroleum and/or hazardous substances at the subject property resulting from the *recognized environmental conditions* identified above.

S&ME's understanding of project is based on information provided by Mr. Eric Booker and Mr. Dennis Malone via email correspondence July 20, 2015 and during a telephone conversation with Ms. Johanna Heywood of S&ME on July 31, 2015. Mr. Malone indicated that the City of Chattanooga is in the planning stages of designing improvements for Miller Park. The proposed project involves the construction of two new pavilions in conjunction with new renovations to the Miller Plaza District. The Café Pavilion is an approximately 4,300 square foot, triangular structure that will be located at the southwest corner of Georgia Avenue and Martin Luther King Jr. Boulevard. This pavilion will be comprised of an enclosed café and covered outdoor seating. The Stage Pavilion will be located at the southern perimeter of the district, between Market Street and Georgia Avenue, and to the north of E 10th Street. The Stage Pavilion will be comprised of a covered stage and an enclosed 450 square foot mechanical room and kiosk.

The objective of the Limited Phase II Environmental Site Assessment (ESA) is to reduce uncertainty regarding the potential for impact to the subject property resulting from the *recognized environmental conditions* identified above. S&ME further understands that depending on the findings of the Limited Phase II ESA, the City of Chattanooga may desire to enroll the property into the Tennessee Department of Environment and Conservation (TDEC) Brownfield Voluntary Program.

¹ These terms are defined by the American Society for Testing and Materials (ASTM) Designation E1527-13. It is assumed that the user is familiar with these terms and has access to both referenced standards 1527 and 1903. If copies are required, they may be secured from S&ME upon request.

² Innocent landowner, contiguous property owner, or bona fide prospective purchaser, see CERCLA (1980), SARA (1986), "Lender Liability Act" (1996), and "Brownfields Amendments" (2001).

1.3 Special Terms and Conditions

The services included in this Limited Phase II ESA were performed in general accordance with S&ME Proposal No. 41-1500390 CO1R, dated October 27, 2015 and formally authorized by Mr. Dennis Malone of City of Chattanooga-Department of Public Works on October 28, 2015.

1.4 Limitations and Exceptions of Assessment

This report and the assessment activities on which it is based were intended for the purposes set out in Section 1.1 and are specific to the objectives and approach presented in Sections 1.2 and 1.3. This work does not necessarily include the level of specificity required of technical standards that govern full characterization of the environmental conditions of the subject property. Moreover, the assessment objectives were specific to those identified by the City of Chattanooga-Department of Public Works and may not be appropriate to the needs or business objectives of others. Furthermore, this scope did not include (and was not intended to include) the level of detail and assessment effort (and corresponding cost) necessary to meet the specific requirements of environmental regulatory authorities that may have jurisdiction over the subject property.

1.5 Limiting Conditions and Methodology Used

This report is an instrument of service of S&ME. The report was prepared for and is intended for the exclusive use of the City of Chattanooga-Department of Public Works. The report contents may not be relied upon by any party other than the City of Chattanooga-Department of Public Works without the express written permission of S&ME. The scope of services was not intended to provide the information needed to completely establish the quantity or extent of impacted media present at the site or to determine the cost of remediating the site. The scope of services S&ME implemented was based, in part, on rules and regulations that S&ME understood to be current or expected at the time S&ME developed its proposal. Changes in regulations, interpretations, and/or enforcement policies may occur at any time and such changes could affect the need for and extent of remediation, if required. Any additional information about this site that becomes available should be provided to S&ME for its review, so S&ME can modify its recommendations as necessary.

The findings and conclusions presented in this report are based on conditions encountered at the locations sampled on the dates of S&ME's investigations and should not be relied upon to precisely represent conditions at any other time. S&ME's findings and conclusions included in this report are based on S&ME's observations of existing site conditions and the results of a limited program of subsurface exploration, sample screening, and chemical testing. Except as may have been measured by groundwater elevation or other quantifiable data; the primary direction of groundwater flow was assumed to be dictated by topography. Additionally, except as may have been measured by lateral delineation based on quantifiable data, the groundwater flow direction was assumed to control the distribution of impact, if present. The concentration of contaminants measured may not be representative of conditions between locations sampled. Recognize that conditions, chemical reactions, and/or other events, including but not limited to altering site grades and other redevelopment activities. Boring locations were limited by active driving lanes of Martin Luther King Boulevard, and the facility and utility configuration and layout. Conclusions about site conditions under no circumstances comprise a warranty that conditions in all areas within the site are of the same condition as those sampled.

S&ME's professional services have been performed using that degree of care and skill ordinarily exercised, under similar conditions, by reputable environmental consultants undertaking similar studies and practicing in this locality. No other warranty; express or implied, is intended or made with respect to this report or S&ME's services. This assessment was not exhaustive and users of this report should consider the scope and limitations of, and related to, these services when developing their opinions as to environmental risks associated with the subject property.

2.0 Background

The subject property, identified as Tax Parcel 145DD A 002, consists of Miller Park, located at 928 South Market Street, and includes 1.3 acres of municipal parkland and the five lanes of West Martin Luther King Boulevard to the north. The subject property is bound to the north by Miller Plaza; to the east by Georgia Avenue; to the south by East 10th Street; and to the west by South Market Street. Surrounding properties are consistent with downtown settings, and primarily include multi-story, private and government office buildings, with occasional multi-story, residential structures. Figure 1 depicts the location of the subject property on a USGS topographic map.

The City of Chattanooga is currently in the planning stages of designing improvements for Miller Park. The proposed project involves the construction of two new pavilions in conjunction with new renovations to the Miller Plaza District. The Café Pavilion is an approximately 4,300 square foot, triangular structure that will be located at the southwest corner of Georgia Avenue and Martin Luther King Jr. Boulevard. This pavilion will be comprised of an enclosed café and covered outdoor seating. The Stage Pavilion will be located at the southern perimeter of the district, between Market Street and Georgia Avenue, and to the north of E 10th Street. The Stage Pavilion will be comprised of a covered stage and an enclosed 450 square foot mechanical room and kiosk.

S&ME's Phase I ESA dated September 2015 identified the following as *recognized environmental conditions:*

Subject Property

- Historical operation of a dry cleaning facility (Handcraft One Hour Cleaners) located at 904 Market Street, from at least 1960 to 1970.
- Historical operation of Exterminating Companies on subject property.
 - Chattanooga Exterminating Co. / Terminix located at 912 Market Street from at least 1938 to 1945.
 - Orkin Exterminating Co. located on subject property at 924 Market Street from at least 1938 to 1945.
- Historical operation of printing company (Long Printing Co.) located at 906 Market Street in at least 1938.
- Historical operation of gas tank on subject property at former City Water Co., located at 928 Market Street in at least 1917.

Surrounding Properties

- Historical offsite land use west and southwest of the subject property to include:
 - Former Civic Forum Redevelopment site located at 1001 Market Street, identified in the US Brownfields and FINDS databases.
 - The Former One Hour Valet (dry cleaning) site located at 921 Market Street, identified in the VCP and Priority Cleaners databases.
- Historical offsite land use north of the subject property.
 - Former George's Cleaners facility located at 838 Market Street from at least 1950 to 1955.
- Historical offsite land use east of the subject property.
 - Historical operations on east adjoining property including rail activities and gas tank at Chattanooga Transfer & Storage Co., in at least 1917.
 - Chattanooga Communications / AT&T facility located at 919 Lindsay Street, identified in the LUST, HIST LUST, UST, HIST UST, and RCRA-NonGen databases.
 - Volunteer Garage facility located at 822-24 Lindsay Street, identified in the LUST, UST, and HIST UST databases.
 - Former Top Hat Cleaners facility located at 200 East 9th Street/East M.L. King Blvd. from at least 1960 to 1973.
- Historical offsite land use south of the subject property.
 - Former Model Dry Cleaning Co. located at 1004 Market Street from at least 1938 to 1941.

S&ME concluded that additional information, including subsurface exploration, was warranted to better understand the potential presence of petroleum or hazardous substances associated with or attributable to the identified *recognized environmental conditions*. S&ME proposed and was authorized to perform a Limited Phase II ESA at the subject property. Figure 2, referenced as Site Location with Identified RECs is included following the text of this report.

2.1 Physical Setting

2.1.1 Surface Drainage

S&ME reviewed the United States Geological Survey (USGS) 7.5-minute series Chattanooga Tennessee topographic quadrangle map, dated 1976 and photo revised from 1969, to examine the topography and drainage of the subject property and vicinity. Figure 1, following the text of this report, depicts the subject property with a slight downslope to the west consistent with surrounding properties to the north, east, and south. The surrounding properties to the west appear to slope to the southwest toward the Tennessee River/Nickajack Reservoir, located approximately 1-mile west of the subject property. The surface elevation of the subject property is approximately 680 feet above the National Geodetic Vertical Datum presented on the topographic map reviewed. Based on observations during the site visit, surface drainage around the subject property appears to drain to the west-northwest.

2.1.2 Geologic Setting

Chattanooga, Tennessee is located in the Appalachian Valley and Ridge Physiographic Province. Elongated ridges that trend in a northeast-southwest direction characterize this province. The ridges are

typically formed on highly resistant sandstones and shales, while the valleys and rolling hills are formed on less resistant limestone, dolomite, and shales.

Based on our review of the Geologic Map of the Chattanooga Quadrangle, dated 1964, undifferentiated bedrock of the Knox Group underlies the site. The Knox Group is composed of various dolomite and siliceous limestone members. The rock is generally medium to dark gray, very hard, fine to coarsely crystalline rock. Residual soils derived from the Knox Group are typically red-brown to yellow-brown clays with locally heavy amounts of chert fragments. The strata of the Knox formations weather to form a thick cherty overburden typically in excess of 40 feet thick.

Limestone and dolomite, such as the strata underlying this site, are of great geologic age and have been subject to solution weathering over geologic time. Rainwater falling onto the surface and percolating downward through the soil and into cracks and fissures gradually dissolves the rock, producing insoluble impurities such as chert and clay. Since limestone and dolomite vary greatly in their resistance to weathering, the soil/bedrock contact may be extremely irregular. More soluble bedrock develops a thicker soil cover and a more irregular bedrock surface with pinnacles and slots, and less soluble bedrock usually develops a thinner soil cover and a less irregular soil-bedrock surface.

These large variations in bedrock depth are greatly enhanced by the presence of fractures, bedding planes, and faults, which provide an increased opportunity for a greater influx of percolating water. The weaknesses may form clay-filled cavities or enlarge into caves and may be connected by a network of passageways. If a cave forms close to the bedrock surface, its roof may collapse and the overlying soils may erode into the cave. Once the weight of the overlying soil exceeds the soil's arching strength, the soil collapses and an open hole or depression may appear at the ground surface. Such a feature is termed a sinkhole.

There is always some risk associated with developing any site underlain by carbonate bedrock. However, we have reviewed the USGS quadrangle map for this area. The map does not show a pattern of closed depressions that would indicate past sinkhole activity in near proximity to the site. We also observed successful development in the surrounding area. Therefore, we believe the risk of sinkhole development for this project is no greater than for surrounding successfully developed sites.

Soils encountered at the time of drilling activities at shallow and near surface intervals generally were observed to be fill soils characterized as orange brown silty clays and clayey silts with rock fragments and minor amounts of brick and concrete debris and traces of coal. Native residual soils characterized as brown, orange brown and yellow brown silty clays with limestone fragments generally were observed at depths ranging from near surface to 11.5 feet below ground surface transitioning to weathered limestone bedrock. Boring refusal was encountered in each of the soil borings at depths ranging from 2.6 to 20 feet below ground surface (bgs).

2.1.3 Groundwater

The soils in East Tennessee, including the site, generally are of insufficient thickness or permeability to provide a drinking water source. Perched ground water is often trapped at the soil/rock interface, but is generally of insufficient quantity or quality for domestic purposes. It is important to note that groundwater in the Valley and Ridge Physiographic Province is most often confined to cracks and fissures

in the limestone bedrock. Therefore, absolute flow direction cannot be determined without extensive investigation of depths to ground water at a particular site.

Shallow groundwater generally flows in directions sub-parallel to the ground surface slopes and under the influence of gravity toward points of discharge such as creeks, swamps, drainage swales, or pumped groundwater wells. Based upon review of the topographic map, it appeared that the groundwater flow direction in the uppermost water-bearing unit across the subject property is generally to the west-northwest toward the Tennessee River / Nickajack Lake. As noted, the determination of actual groundwater flow direction requires the collection of site-specific groundwater elevation data, which is beyond the scope of this assessment.

Shallow ("perched") groundwater often is encountered at or near the top of bedrock but, as a result of low permeability, typically is not used as a source of drinking water. Perched water levels will vary and will depend upon seasonal moisture fluctuations and local waterway levels. However, shallow groundwater may not be representative of conditions encountered in deeper groundwater found in bedrock.

Five of thirteen boring locations (B-1C, B-2, B-3, B-4, and B-7) were converted to temporary monitoring wells during Limited Phase II ESA activities. Static water-level readings were collected at the time of and following completion activities. Measurable groundwater was encountered in three of five temporary monitoring wells installed. Depth to water at temporary well locations ranged from 7.3 feet bgs at B-1C (northwest portion of the site near the intersection of West Martin Luther King Boulevard and Market Street) to 11.8 feet bgs at B-7 (along the eastern site boundary at Georgia Avenue).

Groundwater was encountered at the time of drilling at B-6 (south-central portion of the site) at approximately 5 feet bgs; however, based on the saturated soils conditions in the area of the boring at the time of field activities this is likely representative of shallow soil saturation from recent rain events.

3.0 Limited Phase II ESA Activities

3.1 Scope of the Assessment

Based on the identified conditions and in consideration of the Client's stated objectives, S&ME proposed to assess the *recognized environmental conditions* identified in Section 2 by subsurface exploration. Soil borings, temporary monitoring wells, and soil gas sample location points were installed to allow for sampling and analysis of environmental media at the subject property at locations in proximity to current and historical operations/features identified as representing *recognized environmental conditions*. On-site assessment is intended to identify the presence and general magnitude of the presence of petroleum and hazardous substances in soil and groundwater and volatile organic compounds in soil gas at concentrations exceeding corresponding Environmental Protection Agency (EPA) Regional Screening Levels (RSLs) for detected chemical concentrations in soil, groundwater, and soil gas.

The scope of work developed for this task is based on our previously-stated understanding of client objectives, as described below:

- Written Health and Safety Plan;
- Installation of thirteen soil borings;
- Conversion of five of the soil borings to temporary monitoring wells;

- Installation and sample collection from seven soil gas sample location points;
- Collection and laboratory analysis of soil, groundwater, and/or soil gas samples as presented in Table 1 below;
- Preparation of a written report documenting the field activities and results of analysis.

Deviations, if encountered during the course of this assessment and material to and/or changes to the scope of work presented above, are presented in Section 3.1.4.

3.1.1 Health and Safety and Utilities

Prior to the field activities reported herein, S&ME prepared a project specific Health and Safety Plan. That plan contains specific standard work practices and precautions intended to prevent or minimize exposures to S&ME's personnel and to the general public. In accordance with that plan, S&ME exercised caution to prevent damage to or resulting from encountering subsurface structures, utilities, or other obstacles that were identified to us.

We contacted local public utility providers through a standard state-required one-call system and advised onsite contact personnel of our planned boring locations for their approval prior to the subsurface exploration.

3.1.2 Conceptual Site Model and Sampling Plan

S&ME proposed a Limited Phase II sampling plan based on the conceptual site model summarized below in order to identify the detectable presence of suspect contaminants in environmental media, if present.

Historical onsite land uses of concern consisted of historical operations of dry cleaners, printers, USTs and exterminators, while historical offsite land uses of concern consisted of historical operations of rail yards, filling stations, and bus depots to the west and southwest; rail yards, USTs and dry cleaners to the east; and dry cleaners to the south). The subject property and surrounding properties areanticipated to be underlain by shallow groundwater. Therefore, a potential release of petroleum and hazardous substances from on-site was considered most likely to be detectable in soil below or in the immediate vicinity of features of concern or in shallow groundwater. A potential and/or petroleum and hazardous substances migrating from off-site facilities was considered most likely to have migrated through (and be detectable in) shallow groundwater or soil gas at the boundary nearest the facility of concern and the subject property. We note that based on the physical and chemical characteristics of halogenated solvent-based compounds, which are heavier than water, contamination resulting from operations using solvents are typically found near the soil/rock or soil/other confining layer interface. Potential impact to shallow groundwater and soil source impacts at onsite and adjoining historical facilities of concern have the potential to result in a vapor encroachment condition. Additionally, given the historical uses of foundryderived waste as shallow fill materials in the downtown Chattanooga area, the potential exists for foundry waste to be present in shallow fill soils at the subject property.

S&ME proposed a sampling plan to detect the potential presence of petroleum products and hazardous substances in shallow soil, soil gas, and groundwater at the sampling locations listed in the table below. The laboratory analyses and method numbers for the soil and groundwater sampling approved for the subject property, along with the corresponding sample IDs and depths, as submitted to the laboratory are summarized in the tables below.

S&ME Project No. 4181-15-036A

Summary of Sample Locations and Rationale								
Boring ID	No. and type of samples	Location	Analyses	Sample Depth	Comments/ Rationale			
	1 soil	Northwest portion	VOCs, PAHs and EPH	5 to 8.2 feet	Assess potential soil and groundwater			
B-1C	1 groundwater	of the subject property	VOCs, PAHs and RCRA metals	N/A	impact for onsite and offsite historical dry cleaner and filling station operations			
B-2	1 soil		VOCs, PAHs, EPH and RCRA metals	17.5 to 20 feet	Assess potential impact to soil from historical onsite operations of printers and historical offsite operations of dry cleaners			
	1 soil	Along the western site boundary	VOCs, PAHs and EPH	5 to 7.5 feet	Assess potential impact to soil and			
B-3	1 groundwater		VOCs, PAHs and RCRA metals	N/A	groundwater from historical onsite operations of exterminators and historical offsite operations of dry cleaners			
B-4	1 soil	Southwest corner of the subject property	VOCs, PAHs, EPH and RCRA metals	17.5-18.1 feet	Assess historical onsite operations of USTs			
B-5	1 soil	Southeast corner of the subject property	VOCs, PAHs, EPH and RCRA metals	0.3 to 2.6 feet	and historical offsite dry cleaners to the south			
B-6	1 soil	South-central portion of the property	VOCs, PAHs, EPH and RCRA metals	0.5 to 5.3 feet	Assess for potential shallow soil impact from historical onsite operation of the former City Water Company			
B-7	1 soil	Along the eastern site boundary	VOCs, PAHs, EPH, Pesticides and RCRA metals	10 to 12.5 feet	Assess for potential soil and groundwater impact from historical onsite operations of exterminators and historical offsite rail			
	1 groundwater		VOCs	N/A	yards, USTs, and dry cleaners			
B-8	1 soil	North-central portion of the subject property	VOCs, PAHs, EPH and RCRA metals	0.8 to 2.5 feet	Assess for potential shallow soil impact			
B1 (GEO)	1 soil	Northeastern portion of the	RCRA metals	8.5 to 10 feet	Assess potential for impacted foundry- derived waste fill identified in geotechnical			
B3 (GEO) 1	1 soil	subject property		6 to 7.5 feet	soil borings			
SG-1 SG-2		Northwestern and southwestern portions of the site			Assess potential for soil gas impact from historical onsite operations of dry cleaners and printers and offsite dry cleaners			
SG-3 SG-4	7 exterior soil gas	Southern and southeastern portions of the site	TO-15	0.5 to 3 feet	Assess potential for soil gas impact from historical onsite operations of USTs and historical offsite dry cleaners			
SG-5 SG-6		Eastern portion of the site			Assess potential for soil gas impact from historical onsite exterminators and car rental service and historical offsite rail			
SG-4 SG-5		southeastern portions of the site Eastern portion of	TO-15	0.5 to 3 feet	historical onsite operations of USTs and historical offsite dry cleaners Assess potential for soil gas impact from historical onsite exterminators and car			

¹ Based on the observation of foundry sand at the time of drilling, additional samples were submitted from B1 (GEO) from 8.5 to 10 feet and B3 (GEO) from 6 to 7.5 feet to assess potential impact associated with foundry-derived waste fill.

Sampled media were analyzed for some combination of analyses as identified in the table above by the following methodology:

Summary of Analytes								
Analyte	VOCs		PAHs	RCRA Metals	EPH	Pesticides		
Method Number	SW-846 8260B/ EPA 624	TO-15	SW-846/ EPA 8270C SIM	EPA Method 6010B	Extractable Petroleum Hydrocarbons	SW-846 EPA 8081		
Type of	Soil	Soil	Soil	Soil	- Cail	Coll		
Sample	Groundwater	gas	Groundwater	Groundwater	Soil	Soil		

These sample parameters were selected based on the types of petroleum and solvent-related compounds expected to have been stored and used in historical onsite and offsite operations as well as typical impacts associated with foundry-derived waste fill (see discussion in Section 3.1.3).

3.1.3 Deviations from the Scope

An additional analysis for pesticides was submitted at B-7 (along the eastern site boundary) for determination of potential impact based on olfactory observations in the 10 to 12.5 feet interval and based on historical past land uses in the vicinity of the soil boring location.

Black, sandy suspect soils resembling foundry-derived waste were observed in geotechnical soil borings installed in the northeastern portion of the subject property from approximately 7.5 to 12.6 feet at B-1 (geotechnical) and 6 to 12.7 feet at B-3 (geotechnical). The findings of the geotechnical investigation are reported under a separate cover. Each representative sample (B1 (GEO) 8.5 to 10 feet and B3 (GEO) 6 to 7.5 feet) was collected from the geotechnical sample bags and submitted for analysis of RCRA metals. Since the geotechnical borings were not installed using environmental sampling protocol, no petroleum-related analyses were conducted.

Due to insufficient groundwater infiltration at temporary well locations B-2 and B-4, groundwater samples were collected only from B-1C, B-3, and B-7.

No other deviations from the approved scope of work were noted or intentionally made.

3.2 Subsurface Assessment Activities

3.2.1 Soil Borings

On November 9 and 10, 2015, S&ME personnel observed a subcontracted direct push drilling contractor install thirteen soil borings (B-1 through B-8, including five offset borings (B-1A, B-1B, B-1C, B-1D and B-5A) across the site in an effort to encounter subsurface materials of interest, as depicted on Figure 3-Boring Location Map. The drilling crew used a GeoProbe 7822 DT (direct push drilling methods) to install [2 ³/₄-inch] outside diameter (O.D.) direct push borings.

Soils encountered at the time of drilling activities at shallow and near surface intervals generally were observed to be fill soils characterized as orange brown silty clays and clayey silts with rock fragments and minor amounts of brick and concrete debris and traces of coal. Native residual soils characterized as brown, orange brown and yellow brown silty clays with limestone fragments generally were observed at depths ranging from near surface to 11.5 feet below ground surface transitioning to weathered limestone bedrock. Boring refusal was encountered in each of the soil borings at depths ranging from 2.6 feet bgs at B-5 to 20 feet bgs at B-2. Refusal materials generally were observed as light gray and gray, partially weathered limestone and silty clay with limestone fragments. Groundwater was encountered at the time of drilling at B-6 (south-central portion of the site) at approximately 5 feet bgs; however, based on the saturated soils conditions in the area of the boring at the time of field activities this is likely representative of shallow soil saturation from recent rain events.

Field headspace screening of the soil cores was performed for VOCs using a calibrated photoionization detector (PID). No indications of VOCs were detected at the time of field activities. Slight odors potentially indicative of pesticides were noted at B-7 in the 10 to 12.5 feet interval. Field indicators and PID readings from each of the borings are recorded on the boring logs, which are included as Appendix A.

Consistent with authorized scope of work, S&ME personnel collected one soil sample from each of eight environmental soil borings, based upon field observations, PID readings, proximity to the water table, or proximity to the bottom of the boring. Additionally, based on the observation of foundry sand, two samples were collected from geotechnical soil borings (See section 3.1.2). Samples selected for laboratory analysis were transferred to laboratory-supplied containers, labeled and placed in a cooler chilled to about 4 degrees Celsius. New, disposable latex or Nitrile gloves will be used for each interval when transferring samples to containers. Samples will be shipped or delivered to a qualified laboratory under strict chain-of-custody.

3.2.2 Temporary Monitoring Well Installation

Upon completion of the soil boring and sampling activities, temporary groundwater monitoring wells were installed in five of thirteen soil borings: B-1C (installed to 8.35 feet bgs); B-2 (installed to 19.6 feet bgs); B-3 (installed to 12.5 feet bgs); B-4 (installed to 17.7 feet bgs); and B-7 (installed to 14 feet bgs). Each of the monitoring wells was constructed with 1-inch diameter, Schedule 40 PVC. In general, 5 to 10 feet of machine-slotted PVC screen was installed at the bottom of the borehole, with solid riser extending from the top of the screen to 1 to 2 feet above ground surface. In each temporary monitoring well, the annulus was filled with a 20/30 grade silica sand filter pack to a depth of about 2 feet above the top of the screened interval. The filter pack interval was sealed to ground surface from the top of the filter pack at intervals using hydrated bentonite chips at each location. The top of each well casing was capped with a plastic monitor well cap and secured to discourage tampering. Monitoring well construction details are included on the prepared boring logs provided in Appendix A.

Static water-level readings were collected at the time of and following completion activities on November 10, 2015 using a properly decontaminated water-level indicator. Measurable groundwater was encountered in three of five temporary monitoring wells installed (B-1C, B-3 and B-7). Depth to water at temporary well locations ranged from 7.3 feet bgs at B-1C (northwest portion of the site near the intersection of West Martin Luther King Boulevard and Market Street) to 11.8 feet bgs at B-7 (along the eastern site boundary at Georgia Avenue). No measureable groundwater was observed at the time of drilling, or during delayed water level measurements (24 to 48 hours after well installation), at temporary

well locations B-2 and B-4 located along the western site boundary and the southwest corner of the subject property respectively.

Prior to sampling, two of three temporary monitoring wells exhibiting measurable groundwater (B-3 and B-7) were developed using a peristaltic pump and dedicated polyethylene tubing to remove at least three well casing volumes of groundwater or by purging the well dry and allowing it to recharge to original static water level. This process was intended to remove groundwater disturbed during well installation, reduce turbidity, and facilitate the collection of representative groundwater samples from the formation. Groundwater samples were collected from each of the temporary wells, labeled, placed on ice and submitted to ESC Lab Sciences in Mt. Juliet, Tennessee accompanied by completed chain-of-custody for some combination of analysis of VOCs and PAHs. Temporary wells B-1C and B-3 were allowed to recharge overnight to facilitate collection of a sample for analysis of RCRA metals. Representative groundwater samples were collected from temporary wells B-1C and B-3 on November 11, 2015, within 24-hrs of initial purging, and submitted for analysis of RCRA metals.

Copies of groundwater sampling forms are included in Appendix A.

3.2.3 Soil Gas Sampling

On November 5, 2015, S&ME personnel completed the installation of seven exterior soil gas sampling points (SG-1 through SG-7). The locations of the soil gas sampling points were selected in effort to obtain representative soil gas data to identify potential onsite soil gas impact attributable to onsite and offsite historical land uses of concern.

- Samples SG-1 and SG-2 were collected at locations along the western and southwestern portions
 of subject property to correspond with historical onsite locations of dry cleaners and printers and
 adjoining historical offsite operations of dry cleaners and filling stations on Market Street to the
 west;
- Samples SG-3 and SG-4 were collected at locations in the southern portion of the subject property to correspond with historical onsite operations of USTs and adjoining historical offsite operations of a dry cleaner to the south;
- Samples SG-5 through SG-7 were collected at locations along the eastern portion of the site to corresponding with adjoining historical offsite operations of rail yards and USTs to the east.

Each of the samples (SG-1 through SG-7) was collected from a depth ranging from 0.5 to three (3) feet bgs. At the time of soil gas collection, S&ME personnel also recorded observations, including the probing locations, depth, and soil characteristics. Sampling probe installation was conducted using an a soil vapor probe rod and electric rotary hammer drill, stainless steel expendable points, and post-run tubing as described below:

At each of the locations, SG-1, SG-3 and SG-4, an electric hammer drill was used to drive an expendable stainless steel probe point connected to a hollow stainless steel drive rod to a depth of approximately 3 feet bgs. Based on the presence of hardscaping, locations SG-2 and SG-5 through SG-7 were installed consistent with sub-slab soil gas sample collection methodology; an electric hammer drill was used to drive an expendable stainless steel probe point connected to a hollow stainless steel drive rod to a depth of 6 to 14 inches, with the goal to be in the subbase material.

٠

- At each location, the expendable point was connected to a ¼-inch outer diameter (O.D.) nylon tube threaded through the drive rod. At the target depth, the drive rod was extracted from the hole leaving the expendable point and sample train at the target depth.
- The sample train tubing was fitted with push-to-connect valves to enhance the integrity of the sampling system and provide an outlet for purging ambient air. Hydrated bentonite was used to create a surface seal between the ground surface and the sample train tubing.
- The sample train was connected to a 6-liter SUMMA canister and vacuum-tested using a hand held vacuum pump at a vacuum of at least 20 inches Hg for two minutes to test that a sufficient seal between the tubing and sample train fittings had been established.
- The total volume of the borehole, sample train tubing, and valves was calculated and converted to liters. A total of three volumes of ambient air were purged from the sample train using a low-volume air sampling pump calibrated to a flow of 0.187 L/min.
- Prior to sample collection, a paper towel treated with 70% isopropyl alcohol (2-propanol) was placed loosely on the bentonite ground seal. The 2-propanol was utilized as a tracer compound to verify the integrity of the closed sampling system (TDEC-DUST Technical Guidance Document 018).

Upon completion of the installation and initial testing of each soil vapor train system, the soil gas was sampled using 6-liter SUMMA canisters at each selected location. Each canister comes from the laboratory at a preset vacuum of approximately -30 inches of Hg.

Each canister was equipped with a pre-set vacuum regulator. This mechanism was factory-set to allow for the sample to be drawn into the canister over a period of 30 minutes. Start and end times for sample collection and vacuum pressures were recorded for each sample. Field data collected from the soil gas sampling activities are documented in the Soil Gas Field Log, included in Appendix A.

Following the soil gas sampling event, the seven sample canisters (SG-1 through SG-7) were sealed, packed, and shipped under chain of custody to ESC Lab Sciences in Mt. Juliet, Tennessee for laboratory analyses of volatile organic compounds (VOCs) by EPA Method TO-15.

3.3 Verification of the Conceptual Site Model

Refusal depths were consistent with published geologic information. However, refusal depths were shallower than anticipated based on review of TDEC file information on the west adjoining property (EPB/former One-Hour Valet Cleaners) beyond Market Street to the west. The conditions identified in subsurface exploration otherwise generally corresponded with published information and the conceptual site model.

3.4 Other Field Procedures

Before and after installation of each of the soil borings, drilling equipment, sampler barrels, and soil gas equipment were decontaminated by scrubbing in a non-phosphate detergent solution followed by a double tap water rinse.

Soil borings not converted to temporary monitoring wells were backfilled using soil cuttings and bentonite chips and capped with asphalt patch in paved areas. Soil borings converted to temporary monitoring wells will be abandoned upon issuance of this report and receipt of your authorization by removing the well pipe and backfilling to the surface with bentonite chips.

4.0 Analytical Results

Constituent concentrations detected in the soil were compared to the November 2015 USEPA Regional Screening Levels (RSLs) (TR=1x10⁻⁶ and THQ=0.1) for Residential (RSLres) and Commercial (RSLind) land use. The RSLs are risk based numerical criteria used for generic screening values, not de facto cleanup standards. Comparison criteria for groundwater default to RSLs for tap water (RSLtap) and in some cases the Maximum Contaminant Limit (MCL), if established, based on drinking water standards. The exterior soil gas results were compared to Residential (RSLres) and Commercial RSLs (RSLind) for indoor air adjusted to account for attenuation of vapor concentrations from the sample collection depth to the above the ground surface using an attenuation factor of 0.03 as typically accepted by TDEC.

Detected concentrations of EPH in soil have been compared to the Tennessee Department of Environment and Conservation (TDEC) Division of Solid Waste (DSW) threshold for Special Waste (petroleum) of 100 milligrams per kilogram (mg/kg). TDEC-DSW considers soils having concentrations of EPH in excess of 100 mg/kg Special Waste, which requires regulatory permitting prior to disposal.

Results of the laboratory analyses are discussed below. Detected constituents as compared to corresponding comparison criteria are summarized in Tables 1 through 3 following the text of this report. Copies of analytical reports and custody documentation are included as Appendix B. For the purpose of discussion, sample results generally have been grouped according to their respective physical locations and historical operations within the overall site.

4.1 Soil Analytical Results

Soil samples were selected from eight environmental soil borings: B-1C and B-2 through B-8) and two geotechnical soil borings (B1 (GEO) and B3 (GEO)). Each of the samples was submitted for some combination of analysis for VOCs, PAHs, EPH, Pesticides and RCRA metals as presented in Section 3.1.2. Samples denoted "GEO" were submitted for analysis of RCRA metals only. Table 1, following the text of this report, presents the results of detected and non-detect constituents as compared to corresponding comparison criteria as discussed in Section 4.0. We note that the VOC compounds presented on Table 1 represent only a partial list of the compounds analyzed. The listed compounds presented are representative of constituents typically associated with the known historical onsite and offsite operations.

4.1.1 Volatile Organic Compounds (VOCs)

One soil sample was selected from each of the eight environmental borings for analysis of VOCs. VOCs were identified at a concentration in excess of the laboratory detection limit in one of eight soil samples submitted for analysis. In the soil sample B-8 (0.8 to 2.5 feet), collected in the north-central portion of the subject property, two VOCs (1,2,4-trimethylbenzene and 1,2,3-trimethylbenzene) were identified , at a concentration of 0.00985 and 0.00565 milligrams per kilogram (mg/kg), respectively. In each case, the detected compound was below the corresponding RSLs for residential and commercial sites. No VOCs

were detected in excess of the laboratory detection limit in the remaining soil samples submitted for analysis.

4.1.2 Polycyclic Aromatic Hydrocarbons (PAHs)

One soil sample was selected from each of the eight environmental borings for analysis of PAHs. PAHs were identified at a concentration in excess of the laboratory detection limit in two of eight soil samples submitted for analysis (B-7 (10 to 12.5 feet) and B-8 (0.8 to 2.5 feet); borings located generally in the northeastern region of the site. Fluoranthene, detected at concentrations ranging from 0.0348 mg/kg (B-8(0.8 to 2.5 feet)) to 0.0506 mg/kg (B-7(10 to 12.5 feet)), was below the corresponding RSLs for both residential and commercial sites. Pyrene, detected at concentrations ranging from 0.00335 mg/kg (B-8(0.8 to 2.5 feet)) to 0.0472 mg/kg (B-7(10 to 12.5 feet)), was below the corresponding RSLs for both residential and commercial sites. No PAH compounds were detected in excess of the laboratory detection limit in the remaining soil samples submitted for analysis. We note that the laboratory detection limit for two PAH compounds, benzo(a)pyrene and dibenz(a,h)anthracene, exceeded the corresponding RSLs for residential sites.

4.1.3 Extractable Petroleum Hydrocarbons (EPH)

One soil sample was selected from each of the eight environmental borings for analysis of EPH. EPH was identified at a concentration in excess of the laboratory detection limit in three of eight soil samples submitted for analysis (B-3 (5 to 7.5 feet), B-5 (0.3 to 2.6 feet), and B-6 (0.5 to 5.3 feet)) at concentrations ranging from 6.66 to 19.6 mg/kg. In each case, the detected concentration was below the corresponding TDEC-DSW threshold for Special Waste of 100 mg/kg. EPH was not detected in excess of the laboratory detection limit in the remaining soil samples submitted for analysis.

4.1.4 Pesticides

One of eight soil samples (B-7 (10 to 12.5 feet)) was submitted for analysis of pesticides. No pesticides were detected in excess of the laboratory detection limit.

4.1.5 RCRA metals

One soil sample was selected from each of six environmental borings and two geotechnical borings for analysis of RCRA metals. RCRA metals (arsenic, barium, chromium, and lead, and one of either cadmium or mercury) were identified in excess of the laboratory detection limit eight soil samples submitted for analysis [B-2 (17.5 to 20 feet), B-4 (17.5 to 18.1 feet), B-5 (0.3 to 2.6 feet), B-6 (0.5 to 5.3 feet), B-7 (10 to 12.5 feet), B-8 (0.8 to 2.5 feet), B1(GEO) (8.5 to 10 feet), and B3(GEO) (6 to 7.5 feet)].

Of the detected inorganics, arsenic exceeded the corresponding comparison criteria in each of the soil samples. Arsenic was detected at concentrations ranging from 2.04 mg/kg to 6.74 mg/kg. In each case, the detected concentration exceeded the corresponding RSLres of 0.68 mg/kg. With the exception of the sample collected from B-7 (10 to 12.5 feet), the detected concentration also exceeded the corresponding RSLind of 3 mg/kg.

4.2 Groundwater Analytical Results

Three groundwater samples were submitted from temporary well locations B-1C, B-3, and B-7. Samples collected from locations B-1C and B-3 were submitted for analysis of VOCs, PAHs, and RCRA metals. The sample collected from B-7 was submitted for analysis of VOCs only. Table 2, following the text of this report, presents the results of detected and non-detect constituents as compared to the respective comparison criteria (RSLs for tap water or MCL, where established). We note that the VOC compounds presented on Table 1 represent only a partial list of the compounds analyzed. The listed compounds presented are representative constituents typically associated with the known historical onsite and offsite operations.

<u>VOCs</u>

No VOCs were identified in excess of the laboratory detection limit in the three groundwater samples submitted for analysis. We note that the detection limit for VOCs, benzene, naphthalene, trichloroethylene, and vinyl chloride, exceeded the corresponding RSLs. However, the detection limits for these compounds did not exceed the corresponding MCL, where established.

<u>PAHs</u>

In the sample collected from B-3, six PAH compounds (acenaphthene, acenaphthylene, fluoranthene, fluorene, phenanthrene, and pyrene) were identified at a concentration in excess of the laboratory detection limit in the groundwater sample submitted. In each case, the detected compound was below the corresponding comparison criteria. No PAHs were identified above laboratory detection limits in the sample collected from B-2. We note that the detection limits for PAH compounds benzo(a)anthracene, benzo(a)pyrene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene exceeded the corresponding RSLtap but were below the corresponding MCL, where established.

RCRA Metals

Three of eight RCRA metals were identified in excess of the laboratory detection limit in groundwater samples submitted from B-1C and B-3.

- Barium was identified in groundwater samples submitted from B-1C and B-3 at 0.0566 milligrams per liter (mg/L) and 0.134 mg/L, respectively. The detected concentrations of barium were below both the corresponding RSL tap (0.380 mg/L) and the MCL (2 mg/L).
- Lead, identified in the groundwater sample collected from B-3 at a concentration of 0.0135 mg/L, was below the corresponding RSLtap and MCL of 0.015 mg/L;
- Mercury, identified in the groundwater sample collected at B-3 at a concentration of 0.000490 mg/L, exceeded the corresponding RSLtap of 0.000063 mg/L but not the MCL of 0.002 mg/L.

4.3 Soil Gas Analytical Results

Seven exterior soil gas samples were submitted from SG-1 (northwest portion of the site), SG-2 (southwest corner of the site), SG-3 (southern site boundary), SG-4 (southeast corner of the site), and SG-5 through SG-7 (eastern portion of the site) for analysis of VOCs by EPA Method TO-15. Table 3, following the text of this report, presents the results of detected and non-detect constituents as compared to the respective comparison criteria based on a Target Carcinogenic Risk (TCR) of 1x10⁻⁶, Target Hazard

Quotient (THQ) of 0.1. As noted in Section 4.0, the comparison criteria included in Table 3 are the residential and commercial air RSL values, adjusted to account for a soil gas to ambient air attenuation using a factor of 0.03 (ratio of 1/0.03 soil gas to ambient air concentration).

Thirty-one (31) of 68 VOCs compounds (acetone, benzene, carbon disulfide, chlorobenzene, chloroform, chloromethane, cyclohexane, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,4-dioxane, ethanol, ethylbenzene, dichlorodifluoromethane, trichlorofluoromethane, heptane, n-hexane, methylene chloride, methyl ethyl ketone (2-butanone), methyl methacrylate, 2-propanol (tracer compound), propene (propylene), styrene, tetrachloroethylene, tetrahydrofuran, toluene, trichloroethylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, 2,2,4-trimethylpentane, m&p-xylenes, and o-xylenes) were identified at a concentration in excess of the laboratory detection limit in at least one sample. Two of the 31 detected VOC compounds (benzene and chloroform), exceeded the corresponding attenuation-adjusted RSLres, but were below their corresponding RSLind.

- Benzene, detected at SG-7 at a concentration of 26.4 ug/m³, exceeded the corresponding attenuation-adjusted RSLres of 12 ug/m³ but not the corresponding attenuation-adjusted RSLind of 53.3 ug/m³;
- Chloroform, detected at SG-5 at a concentration of 7.03 ug/m³, exceeded the corresponding attenuation-adjusted RSLres of 4 ug/m³ but not the corresponding attenuation-adjusted RSLind of 17.7 ug/m³;

Six of the detected compounds (ethanol, heptane, 2-propanol, 1,3,5-trimethylbenzene, 2,2,4trimethylpentane and m&p-xylenes) have no established comparison criteria. The detected concentrations of 2-propanol (a tracer compound for leak testing purposes) were compared to the acceptable value of less than 10,000,000 ug/m³ for tracer compounds as documented in Tennessee Department of Environment and Conservation, Division of Underground Storage Tanks, Technical Guidance Document-018. Detected concentrations reported for 2-propanol were significantly below the corresponding comparison value.

The laboratory detection limits exceeded the corresponding attenuation–adjusted RSL target soil gas concentrations for residential land use, for the following five (5) compounds in at least one sample criteria: 1,3-butadiene, 1,2-dibromomethane, hexachloro-1,3-butadiene, naphthalene, and 1,1,2-trichloroethane. In the case of 1,2-dibromoethane, laboratory detection limits also exceeded the corresponding adjusted screening values for industrial land use. Based on our review of the available information regarding TO-15 analytical suite laboratory detection limits provided by ESC Lab Sciences, the detection limits exceeding the corresponding comparison criteria for some compounds appears to be function of the limitations of the analytical method and not the result of additional sample dilutions. However, in the case where the detection limits of certain compounds did exceed the corresponding comparison criteria, it cannot be confirmed whether these compounds are present at levels above the corresponding comparison criteria.

5.0 Findings

5.1 Soil

Volatile Organic Compounds (VOCs)

Detectable concentrations of two VOCs (1,2,4-trimethylbenzene and 1,2,3-trimethylbenzene) were identified in excess of the laboratory detection limit in one (B-8 (0.8 to 2.5 feet)) of eight soil samples submitted for analysis. The detected VOCs were below the corresponding comparison criteria for both residential and commercial land use.

Polycyclic Aromatic Hydrocarbons (PAHs)

Detectable concentrations of two PAHs (fluoranthene and pyrene) were identified in two (B-7 (10 to 12.5 feet and, B-8 (0.8 to 2.5 feet)) of eight soil samples submitted for analysis. The detected PAHs were below the corresponding comparison criteria for both residential and commercial land use.

Extractable Petroleum Hydrocarbon (EPH)

EPH was identified at a concentration in excess of the laboratory detection limit in three of eight soil samples (B-3 (5 to 7.5 feet), B-5 (0.3 to 2.6 feet), and B-6 (0.5 to 5.3 feet)) submitted for analysis. The detected concentrations (ranging from 6.66 mg/kg to 19.6 mg/kg) were below the corresponding TDEC-DSW threshold for Special Waste of 100 mg/kg.

Pesticides

No pesticides were detected in excess of the laboratory detection limit in the one soil sample (B-7 (10 to 12.5 feet) submitted for analysis of pesticides.

RCRA Metals

Detectable concentrations of RCRA metals (inorganics) were identified at a concentration in excess of the laboratory detection limit in each of the eight (B-2 (17.5 to 20 feet), B-4 17.5 to 18.1 feet), B-5 (0.3 to 2.6 feet), B-6 (0.5 to 5.3 feet), B-7 (10 to 12.5 feet), B-8 (0.8 to 2.5 feet), B1(GEO) (8.5 to 10 feet), and B3(GEO) (6 to 7.5 feet)) soil samples submitted for analysis. Of the detected inorganics, only arsenic, detected at concentrations ranging from 3.93 to 6.96 mg/kg exceeded the corresponding comparison criteria (RSLres = 0.68 mg/kg and RSLind = 3 mg/kg). However, the detected concentrations are within the range of concentrations that are considered to represent naturally occurring levels for soil in Hamilton County, according to the *Tennessee Department of Environment and Conservation Division of Geology Report of Investigations No. 49, titled "Hazardous Trace Elements in Tennessee Soils and Regolith"*, published in 2001. We note that TDEC generally considers a concentration of 10 mg/kg or less to be representative of naturally-occurring arsenic in Hamilton County soils.

5.2 Groundwater

No VOCs or PAHs were identified in excess of the laboratory detection limit. Detectable concentrations of three RCRA metals, barium, lead, and mercury, were identified at concentrations in excess of the

laboratory detection limit in the groundwater samples collected at B-1C and B-3 in the northwestern portion of the subject property. Of the detected inorganics, mercury exceeded the corresponding RSLtap but not the corresponding MCL. None of the remaining detected compounds exceeded the corresponding comparison criteria.

5.3 Soil Gas

Thirty-one of 68 VOC were identified at concentrations in excess of the laboratory detection limit in exterior soil gas samples (SG-1 through SG-7) collected across the subject property. Of the thirty-one detected compounds, two compounds, benzene (SG-7) and chloroform (SG-5) were identified in excess of corresponding attenuation-adjusted RSLs for residential sites, but were below the attenuation-adjusted RSLs for commercial land use.

6.0 Conclusions

This assessment, has identified the presence of petroleum-related or hazardous substances in soil, groundwater, and soil gas. Site conditions as defined by this assessment are not unexpected conditions, given the history (over a century of developed use) and nature of historical dry cleaning operations at and nearby the subject property. Given the history of the site (early developed use and varied commercial uses) as well as limitations related to boring locations (no borings within the street right of way), it should not be unexpected that areas of higher concentrations may be encountered in other locations not sampled.

<u>Soil</u>

No VOCs, PAHs, EPH or pesticides were identified in excess of the corresponding comparison criteria in the eight soil samples submitted for analysis. With the exception of arsenic detected in in each of the eight soil samples (B-2, B-4, B-5, B-6, B-7, B-8, B1(GEO), and B3(GEO)) analyzed for RCRA metals, detected concentrations did not exceed corresponding comparison criteria.

- In the case of arsenic, while above the corresponding commercial screening level, the detected concentrations are within the range of concentrations typically considered representative of naturally occurring concentrations in Hamilton County, Tennessee.
- Based on the observation of foundry sand in geotechnical borings installed in the northeastern region of the site, future disturbance of this area should be managed under the observation of an environmental professional and using best management practices, including implementation of measures that will reduce the potential for contact with foundry sand such as placement under 18 to 24 inches of clean soil cap, or below hardscaping. If foundry derived material is intended for offsite disposal, foundry derived material and soil commingled with foundry derived materials will require approval to dispose as Special Waste. Additional analysis may be necessary to determine actual concentrations within a stockpiled volume. Once redevelopment plans and final grading plans have been completed, a soil management plan should be prepared to outline best management practices to address disposal and minimize worker exposure in the event these areas are disturbed.

Groundwater

No detectable concentrations of VOCs or PAHs were identified in excess of the laboratory detection limit. Three RCRA metals (barium, lead and mercury) were identified in the excess of the laboratory detection limit in groundwater samples collected from B-1C and B-3. With the exception of mercury, none of the detected constituents exceeded the corresponding comparison criteria.

• In the case of mercury, the detected concentration exceeded the corresponding RSLtap but not the MCL.

Soil Gas

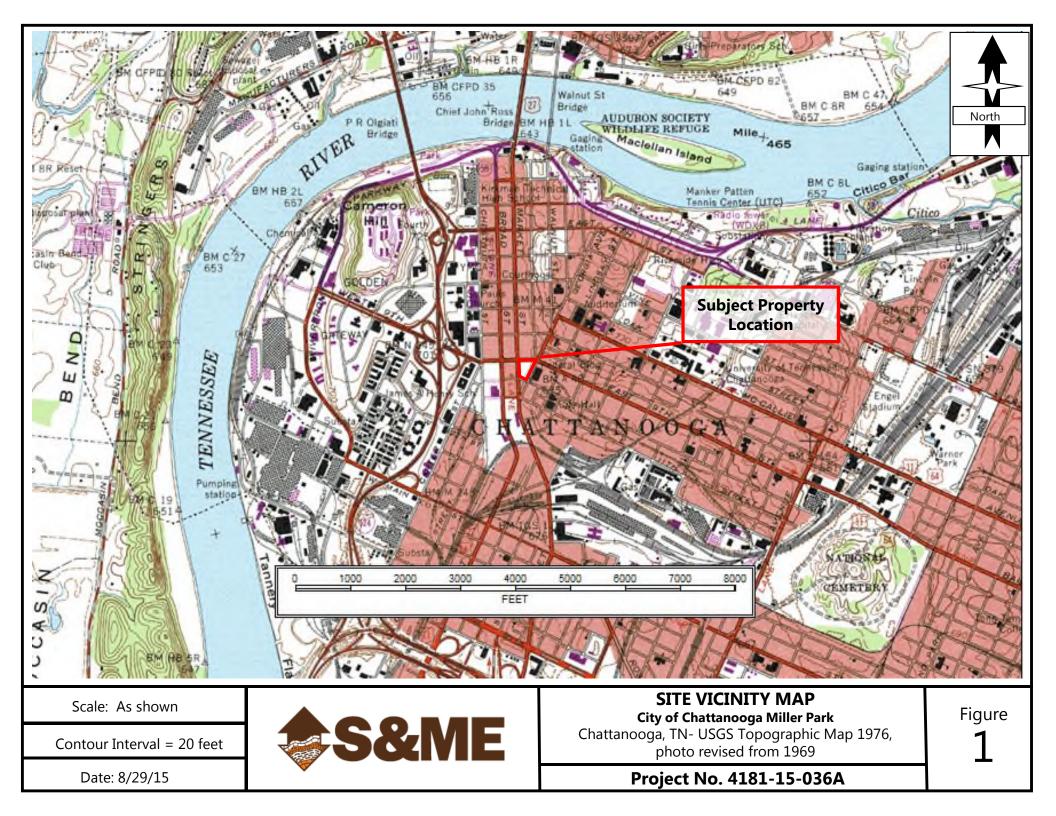
With the exception of two volatile organic compounds (VOCs), benzene and chloroform, detected in two of seven soil gas samples (SG-5 and SG-7), detected concentrations did not exceed corresponding comparison criteria. In each case where detected above a corresponding comparison criteria, the detected concentration exceeded the corresponding residential screening level, but was below the corresponding commercial screening level.

Based on the magnitude of detected concentrations and our understanding that intended use as a park with commercial-type use of structures (excludes residential use), analytical results do not indicate vapor intrusion risk above 1×10^{-6} under a commercial use scenario. Additional assessment of soil gas does not appear warranted. Should the City's redevelopment objectives change, to allow for residential use, additional evaluation would be warranted.

7.0 **References and Sources of Information**

Phase I Environmental Site Assessment, Miller Park, 928 South Market Street, Chattanooga, Tennessee, dated September 1, 2015, prepared by S&ME;

United States Environmental Protection Agency (USEPA) Regional Screening Level (RSL) table, dated November 2015.


Tennessee Department of Environment and Conservation Division of Geology Report of Investigations No. 49, titled "Hazardous Trace Elements in Tennessee Soils and Regolith", published in 2001.

Figures

Figure 1- Site Vicinity Map

Figure 2-Site Location with Identified RECs

Figure 3-Boring Location Map

LOCATION OF IDENTIFIED REC'S

- 1. Former Handcraft One Hour Cleaners (904 Market St.); from at least 1960 to 1970.
- 2. Former Long Printing Co. (906 Market St); in at least 1938.
- 3. Former Chattanooga Exterminating Co. / Terminex (912 Market St.)- from at least 1938 to 1945; and Former Chattanooga Transportation Company / Jolly Cabs / Yellow Cabs / Hertz Driveurself System Co. / Rent-A Ford Co. – from at least 1917 to 1945.
- 4. Former City Water Co. (928 Market St.); from at least 1885 to 1933. Gas tank depicted on 1917 HFI map.
- 5. Former George's Cleaners (838 Market St.); from at least 1950 to 1955.
- 6. Former Top Hat Cleaners (200 East 9th St.); from at least 1960 to 1973.
- 7. Former Model Dry Cleaning (1004 Market St.); from at least 1938 to 1941.
- 8. Civic Forum Redevelopment-Formerly two filling stations and greyhound bus terminal onsite (1001 Market St.);
- 9. One Hour Valet drycleaner (921 Market St.); from at least 1960 to 1980.
- 10. Former Chattanooga Transfer and Storage Co. (926-28 Georgia Ave.); gas tank depicted on property in 1917 HFI map.
- 11. Former Volunteer Garage (822-24 Lindsay St.);
- 12. Chattanooga Communications/AT&T (919 Lindsay St.);

Legend:

Inferred groundwater flow direction

Approximate Subject Property Boundary

North King Blvd.

Scale: As shown

Checked by: VJH

Date: 10/22/2015

Site Location with Identified RECs City of Chattanooga Miller Park 928 South Market Street Chattanooga, Tennessee

Figure

Project No. 4181-15-036A

Tables

Table 1: Summary of Detected Compounds and Results of Soil AnalysisTable 2: Summary of Detected Compounds and Results of Groundwater AnalysisTable 3: Summary of Detected Compounds and Results of Soil Gas Analysis

B4 Southwest corner of the sit 17.5-18.1 feet	set corner of the site Southeast corner of the site 7.5-18.1 feet 0.3-2.6 feet 0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500	site 0.5-5.3 feet <0.00500 <0.00500 <0.00500	B7 Along the eastern site boundary 10-12.5 feet <0.00500 <0.00500	B8 North-central portion of the site 0.8-2.5 feet	5	B3 (GEO) of foundry waste collected from e northeast portion of the site	Comparison Criteria I Levels (
17.5-18.1 feet <0.00500 <0.00500 <0.00500 <0.0250 <0.0250 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500	0.3-2.6 feet <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.0250 <0.0250 <0.00500 <0.00500	e site 0.5-5.3 feet <0.00500 <0.00500 <0.00500 <0.00500	boundary 10-12.5 feet <0.00500	site 0.8-2.5 feet	geotechnical borings in the	·	•	
 <0.00500 <0.00500 <0.00500 <0.0250 <0.00500 <0.0250 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 	<0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.0250 <0.0250 <0.00500 <0.00500	<0.00500 <0.00500 <0.00500	<0.00500		8.5-10 feet		i	
<0.00500 <0.00500 <0.0250 <0.00500 <0.0250 <0.00500 <0.00500 <0.00500 <0.00500	<0.00500 <0.00500 <0.00500 <0.00500 <0.0250 <0.0250 <0.00500 <0.00500	<0.00500 <0.00500		0.00505		6-7.5 feet	Residential	Industrial
<0.00500 <0.00500 <0.0250 <0.00500 <0.0250 <0.00500 <0.00500 <0.00500 <0.00500	<0.00500	<0.00500 <0.00500						
<0.00500 <0.0250 <0.00500 <0.0250 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500	<0.00500	<0.00500		< 0.00500	NA	NA	1.2	5.1
<0.0250 <0.00500 <0.0250 <0.00500 <0.00500 <0.00500 <0.00500	<0.0250 <0.0250 <0.00500 <0.00500		<0.00500	<0.00500 <0.00500	NA NA	NA NA	5.8 47	25 210
<0.00500 <0.0250 <0.00500 <0.00500 <0.00500 <0.00500	<0.00500 <0.00500	< 0.0250	<0.00500	<0.00500	NA	NA	3.8	17
<0.00500 <0.00500 <0.00500 <0.00500	<0.0250 <0.0250	< 0.00500	<0.00500	<0.00500	NA	NA	8.1	39
<0.00500 <0.00500 <0.00500		< 0.0250	< 0.0250	< 0.0250	NA	NA	490	4,700
<0.00500 <0.00500		<0.00500	<0.00500	<0.00500	NA	NA	0.41	1.9
<0.00500		< 0.00500	< 0.00500	0.00985	NA	NA	5.8	24
		<0.00500	< 0.00500	0.00565	NA	NA	4.9	21
~0.0130		<0.00500 <0.0150	<0.00500 <0.0150	<0.00500 <0.0150	NA NA	NA NA	78 65	1200 280
< 0.00500		<0.0150	<0.00500	<0.00500	NA	NA	0.059	1.7
< 0.0330	<0.0330 <0.0330	< 0.0330	<0.0330	<0.0330	NA	NA	360	4,500
<0.0330		< 0.0330	<0.0330	<0.0330	NA	NA	None esta	
< 0.0330		< 0.0330	<0.0330	<0.0330	NA	NA	1,800	23,000
<0.0330		<0.0330	<0.0330	<0.0330	NA	NA	0.16	2.9
<0.0330 <0.0330		<0.0330 <0.0330	<0.0330 <0.0330	<0.0330 <0.0330	NA NA	NA NA	0.16	2.9 29
<0.0330		<0.0330	<0.0330	<0.0330	NA	NA	1.6 None esta	
<0.0330		<0.0330	<0.0330	<0.0330	NA	NA	0.016	0.29
< 0.0330	<0.0330 <0.0330	< 0.0330	< 0.0330	< 0.0330	NA	NA	16	290
<0.0330		<0.0330	<0.0330	<0.0330	NA	NA	0.016	0.29
< 0.0330		<0.0330	0.0506	0.0348	NA	NA	240	3,000
< 0.0330		< 0.0330	< 0.0330	<0.0330	NA	NA	240	3,000
<0.0330 <0.0330		<0.0330 <0.0330	<0.0330 <0.0330	<0.0330 <0.0330	NA NA	NA NA	0.16	2.9
<0.0330		<0.0330	<0.0330	<0.0330	NA	NA	5.6 None esta	±,
< 0.0330		<0.0330	0.0472	0.0335	NA	NA	180	2,300
<4.00	<4.00 19.6	8.89	<4.00	<4.00	NA	NA	100) ¹
NA	NA NA	NA	< 0.0200	NA	NA	NA	0.039	0.18
NA		NA	<0.0200	NA	NA	NA	0.086	0.36
NA		NA	<0.0200	NA	NA	NA	0.30	1.3
NA		NA	< 0.0200	NA	NA	NA	None esta	
NA NA		NA NA	<0.0200 <0.200	NA NA	NA NA	NA NA	0.57	2.5
NA		NA	<0.200	NA	NA	NA	2.3	9.6
NA		NA	<0.0200	NA	NA	NA	2	9.3
NA	NA NA	NA	<0.0200	NA	NA	NA	1.9	8.5
NA		NA	<0.0200	NA	NA	NA	0.034	0.14
NA		NA	< 0.0200	NA	NA	NA	47	700
NA NA		NA NA	<0.0200 <0.0200	NA NA	NA NA	NA NA	None esta None esta	
NA		NA	<0.0200	NA	NA	NA	1.9	25
NA		NA	<0.0200	NA	NA	NA	None esta	
NA		NA	<0.0200	NA	NA	NA	None esta	
NA		NA	<0.0200	NA	NA	NA	0.21	0.96
NA		NA	<0.0200	NA	NA	NA	0.13	0.63
NIA	NA NA	NA	< 0.0200	NA	NA	NA	0.07	0.33
		NA NA	<0.0200 <0.400	NA NA	NA NA	NA NA	32 0.49	410 2.1
NA			×0.400				0.43	2.1
	0.0629 0.0747	0.0632	0.0820	0.0355	<0.0200	0.0467	1.1	4.6
NA NA	3.35 6.74	3.24	2.04	3.19	4.96	5.80	0.68 ²	3 ²
NA NA 0.0629	54.1 200	89.2	44.1	40.4	32.7	38.5	1,500	22,000
NA NA 0.0629 3.35	<0.500 <0.500	<0.500	<0.500	<0.500	0.832	0.600	7.1	98
NA NA 0.0629 3.35 54.1 <0.500							12,000	180,000
NA NA 0.0629 3.35 54.1 < 0.500 19.6	20 5							800 ³
NA NA 0.0629 3.35 54.1 <0.500 19.6 10.4								580 580
_		3.35 6.74 54.1 200 <0.500	3.35 6.74 3.24 54.1 200 89.2 <0.500	3.35 6.74 3.24 2.04 54.1 200 89.2 44.1 <0.500	3.35 6.74 3.24 2.04 3.19 54.1 200 89.2 44.1 40.4 <0.500	3.35 6.74 3.24 2.04 3.19 4.96 54.1 200 89.2 44.1 40.4 32.7 <0.500	3.35 6.74 3.24 2.04 3.19 4.96 5.80 54.1 200 89.2 44.1 40.4 32.7 38.5 <0.500	3.35 6.74 3.24 2.04 3.19 4.96 5.80 0.68 ² 54.1 200 89.2 44.1 40.4 32.7 38.5 1,500 <0.500

Checked By: VJH

Soil samples collected between November 10 and 11, 2015

Gray shading indicated detected compound

Bold text indicates concentration detected or MDL is greater than a comparison criterion-November 2015 EPA RSLs

Analytical methods as presented in text of report, and attached laboratory results.

< = Below Method Detection Limit, not detected at Estimated Quantitation Limit (EQL).

See analytical reports.

NA - Not Analyzed

¹ The TDEC DSW threshhold for disposal as Special Waste is 100 mg/kg. TDEC DUST threshold requiring groundwater investigation is 500 mg/kg

² We note that TDEC generally recognizes concentrations of 10 mg/kg or less to be representative of naturally-occuring arsenic

³ We note that lead concentrations ranging from 80 to 100 mg/kg approach 20 times the corresponding TCLP threshold of 5 parts per million and may require additional analysis if disturbed

GROUNDWATER (Concentrations in milligrams per Liter (mg/L))							
Temporary Well ID	B1C	B3	B7	Comparison Criteria -			
Temporary Well Location	Northwest portion of the site (Market Street and MLK Boulevard)	Along the western site boundary (Market Street)	Along the eastern site boundary (Georgia Avenue)	Regional Screening Levels Tap Water or (MCL)			
VOCs			-				
Benzene	<0.00100	<0.00100	<0.00100	0.00045 (0.005)			
Ethylbenzene	<0.00100	<0.00100	<0.00100	0.0015 (0.7)			
Methyl tert-Butyl Ether	<0.00100	<0.00100	<0.00100	0.014			
Naphthalene	<0.00500	<0.00500	<0.00500	0.00017			
Tetrachloroethylene	<0.00100	<0.00100	<0.00100	0.0041 (0.005)			
Toluene	<0.00500	<0.00500	< 0.00500	0.11 (1)			
Trichloroethylene	<0.00100	<0.00100	<0.00100	0.00028 (0.005)			
Vinyl Chloride	<0.00100	<0.00100	<0.00100	0.000019 (0.002)			
Total Xylenes	<0.00300	<0.00300	<0.00300	0.019 (10)			
PAHs							
Acenaphthene	<0.0000500	0.000146	NA	0.053			
Acenaphthylene	<0.0000500	0.000166	NA	None established			
Anthracene	< 0.0000500	< 0.0000500	NA	0.180			
benzo(a)anthracene	<0.0000500	<0.0000500	NA	0.000012			
Benzo(b)fluoranthene	<0.0000500	< 0.0000500	NA	0.000034			
Benzo(k)fluoranthene	<0.0000500	< 0.0000500	NA	0.00034			
Benzo(g,h,i)perylene	< 0.0000500	< 0.0000500	NA	None established			
Benzo(a)pyrene	<0.0000500	<0.0000500	NA	0.0000034 (0.0002)			
Chrysene	<0.0000500	< 0.0000500	NA	0.0034			
Dibenz(a,h)anthracene	<0.0000500	<0.0000500	NA	0.000034			
Fluoranthene	< 0.0000500	0.000155	NA	0.080			
Fluorene	<0.0000500	0.000103	NA	0.029			
Indeno(1,2,3-cd)pyrene	<0.0000500	<0.0000500	NA	0.000034			
Naphthalene	<0.0000500	< 0.0000500	NA	0.00017			
Phenanthrene	<0.0000500	0.000508	NA	None established			
Pyrene	<0.0000500	0.0000977	NA	0.012			
RCRA metals							
Arsenic	<0.0100	<0.0100	NA	0.000052 (0.010)			
Barium	0.0566	0.134	NA	0.380 (2)			
Cadmium	<0.00200	<0.00200	NA	0.00092 (0.005)			
Chromium	<0.0100	<0.0100	NA	0.10			
Lead	<0.00500	0.0135	NA	0.015			
Mercury	<0.000200	0.000490	NA	0.000063 (0.002)			
Selenium	<0.0100	<0.0100	NA	0.010 (0.050)			
Silver	<0.00500	<0.00500	NA	0.0094			

Notes:

Checked By: VJH

Gray shading indicated detected compound

Bold text indicates concentration detected or RDL/ MDL greater than a comparison criterion-November 2015 EPA RSLs

Analytical methods as presented in text of report, and attached laboratory results.

< = Below Method Detection Limit, not detected at Estimated Quantitation Limit (EQL).

See analytical reports.

N/A- Not Analyzed

Temporary monitoring wells B-2 and B-4 were dry at the time of sampling and therefore not sampled

e time of sampling and therefore not sampled Table 2
Summary of Detected Compounds and Results of Groundwater Analysis
Miller Park
Chattanooga. Tennessee

Chattanooga, Tennessee Project No. 4181-15-036A

			Soil Gas Concer	trations (microgra	ms per cubic mete	r (ug/m³))				
		e boundary rket Street)	Southern por	tion of the site	E	astern site boundar	y	Adjusted EPA Region		
	Vicinity of former onsite dry cleaner	East of former offsite drycleaner	North of former offsite drycleaner	Vicinity of former UST operations (City Water Co.)	Vicinity of former cab and rent-a-car company	West of former off (Chattanooga Tra	site UST operations nsfer and Storage)	(Risk = 1×10^{-6} and THQ = 0.1) Attenua		
Sample Location ID	SG-1	SG-2	SG-3	SG-4	SG-5	SG-6	SG-7	Residential	Commercial	
Sample Depth	3 feet	6 inches	3 feet	3 feet	14 inches	6 inches	6 inches	Residential	connercial	
/OCs (TO-15)										
Acetone	93.4	32.4	9.63	22.4	19.0	34.3	46.2	106,666.7	466,666.7	
Allyl Chloride	<0.626	< 0.626	< 0.626	< 0.626	< 0.626	<0.626	<0.626	3.3	14.7	
Benzene	7.57	5.26	16.4	4.17	7.58	5.31	26.4	12	53.3	
Benzyl Chloride Bromodichloromethane	<1.04 <1.34	<1.04 <1.34	<1.04 <1.34	<1.04 <1.34	<1.04 <1.34	<1.04 <1.34	<1.04 <1.34	1.9 2.5	8.3	
Bromoform	<6.21	<6.21	<6.21	<6.21	<6.21	<6.21	<6.21	86.7	366.7	
Bromomethane	<0.776	<0.776	<0.776	<0.776	< 0.776	<0.776	<0.776	17.3	73.3	
1,3-Butadiene	<4.43	<4.43	<4.43	<4.43	<4.43	<4.43	<4.43	3.1	13.7	
Carbon disulfide	4.28	3.77	7.68	4.27	1.51	2.29	7.50	2,433.3	10,333.3	
Carbon tetrachloride Chlorobenzene	<1.26	<1.26 2.94	<1.26 1.76	<1.26 2.38	<1.26 3.42	<1.26 3.45	<1.26 4.29	15.7 173.3	66.7 733.3	
Chloroethane (ethyl chloride)	<0.528	<0.528	<0.528	<0.528	<0.528	<0.528	<0.528	33,333.3	146,666.7	
Chloroform	2.12	1.59	1.71	1.14	7.03	2.35	2.35	4	17.7	
Chloromethane	1.33	0.484	< 0.413	0.705	< 0.413	< 0.413	0.512	313.3	1,300	
2-Chlorotoluene Cyclohexane	<1.03 2.40	<1.03 1.49	<1.03 1.57	<1.03 <0.689	<1.03 4.87	<1.03 <0.689	<1.03 19.1	None est 21,000	ablished 86,666.7	
Dibromochloromethane	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70	3.3	15	
1,2-Dibromoethane	<1.54	<1.54	<1.54	<1.54	<1.54	<1.54	<1.54	0.2	0.7	
1,2-Dichlorobenzene	1.39	1.48	<1.20	1.33	1.87	1.70	1.91	700	2,933.3	
1,3-Dichlorobenzene 1.4-Dichlorobenzene	<1.20	<1.20 1.96	<1.20 1.56	<1.20 1.81	<1.20 2.31	<1.20 2.37	<1.20 2.61	None est 8.7		
1,4-Dichlorobenzene 1,2-Dichloroethane	<0.810	<0.810	<0.810	<0.810	<0.810	<0.810	<0.810	3.7	36.7 15.7	
1,1-Dichloroethane	<0.802	<0.802	<0.802	<0.802	<0.802	<0.802	<0.802	60	256.7	
1,1-Dichloroethene	<0.793	<0.793	<0.793	<0.793	<0.793	<0.793	<0.793	700	2,933.3	
cis 1,2-Dichloroethene	<0.793	< 0.793	< 0.793	< 0.793	< 0.793	< 0.793	< 0.793	None est		
trans-1,2-Dichloroethene 1,2-Dichloropropane	<0.793 <0.924	<0.793 <0.924	<0.793 <0.924	<0.793 <0.924	<0.793 <0.924	<0.793 <0.924	<0.793 <0.924	None est 9.3	ablished 40	
1,3-Dichloropropene (cis & trans)	<0.908	<0.924	< 0.908	< 0.908	< 0.908	<0.908	< 0.924	23.3	103.3	
1,4-Dioxane	2.19	<0.721	<0.721	<0.721	<0.721	<0.721	<0.721	18.7	83.3	
Ethanol	40.9	32.7	11.8	15.4	17.5	136	67.5	None est	1	
Ethylbenzene	1.42 <0.982	1.20 <0.982	<0.867 <0.982	<0.867 <0.982	1.67 <0.982	<0.867 <0.982	2.59 <0.982	36.7	163.3	
4-Ethyltoluene Dichlorodifluoromethane	2.12	2.61	1.97	2.37	2.08	1.61	3.14	None est 333.3	1,466.7	
Trichlorofluoromethane	1.64	1.72	1.58	1.65	4.04	2.02	1.87	2,433.3	10,333.3	
1,2-Dichlorotetratrifluoroethane	<1.40	<1.40	<1.40	<1.40	<1.40	<1.40	<1.40	None est		
Heptane	11.6	1.60	4.12	<0.818	4.93	<0.818	31.9	None est		
Hexachloro-1,3-butadiene n-Hexane	<6.73 9.60	<6.73 3.82	<6.73 2.68	<6.73 0.946	<6.73 6.17	<6.73 0.734	<6.73 55.7	4.3 2,433.3	18.7 10,333.3	
Isopropylbenzene (Cumene)	<0.983	< 0.983	< 0.983	< 0.983	< 0.983	< 0.983	< 0.983	1,400	6,000	
Methylene Chloride	0.807	1.92	< 0.694	< 0.694	< 0.694	< 0.694	<0.694	2,100	8,666.7	
Methyl Butyl Ketone	<5.11	<5.11	<5.11	<5.11	<5.11	<5.11	<5.11	103.3	433.3	
2-Butanone (MEK) 4-Methyl-2-pentanone	20.0 <5.12	4.21 <5.12	<3.69 <5.12	7.01 <5.12	4.35 <5.12	<3.69 <5.12	7.51 <5.12	17,333.3 10,333.3	73,333.3 43,333.3	
4-Methyl-2-pentanone Methyl methacrylate	1.25	<0.819	< 0.819	< 5.12	1.37	0.944	< 0.819	2,433.3	10,333.3	
Methyl tert butyl ether	<0.721	<0.721	<0.721	<0.721	<0.721	<0.721	<0.721	366.7	1,566.7	
Naphthalene	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	<3.30	2.8	12	
2-Propanol (tracer) Propene (Propylene)	4.26 32.0	4.33 <0.689	3.20 4.87	<3.07 7.35	<3.07 11.5	5.66 <0.689	7.18 4.95	10,000	43,333.3	
Propene (Propylene) Styrene	32.0	<0.851	<0.851	<0.851	11.5	<0.851	4.95 0.976	3,333.3	43,333.3 14,666.7	
1,1,2,2-Tetrachloroethane	<1.37	<1.37	<1.37	<1.37	<1.37	<1.37	<1.37	1.6	7.0	
Tetrachloroethylene	11.5	21.6	80.5	<1.36	9.13	15.2	2.68	140	600	
Tetrahydrofuran	1.05	< 0.590	< 0.590	< 0.590	< 0.590	< 0.590	< 0.590	7,000	29,333.3	
Toluene 1,2,4-Trichlorobenzene	21.2 <4.66	17.8 <4.66	9.96 <4.66	12.5 <4.66	24.2 <4.66	17.4 <4.66	41.2 <4.66	17,333.3 7	73,333.3 29.3	
1,1,1-Trichloroethane	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	17,333.3	73,333.3	
1,1,2-Trichloroethane	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	<1.09	0.7	2.9	
Trichloroethylene	1.76	<1.07	<1.07	<1.07	<1.07	<1.07	<1.07	7	29.3	
1,2,4-Trimethylbenzene 1,3,5 Trimethylbenzene	2.43 <0.982	1.72 1.22	<0.982 <0.982	<0.982 <0.982	2.07 <0.982	<0.982 <0.982	5.70 2.42	24.3 None est	103.3	
2,2,4-Trimethylpentane	2.38	<0.934	<0.982	<0.982	<0.982	<0.982	<0.934	None est		
Vinyl chloride	<0.511	<0.511	<0.511	<0.511	<0.511	<0.511	<0.511	5.7	93.3	
	<0.875	<0.875	<0.875	<0.875	<0.875	<0.875	<0.875	2.9	12.7	
Vinyl bromide			0.704	0 704	.0704	.0 704	< 0.704	700	2,933.3	
Vinyl acetate	< 0.704	< 0.704	< 0.704	< 0.704	< 0.704	< 0.704		700		
Vinyl bromide Vinyl acetate m&p-xylenes o-xylene	<0.704 6.24 2.82	<0.704 8.07 2.75	<0.704 2.58 1.33	<0.704 <1.73 1.15	<0.704 6.25 3.93	<0.704 3.61 1.55	12.6 4.68	700 None est 333.3		

Checked by: VJH

Gray shaded cells indicate a concentration identified above the laboratory detection limit

Bold text indicates concentration detected or detection limit exceeding the corresponding comparison criteria

Comparison Criteria: Adjusted values obtained from the November 2015 EPA RSLs

Analytical methods as presented in text of report, and attached laboratory results.

< = Below Method Detection Limit, not detected at Estimated Quantitation Limit (EQL).

See analytical reports.

* TDEC-DUST limits established to evaluate sample train integrity using tracer compound-70% Isopropanol

Table 3 Summary of Soil Gas Analytical Results Miller Park Chattanooga, Tennessee Project No. 4181-15-036A

Appendix A

Soil Boring Logs with Well Construction Details,

Groundwater Data Sheets, and Soil Gas Field Log

Miller Park District

Chattanooga, Tennessee

S&ME Job No. 418115036A

S&ME Job No. 418115036A					SHEET 1 of 1
Logged by: P. Gribben, PG	Elevation: Not su	irveyed		GRC	UNDWATER
Remarks:	Start Time/Date: Finish Time/Date				Water Level
No sample collected	Detector:	PID	11.30 Alvi	ATD	Not encountered
	Rig Type: Drilling Method:	Geo-Probe Direct Push			

G	Well Detail	Elev. (ft.)	Depth (ft.)	Material Description	Lith.	s	R	Sample Remarks	Detector Reading
	Well not	-	- 0	TOPSOIL SILTY CLAY (CH) with rock fragments, orange-brown, moist - FILL				Sample No. 1 - 0' to 5' No odors	
	Well not installed						15		0.0
		-		Boring refusal encountered at 6 feet.			100	Sample No. 2 - 5' to 6' No odors	0.0
MENIAL LOG SIMPLE 4281-15-036A.GPJ S&ME 1-18-2012.GDI 12/8/15									

3-ME

BORING NO. B-1

Miller Park District

Chattanooga, Tennessee

S&ME Job No. 418115036A

Logged by: P. Gribben, PG	Elevation: Not su			GROUNDWATER		
	Start Time/Date:				Water Level	
Boring offset from B-1 approximately 5 feet south.	Finish Time/Date		11:50 AM	ATD	Not encountered	
No sample collected.	Detector: Rig Type:	PID Geo-Probe				
		Direct Push				

G	Well Detail	Elev. (ft.)	Depth (ft.)	Material Description	Lith.	s	R	Sample Remarks	Detector Reading
	Well not installed	-	- 0	TOPSOIL SILTY CLAY (CH) with rock fragments and pebbles, orange-brown, moist - FILL			35	Sample No. 1 - 0' to 5' No odors	0.0
			- 5				40	Sample No. 2 - 5' to 9' No odors	0.0
		-	- 10	Boring refusal encountered at 9 feet.					
S&ME 1-18-2012.GU1 12/8/15			 - 15						
IMENTAL LOG SIMPLE 4281-15-036A.GPJ S&ME 1-18-2012.GDT 12/8/15									
			- 20						

ENVIRONMENTAL LOG SIMPLE 4281-15-036A.GPJ S&ME 1-18-2012.GDT 12/8/15

SHEET 1 of 1

Miller Park District

Chattanooga, Tennessee

S&ME Job No. 418115036A

Logged by: P. Gribben, PG	Elevation: Not surveyed	GROUNDWATER
Remarks:	Start Time/Date: 11/9/2015 12:00 PM Finish Time/Date: 11/9/2015 12:05 PM	
Boring offset from B-1 approximately 10 feet northeast. No sample collected	Detector: PID	ATD Not encountered
	Rig Type: Geo-Probe Drilling Method: Direct Push	

G	Well Detail	Elev. (ft.)	Depth (ft.)	Material Description	Lith.	s	R	Sample Remarks	Detecto Reading
	Well not installed		- 0	¬ TOPSOIL			40	Sample No. 1 - 0' to 3.3' No odors	0.0
	alled	-	 - 5 	Boring refusal encountered at 3.3 feet.					
			 - 10						

ENVIRONMENTAL LOG SIMPLE 4281-15-036A.GPJ S&ME 1-18-2012.GDT 12/8/15

SHEET 1 of 1

Miller Park District

Chattanooga, Tennessee

S&ME Job No. 418115036A

S&ME Job No. 418115036A					SHEET 1 of 1	
Logged by: P. Gribben, PG	Elevation: Not su				JNDWATER	
Remarks: Boring offset from B-1 approximately 30 feet	Start Time/Date: Finish Time/Date	11/9/2015 : 11/9/2015	12:15 PM 12:30 PM		Water Level	
east-southeast. Soil sample collected from 5 to 8.2 feet	Detector: Rig Type: Drilling Method:	PID Geo-Probe Direct Push		ATD 11/10/15	Not encountered 7.3 ft	

G	Well Detail	Elev. (ft.)	Depth (ft.)	Material Description	Lith.	s	R	Sample Remarks	Detector Reading
		-		TOPSOIL SILTY CLAY (CH) with rock and brick fragments, orange-brown, moist - FILL			30	Sample No. 1 - 0.7' to 5' No odors	0.0
		-		SILTY CLAY (CH) with weathered limestone fragments, orange-brown, moist - RESIDUUM SAPROLITE, light yellow - RESIDUUM Fractured, gray LIMESTONE, dry - RESIDUUM			35	Sample No. 2 - 5' to 8.2' No odors	0.0
<u> </u>		-	 	SILTY CLAY (CH), orange-brown, moist - RESIDUUM Boring refusal encountered at 8.2 feet.					
19-201 1-2001 1-200 1-3									
			- 15 - 						

BORING NO. B-1C

Ε

Miller Park District

Chattanooga, Tennessee

S&ME Job No. 418115036A

S&ME Job No. 418115036A					SHEET 1 of 1
Logged by: P. Gribben, PG	Elevation: Not su	irveyed		GROU	JNDWATER
	Start Time/Date: Finish Time/Date	11/10/2015	12:10 PM	Date	Water Level
Boring offset from B-1 approximately 20 feet northwest. No sample collected			12.15 PW	ATD	Not encountered
	Detector: Rig Type:	PID Geo-Probe			
	Drilling Method:				

G	Well Detail	Elev. (ft.)	Depth (ft.)	Material Description	Lith.	S	R	Sample Remarks	Deteo Read
	Well not installed	-	- 0	TOPSOIL SILTY CLAY (CH) with scattered rounded pebbles, orange and yellow - FILL			100	Sample No. 1 - 0.9' to 2.5' No odors	0.0
	installed					×	100	Sample No. 2 - 2.5' to 5' No odors	0.0
		-		SILTY CLAY (CL) with scattered limestone fragments, brown, moist - RESIDUUM Weathered LIMESTONE, gray, dry - RESIDUUM Boring refusal encountered at 5.5 feet.		-			
			 - 10						

&ME

BORING NO. B-1D

Miller Park District

Chattanooga, Tennessee

S&ME Job No. 418115036A

BORING NO. B-2

SHEET 1 of 1

Logged by: P. Gribben, PG	Elevation: Not surveyed	GROUNDWATER		
Remarks:	Start Time/Date: 11/9/2015 12:43 PM	Duic	Water Level	
Soil sample collected from 17.5 to 20 feet	Finish Time/Date: 11/9/2015 1:15 PM		Not encountered	
	Detector: PID	11/10/15		
	Rig Type: Geo-Probe	11/10/13		
	Drilling Method: Direct Push			

3	Well Detail	Elev. (ft.)	Depth (ft.)	Material Description	Lith.	s	R	Sample Remarks	Detect Readi
		-	- 0	TOPSOIL SILTY CLAY (CH), orange-brown, moist - FILL			85	Sample No. 1 - 0.5' to 2.5' No odors	0.0
				SILTY CLAY-CLAYEY SILT (CL-ML) with rounded sandstone pebbles, brick fragments and sand, orange-brown, damp - FILL			85	Sample No. 2 - 2.5' to 5' No odors	0.0
			_ 5 _				60	Sample No. 3 - 5' to 7.5' No odors	0.0
		-		SILTY CLAY-CLAYEY SILT (CL-ML) with scattered weathered limestone fragments and black oxide staining, yellow-brown, moist - RESIDUUM			60	Sample No. 4 - 7.5' to 10' No odors	0.0
			- 10 	SILTY CLAY (CH) with scattered limestone fragments and black oxide staining, yellow-brown, moist - RESIDUUM			95	Sample No. 5 - 10' to 12.5' No odors	0.0
							95	Sample No. 6 - 12.5' to 15' No odors	0.0
			15 				100	Sample No. 7 - 15' to 17.5' No odors	0.0
							100	Sample No. 8 - 17.5' to 20' No odors	0.0
	2002	-	- 20 -	Boring refusal encountered at 20 feet.					—

Miller Park District

Chattanooga, Tennessee

S&ME Job No. 418115036A

BORING NO. B-3

S&ME Job No. 418115036A					SHEET 1 of 1
Logged by: P. Gribben, PG	Elevation: Not su	urveyed		GRO	JNDWATER
Remarks: Soil sample collected from 5 to 7.5 feet	Start Time/Date: Finish Time/Date		1:55 PM 2:15 PM		Water Level
	Detector: Rig Type: Drilling Method:	PID Geo-Probe Direct Push	2.101 1	✓ ATD✓ 11/10/15	12 ft 10.45 ft

G	Well Detail	Elev. (ft.)	Depth (ft.)	Material Description	Lith.	S	R	Sample Remarks	Detecto Reading
		-	- 0	TOPSOIL CLAYEY SILT (MH) with rock and brick fragments and trace coal, yellow-brown, moist - FILL			70	Sample No. 1 - 0.3' to 2.5' No odors	0.0
							70	Sample No. 2 - 2.5' to 5' No odors	0.0
			— 5 — - – - –				100	Sample No. 3 - 5' to 7.5' No odors	0.0
							100	Sample No. 4 - 7.5' to 10' No odors	0.0
▼ ∑		-	- 10 - - -	BRICK AND LIMESTONE FRAGMENTS, dry - FILL SILTY CLAY (CH) with limestone fragments from 12-12.5 feet, yellow brown, very moist to moist - RESIDUUM			80	Sample No. 5 - 10' to 12.5' No odors	0.0
			 	Boring refusal encountered at 12.5 feet.					

ENVIRONMENTAL LOG SIMPLE 4281-15-036A.GPJ S&ME 1-18-2012.GDT 12/8/15

Miller Park District

Chattanooga, Tennessee

S&ME Job No. 418115036A

Logged by: P. Gribben, PG Elevation: Not surveyed GROUNDWATER Start Time/Date: 11/9/2015 3:15 PM Remarks: Date Water Level Finish Time/Date: 11/10/2015 10:15 AM Soil sample collected from 17.5-18.1 feet ATD Not encountered PID Geo-Probe Direct Push Detector: 11/10/15 Rig Type: Drilling Method:

G	Well Detail	Elev. (ft.)	Depth (ft.)	Material Description	Lith.	s	R	Sample Remarks	Detecto Reading
			- 0	TOPSOIL CLAYEY SILT (ML) with rock and concrete fragments, brown and yellow-brown, damp - FILL			60	Sample No. 1 - 0.6' to 2.5' No odors	0.0
							60	Sample No. 2 - 2.5' to 5' No odors	0.0
			- 5	SILTY CLAY (CH) with scattered weathered black nodules and weathered limestone at 9-9.5 feet, 11.6-12 feet, and 14.9-15 feet, yellow brown, moist - RESIDUUM			90	Sample No. 3 - 5' to 7.5' No odors	0.0
							90	Sample No. 4 - 7.5' to 10' No odors	0.0
			10 				100	Sample No. 5 - 10' to 12.5' No odors	0.0
							100	Sample No. 6 - 12.5' to 15' No odors	0.0
			— 15 — - - - -				90	Sample No. 7 - 15' to 17.5' No odors	0.0
		:		Weathered LIMESTONE. light gray, dry - RESIDUUM Boring refusal encountered at 18.1 feet.			90	Sample No. 8 - 17.5' to 18.1' No odors	0.0
			- 20						

Miller Park District

Chattanooga, Tennessee

Challanooya, Tennessee			OKING NO. B-5
S&ME Job No. 418115036A			SHEET 1 of 1
Logged by: P. Gribben, PG	Elevation: Not surveyed	GRO	DUNDWATER
Remarks:	Start Time/Date: 11/10/2015 10:29 AM		Water Level
Soil sample collected from 0.3 to 2.6 feet	Finish Time/Date: 11/10/2015 10:30 AM	ATD	Not encountered
	Detector: PID Rig Type: Geo-Probe		
	Drilling Method: Direct Push		

G	Well Detail	Elev. (ft.)	Depth (ft.)	Material Description	Lith.	S	R	Sample Remarks	Detector Reading
G	Well not installed	Elev. (ft.)	Depth (ft.)	Material Description SILTY CLAY (CH) with rock fragments and trace coal, orange and dark brown, moist - FILL SILTY CLAY (CL), yellow brown, damp - RESIDUUM Weathered LIMESTONE, light gray, dry - <u>RESIDUUM</u> Boring refusal encountered at 2.6 feet.	Lith.		95	Sample Remarks Sample No. 1 - 0.3' to 2.6' No odors	0.0
			 - 20						

₽S&ME

BORING NO. B-5

Miller Park District

Chattanooga, Tennessee

S&ME Job No. 418115036A

S&ME Job No. 418115036A					SHEET 1 of 1
Logged by: P. Gribben, PG	Elevation: Not su	irveyed		GRO	UNDWATER
Remarks:	Start Time/Date: Finish Time/Date	11/10/2015	10:35 AM	Date	Water Level
			10:40 AM	ATD	Not encountered
sample collected	Detector:	PID			
	Rig Type:	Geo-Probe			
	Drilling Method:	Direct Push			

G	Well Detail	Elev. (ft.)	Depth (ft.)	Material Description	Lith.	s	R	Sample Remarks	Detector Reading
		-	0 -	TOPSOIL and mulch, brown, damp		<u>u</u>			
	Well not installed	-		SILTY CLAY (CL) with scattered rock fragments and roots, orange brown, dry - FILL		***	75	Sample No. 1 - 1' to 2.5' No odors	0.0
	nstalled	-					75	Sample No. 2 - 2.5' to 5' No odors	0.0
			_ 5 _	SILTY CLAY (CL-CH) with scattered limestone fragments, black -stained nodules, and black oxide staining, yellow brown, damp - RESIDUUM				Sample No. 3 - 5' to 7.5'	
							100	No odors	0.0
		=		Weathered LIMESTONE, light gray, dry - RESIDUUM Boring refusal encountered at 7.5 feet.					
2000-01-107+			 						
			- 20						

&ME BORING NO. B-5A

ENVIRONMENTAL LOG SIMPLE 4281-15-036A.GPJ S&ME 1-18-2012.GDT 12/8/15

Miller Park District

Chattanooga, Tennessee

S&ME Job No. 418115036A

Logged by: P. Gribben, PG	Elevation: Not surveyed	GROUNDWATER
Remarks: Soil sample collected from 0.5 to 5.3 feet	Start Time/Date: 11/9/2015 2:35 F Finish Time/Date: 11/9/2015 2:40 F	Date Water Level
Soil sample collected from 0.5 to 5.5 feet	Detector: PID	III ✓ ATD 5 ft
	Rig Type: Geo-Probe	
	Drilling Method: Direct Push	

					FUSI				
G	Well Detail	Elev. (ft.)	Depth (ft.)	Material Description	Lith.	s	R	Sample Remarks	Detector Reading
	Well not installed	-		TOPSOIL, dark brown, moist SILTY CLAY (CH) with rock fragments, yellow brown, moist - FILL				Sample No. 1 - 0.5' to 5' No odors	
Ā	talled			SILTY CLAY (CH) with scattered limestone fragments, yellow brown, wet - RESIDUUM Weathered LIMESTONE, light gry, fissile, wet -	 	× × × × × × × × × × ×	30	Sample No. 2 - 5' to 5.3' No odors	0.0
				RESIDUUM Boring refusal encountered at 5.7 feet.]				
			10 						
			 - 15						
			- 20						

ENVIRONMENTAL LOG SIMPLE 4281-15-036A.GPJ S&ME 1-18-2012.GDT 12/8/15

SHEET 1 of 1

Miller Park District

Chattanooga, Tennessee

S&ME Job No. 418115036A

BORING NO. B-7

SHEET 1 of 1

	Elevation: Not surveyed		JNDWATER
	Start Time/Date: 11/10/2015 11:00 AM	Date	Water Level
Soil sample collected from 10 to 12.5 feet	Finish Time/Date: 11/10/2015 11:15 AM	ATD	Not encountered
	Detector: PID Rig Type: Geo-Probe	₹ 11/10/15	11.8 ft
	Drilling Method: Direct Push		

G	Well Detail	Elev. (ft.)	Depth (ft.)	Material Description	Lith.	s	R	Sample Remarks	Detector Reading
		-		Brick hardscaping SAND (SP), gray and yellow brown, medium-grained, moist - FILL SILTY CLAY (CH) with rock and brick fragments, brown and orange brown, moist - FILL			95	Sample No. 1 - 0.8' to 2.7' No odors	0.0
		-		CLAYEY SILT (MH) with scattered round pebbles, orange brown with black oxide staining, moist - ALLUVIUM			95	Sample No. 2 - 2.7' to 5' No odors	0.0
		-	- 5 	SILTY CLAY (CH), yellow brown and orange, very			100	Sample No. 3 - 5' to 7.5' No odors	0.0
				moist - RESIDUUM			100	Sample No. 4 - 7.5' to 10' No odors	0.0
Ţ		-	- 10	Weathered LIMESTONE (seam), gray, very moist - RESIDUUM SILTY CLAY (CH), yellow brown and orange, very			100	Sample No. 5 - 10' to 12.5' Possible pesticide odor at 11-11.4	0.0
		-		moist - RESIDUUM			100	Sample No. 6 - 12.5' to 14' No odors	0.0
			15 	Weathered LIMESTONE, gray, moist - RESIDUUM Boring refusal encountered at 14 feet.					
			 20						

ENVIRONMENTAL LOG SIMPLE 4281-15-036A.GPJ S&ME 1-18-2012.GDT 12/8/15

SHEET 1 of 1

Miller Park District

Chattanooga, Tennessee

S&ME Job No. 418115036A

Logged by: P. Gribben, PG	Elevation: Not su	irveyed		GROU	JNDWATER
	Start Time/Date:	11/10/2015	11:55 AM	Date	Water Level
Soil sample collected from 0.8 to 2.5 feet	Finish Time/Date	. 11/10/2015	12:00 PM	ATD	Not encountered
	Detector:	PID			
	Rig Type:	Geo-Probe			
	Drilling Method:	Direct Push			

G	Well Detail	Elev. (ft.)	Depth (ft.)	Material Description	Lith.	s	R	Sample Remarks	Detector Reading
	Well not	-	- 0	TOPSOIL, dark brown, moist SILTY CLAY (CH), yellow brown, moist - RESIDUUM			100	Sample No. 1 - 0.8' to 2.5' No odors	0.0
	Well not installed	-	 - - 	─ Weathered LIMESTONE, gray, dry - RESIDUUM ─ SILTY CLAY-CLAYEY SILT (CL-ML), brown, damp - RESIDUUM			100	Sample No. 2 - 2.5' to 5' No odors	0.0
			- 5 				100	Sample No. 3 - 5' to 6.7' No odors	0.0
207-01-2 24ML 1-10-2412.001 12:413			 - 10 	Weathered LIMESTONE, light gray, dry - RESIDUUM Boring refusal encountered at 6.7 feet.					
			- 15 - 20 -						

ENVIRONMENTAL LOG SIMPLE 4281-15-036A, GPJ S&ME 1-18-2012.GDT 12/8/15

			Well ID:	B-1C
Location:	Miller Park		Sample ID:	He to the second s
Event:				
Date:	the second s		Personnel:	Pat Gribben
Weather:	Cle	ar	_	
Total Dept	h:	ET (BTOC)	Measuring	Dovice: Solinet Water Loval Mater
Depth to v			ivieasuring	d Times
Water Colu			Date an	a time: 11/10/15 @ 1307
Well Diam				
Well Volun				
	al Purge Volume:/AGAL.		(I DIA. = .041 GAL/FT.) (.	1 1/4 DIA.= .064 GAL/FI.)
			edicated polyethylene tub	ing
9			edicated polyetilyiene tab	
		FI	ELD PARAMETERS	
	Purge Vol.			
Time	(gals)		Well Development O	bservations
		Not	observed	
	ļ			
ample infc				e used.
ample info				e used.
ample info				re used.
ample ana	lysis: VQ	CS, PAHS REA	A metals	
ample ana	nt time:	CS, PAHS REA	A metals	
ample ana	nt time:	CS, PAHS REA	A metals	
ample ana	nt time:	CS, PAHS REA	A metals	
ample ana Developme Developme	nt time:	Not performed	A metals '- grab somple	2
ample ana Developme Developme ample Tim	nt time: nt device: e	VOCS + PAHS	Personnel: Pat Gribben FT.(BTOC) Measuring Device: Solinst Water Level Meter FT.(BTOC) Date and Time: ///o / 15 @ 1207 FT. WELL DIAMETER GAL/FT. [(2" DIA.= .163 GAL/FT.) (4" DIA. = .653 GAL/FT.)] GAL. (1" DIA.= .041 GAL/FT.) (1 1/4 " DIA.= .064 GAL/FT.) GAL. GAL. FIELD PARAMETERS Well Development Observations Not observed ner number, size, and type, preservative used. Ks RCAA meteb Formed - grab somples Pater 1315 - PCRA metric used.	
ample ana Developme Developme ample Tim	nt time: nt device: e	y of Chattanooga Well ID: B-1C ler Park Sample ID: iited Phase II ESA Personnel: Pat Gribben Illiolis Personnel: Pat Gribben Personnel: Pat Gribben Illiolis Personnel: Observed Illiolis Personnel: Pat Gribben Illiolis Personnel: Intervention of the part of the		
ample ana Developme Developme ample Tim ample App	nt time: nt device: e	VOCS + PAHS	A metals - grab somple 11/10/15 @ 1315	2
ample ana Developme Developme ample Tim	nt time: nt device: e	VOCS + PAHS	A metals - grab somple 11/10/15 @ 1315	2
ample ana Developme Developme ample Tim ample App	nt time: nt device: e	VOCS + PAHS	A metals - grab somple 11/10/15 @ 1315	2
ample ana Developme Developme ample Tim ample App	nt time: nt device: e	VOCS + PAHS	A metals - grab somple 11/10/15 @ 1315	2
ample ana Developme Developme ample Tim ample App	nt time: nt device: e	VOCS + PAHS	A metals - grab somple 11/10/15 @ 1315	2
ample ana Developme Developme ample Tim ample App lotes:	nt time: nt device: e	VOCS + PAHS	A metals - grab somple 11/10/15 @ 1315	2
ample ana Developme Developme ample Tim ample App	nt time: nt device: e	VOCS + PAHS	A metals - grab somple 11/10/15 @ 1315	2

			WAT	ER SAMPLE DATA SHEE	т
Client:	City of Cha	ittanooga		Well ID:	B-2
Location:	Miller Park			Sample ID:	0 1-
Event:	Limited Ph	ase II ESA			
Date:	111	10/15		Personnel:	Pat Gribben
Weather:		ear			
Total Dept	h:	19.6	FT.(BTOC)	Measuring	Device: Solinst Water Level Meter
Depth to w		Dry	FT.(BTOC)	Date ar	d Time: 11/10/15 @ 1419
Water Colu	umn:	- July	FT.		WELL DIAMETER
Well Diame	eter		GAL/FT.		(4 " DIA. = .653 GAL/FT.)]
Well Volun	ne:		GAL.		1 1/4 " DIA.= .064 GAL/FT.)
Total Purge	e Volume:		GAL.		
Purge Devi		Peristaltic		edicated polyethylene tub	bing
			EII	ELD PARAMETERS	
	Purge Vol.	1		LU FANAMETENS	
Time	(gals)			Wall Davalanment C	N
Time	(yais)			Well Development C	DServations
Constant of Coldes	l Larcana ang sana sana sana sana sana sana sa	Maria ana amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o amin'ny faritr'o			
Sample Into	prmation: me	thod, conta	ner number,	size, and type, preservati	ve used.
Sample ana	ilysis:				
					-
Developme					
Developme	nt device:				
Sample Tim					
Sample App	pearance (clar	ity, etc.)			
Notes:					
NOLES.					
	A				
	A_		41		
Signed by:	Kad	I HA	H		inter-
	1 un			Dat	e

			TER SAMPLE DATA SHE	
Client:		attanooga	Well ID:	B-3
Location:	Miller Park		Sample ID:	
Event:		hase II ESA		
Date:	1/10		Personnel:	Pat Gribben
Weather:	_ Clee	ut		
Total Dept	h.	12.5 FT.(BTOC)	Mooguring	Devices Collingt Material Later
Depth to w		<u>10.45</u> FT.(BTOC)		Device: Solinst Water Level Meter
Water Colu			Date a	nd Time: 11/10/15 @ 1326 WELL DIAMETER
Well Diame		2.05 FT.	[(3" DIA - 162 CAL /FT	.) (4 " DIA. = .653 GAL/FT.)]
Well Volum				
Total Purge		0.084 GAL	(1 DIA.= .041 GAL/FT.)	(1 1/4 " DIA.= .064 GAL/FT.)
Purge Devi		0. 25 GAL.		
ruige Devi	ce.	Peristance pump with d	edicated polyethylene tu	bing
		<u></u>	ELD PARAMETERS	
		T T	LEP CANALYIE LEND	
	Purge Vol.			
Time	(gals)		Well Development (Observations
1514	0.25	cloudy to	clear	
		(
			the second s	
			Late of the second s	
Sample info	mation: me	thod, container number	size, and type, preservati	veused
Sample ana		CS PAHS RCR		
	, , , , , , , , , , , , , , , , , , , ,	Co, PITPS RUE	1 metals	
			and the second	
Developmer	nt time:	1514-1522		
Developmen		1514-1522		e , , , , , , , , , , , , , , , , , , ,
		peristalific p	ump + polyett	ylone tubing
Sample Time	ρ		11	2
Sample App	earance (clar	VOCS + PHHS II	110/15@ 1525	RCRA metalo 11/11/15 @ 10
Sumple App		ily, elc.) Slighth	a stand bro	wn
Notoc		· (
Notes:				
		4		
	/	1 At		
c'	11-	r MIL	/	/
Signed by:	Pat	ITO		15
			Dat	te

			WAT	TER SAMPLE DATA SHE	T
Client:	City of Cha	attanooga		Well ID:	B-4
Location:	Miller Park	(Sample ID:	
Event:	Limited Ph	ase II ESA			
Date:	11/10/15			ark Sample ID: Phase II ESA Personnel: Pat Gribben I control Date and Time: III foot foot I control FT. WELL DIAMETER GAL./FT. [(2" DIA.= .163 GAL/FT.) (4" DIA.= .653 GAL/FT.)] GAL. (1" DIA.= .041 GAL/FT.) (1 1/4 " DIA.= .064 GAL/FT.) GAL. Peristaltic pump with dedicated polyethylene tubing FIELD PARAMETERS Ditempositions Well Development Observations Image: Control of the servations I control Image: Control of the servations	
Weather:		City of Chattanooga Well ID: B-4 Miller Park Sample ID: Limited Phase II ESA Personnel: Pat Gribben Imited Phase II ESA Measuring Device: Solinst Water Level Meter Imited Phase II ESA Well Date and Time: Imited Phase II ESA Volume: GAL (I'' DIA = .041 GAL/FT.) (1 1/4 " DIA = .053 GAL/FT.) Volume: GAL. Peristaltic pump with dedicated polyethylene tubing FIELD PARAMETERS Purge Vol. Purge Vol. (gals) Well Development Observations Purge Vol. Imited Phase II Phase II Phase II Phase II Phase II Phase II Pha			
Total Dan	the		ET (PTOC)		
Total Dep					
Depth to v		Dry		Date a	nd Time: 11/10/15 @ 13.30
Water Col					WELL DIAMETER
Well Diam			_GAL/FT.	[(2 " DIA.= .163 GAL/FT.) (4 " DIA. = .653 GAL/FT.)]
Well Volur				(1" DIA.= .041 GAL/FT.)	(1 1/4 " DIA.= .064 GAL/FT.)
Purge Dev	vice:	Peristaltic	pump with d	edicated polyethylene tu	bing
			FI	FID PARAMETERS	
	Purge Vol	1			
Time					
Time	(yais)			Well Development (Observations
				Mills control supplies control	
Sample info	ormation: me	thod, conta	iner number,	size, and type, preservati	ve used.
Sample and	alysis:			en e	
Developme					
Developme	ent device:				
Sample Tim					
	1000				
Sample App	pearance (clar	ity, etc.)			
Notos					
Notes:					
				and the second	
	/	1	11		
	/	A 17	ett-		1 1
Signed by:	- Ta		\mathbb{N}	11)	10/15
		, , , , , , , , , , , , , , , , , , , ,		Dat	e e

		WAT	FER SAMPLE DATA SHEE	Т
Client:	City of Cha	attanooga	Well ID:	8-7
Location:	Miller Park	(Sample ID:	
Event:	Limited Ph	ase II ESA		
Date:	ill	1/15	Personnel:	Pat Gribben
Weather:	Clea	N		
Total Dept	h:	14-0 FT.(BTOC)	Measuring	Device: Solinst Water Level Meter
Depth to v	vater:	11.8 FT.(BTOC)	Date an	d Time: 11/11/15 (> 1335
Water Colu	umn:	2.2 FT.		WELL DIAMETER
Well Diam	eter	0.044 GAL/FT.	[(2" DIA.= .163 GAL/FT.)	(4 " DIA. = .653 GAL/FT.)]
Well Volur	ne:	0.090 GAL.		(1 1/4 " DIA.= .064 GAL/FT.)
Total Purg	e Volume:	0.27 GAL.		
Purge Dev			ledicated polyethylene tub	ping
5				
		FI	ELD PARAMETERS	
	Purge Vol.			
Time	(gals)			
			Well Development C	
1505	0.25	Near Any	ness slighth	stained yellow
	+	/	/	
			51.1 5 51 5	
Sample inf	ormation: m	ethod, container numbe	r, size, and type, preservati	ve used.
Sample and		locs		
				free server and a server a
Developme	ent time:	1459-1505	1.00	
Developme		noute 14's	+ to limite	I polyethylene tubing
		perstatore p	ing valancosco	pougethy lene tubing
Sample Tin	he	ulilie @	0000	
	pearance (cla	arity etc)	0750	
Sample Ap	pediance (cla	sight	gothing yel	low, no oclars
Notes:			, .	
notes.				
		A		
	/	1 M	4	
C		IT HAA	5	11-
Signed by:	- Pe	1 6/1/		11.15
			Da	te

				SOIL GAS FIELD LOG				
Field Parameter	Units			Soil Gas I	ocation and Correspondi	ng Values		
Sample ID		SG-1	SG-2	SG-3	SG-4	SG-5	SG-6	SG-7
Physical Locatio	'n	Northwest portion of the site (along Market Street)	Southwest portion of the site (along Market Street)	South site boundary (along East 10th Street)	Southeast portion of the site	Along the eastern site boundary (south of fountain)	Along the eastern site boundary (north of fountain)	Northeast portion of the site
Lab canister #	#	1032	1170	1425	482	1050	1540	1691
Flow controller pre-set	Minutes/ Hours	30 minutes	30 minutes	30 minutes	30 minutes	30 minutes	30 minutes	30 minutes
Sample Depth	Feet/ Inches	3 feet	6 inches	3 feet	3 feet	14 inches	6 inches	6 inches
Sample train purge volume	Liters	1.48	0.23	1.48	1.48	0.54	0.23	0.23
Peak PID reading	PPM	TEST NOT PERFORMED	TEST NOT PERFORMED	TEST NOT PERFORMED	TEST NOT PERFORMED	TEST NOT PERFORMED	TEST NOT PERFORMED	TEST NOT PERFORMED
Vacuum test (initial)	Inches Hg	20	20	20	20	20	20	20
Vacuum test (final)	Inches Hg	20	20	20	20	20	20	20
Sample start	Time	9:03 AM	9:52 AM	9:46 AM	10:19 AM	11:07 AM	11:15 AM	11:29 AM
Sample stop	Time	9:34 AM	10:22 AM	10:16 AM	10:51 AM	11:37 AM	11:47 AM	11:59 AM
Canister vacuum (initial)	Inches Hg	28.5	28.5	29.5	29.5	28	28.5	29.5
Canister vacuum (final)	Inches Hg	3	3	3.5	1.5	2	2	3.0
Total sample time	Minutes	31	30	30	32	30	32	30
Date collected	Date	11/5/2015	11/5/2015	11/5/2015	11/5/2015	11/5/2015	11/5/2015	11/5/2015

Formula for calculating pre-sample purge volume:

(radius of the tubing (in))² (length of sample train (in)) (3.1416) + (radius of the borehole (in))² (depth of borehole (in)) (3.1416)

Tubing size: 0.180 inches I.D.

Diameter of the borehole: 1 inch

Purge Device Flow (L/min): 0.187 L/min

1 cubic inch = 0.0164 Liters

Appendix B

Laboratory Analytical Results and Chain of Custody Documentation

ANALYTICAL REPORT

November 13, 2015

S&ME Inc. - Hixson TN.

Sample Delivery Group: Samples Received: Project Number: Description:

L799444 11/06/2015 4181-15-036A Miller Park Limited Phase II

Report To:

Mr. Pat Gribben 4291 HWY 58 Suite 101 Chattanooga, TN 37416

Entire Report Reviewed By:

om

Tom Mellette Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

*	
¹ Cp	

Ss

Cn

Sr

Qc

GI

ΆI

Sc

¹ Cp: Cover Page	1
² Tc: Table of Contents	2
³ Ss: Sample Summary	3
⁴ Cn: Case Narrative	4
⁵ Sr: Sample Results	5
SG-1 3FT L799444-01	5
SG-2 6IN L799444-02	7
SG-3 3FT L799444-03	9
SG-4 3FT L799444-04	11
SG-5 14IN L799444-05	13
SG-6 6IN L799444-06	15
SG-7 6IN L799444-07	17
⁶ Qc: Quality Control Summary	19
Volatile Organic Compounds (MS) by Method TO-15	19
⁷ GI: Glossary of Terms	28
⁸ Al: Accreditations & Locations	29
⁹ Sc: Chain of Custody	30

SDG: L799444

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	JAMPLE J	JIVIIVIAI	X I	0.1	
SG-1 3FT L799444-01 Air			Collected by Pat Gribben	Collected date/time 11/05/15 09:03	Received date/time 11/06/15 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (MS) by Method TO-15	WG828146	1	11/11/15 22:16	11/11/15 22:16	DWR
/olatile Organic Compounds (MS) by Method TO-15	WG828951	1	11/13/15 15:11	11/13/15 15:11	SNH
SG-2 6IN L799444-02 Air			Collected by Pat Gribben	Collected date/time 11/05/15 09:52	Received date/time 11/06/15 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (MS) by Method TO-15	WG828146	1	11/11/15 23:10	11/11/15 23:10	DWR
SG-3 3FT L799444-03 Air			Collected by Pat Gribben	Collected date/time 11/05/15 09:46	Received date/time 11/06/15 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (MS) by Method TO-15	WG828146	1	11/12/15 00:04	11/12/15 00:04	DWR
SG-4 3FT L799444-04 Air			Collected by Pat Gribben	Collected date/time 11/05/15 10:19	Received date/time 11/06/15 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (MS) by Method TO-15	WG828146	1	11/12/15 00:58	11/12/15 00:58	DWR
Volatile Organic Compounds (MS) by Method TO-15	WG828951	2	11/13/15 15:56	11/13/15 15:56	SNH
SG-5 14IN L799444-05 Air			Collected by Pat Gribben	Collected date/time 11/05/15 11:07	Received date/time 11/06/15 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (MS) by Method TO-15	WG828146	1	11/12/15 01:52	11/12/15 01:52	DWR
Volatile Organic Compounds (MS) by Method TO-15	WG828674	2	11/12/15 16:35	11/12/15 16:35	DWR
SG-6 6IN L799444-06 Air			Collected by Pat Gribben	Collected date/time 11/05/15 11:15	Received date/time 11/06/15 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (MS) by Method TO-15	WG828146	1	11/12/15 02:48	11/12/15 02:48	DWR
SG-7 6IN L799444-07 Air			Collected by Pat Gribben	Collected date/time 11/05/15 11:29	Received date/time 11/06/15 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (MS) by Method TO-15	WG828674	1	11/12/15 17:31	11/12/15 17:31	DWR

SDG: L799444

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Tom Mellette Technical Service Representative

SDG: L799444 DATE/TIME: 11/13/15 17:38 PAGE: 4 of 30

SAMPLE RESULTS - 01 L799444

¥

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	ppbv	ug/m3	Qualifier	Dilution	Batch	
nalyte			ppb	ug/m3	ppb					
cetone	67-64-1	58.10	1.25	2.97	39.3	93.4		1	WG828146	
yl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG828146	
enzene	71-43-2	78.10	0.200	0.639	2.37	7.57		1	WG828146	
enzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG828146	
romodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG828146	
romoform	75-25-2	253	0.600	6.21	ND	ND		1	WG828146	
romomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG828146	
3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG828146	
arbon disulfide	75-15-0	76.10	0.200	0.622	1.38	4.28		1	WG828146	
arbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG828146	
nlorobenzene	108-90-7	113	0.200	0.924	0.522	2.41		1	WG828146	
loroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG828146	
nloroform	67-66-3	119	0.200	0.973	0.436	2.12		1	WG828146	
nloromethane	74-87-3	50.50	0.200	0.413	0.642	1.33		1	WG828146	
Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG828146	
/clohexane	110-82-7	84.20	0.200	0.689	0.697	2.40		1	WG828146	
bromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG828146	
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG828146	
2-Dichlorobenzene	95-50-1	188	0.200	1.34	0.231	1.39		1	WG828146	
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG828146	
	106-46-7	147			0.295			1		
A-Dichlorobenzene			0.200	1.20		1.77 ND			WG828146	
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG828146	
l-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG828146	
I-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG828146	
s-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG828146	
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG828146	
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG828146	
s-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG828146	
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG828146	
4-Dioxane	123-91-1	88.10	0.200	0.721	0.607	2.19		1	WG828146	
hanol	64-17-5	46.10	0.630	1.19	21.7	40.9		1	WG828146	
hylbenzene	100-41-4	106	0.200	0.867	0.328	1.42		1	WG828146	
Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG828146	
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.291	1.64		1	WG828146	
ichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.429	2.12		1	WG828146	
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG828146	
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG828146	
eptane	142-82-5	100	0.200	0.818	2.84	11.6		1	WG828146	
exachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG828146	
Hexane	110-54-3	86.20	0.200	0.705	2.72	9.60		1	WG828146	
opropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG828146	
ethylene Chloride	75-09-2	84.90	0.200	0.694	0.232	0.807		1	WG828146	
ethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG828146	
Butanone (MEK)	78-93-3	72.10	1.25	3.69	6.77	20.0		1	WG828146	
Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG828146	
ethyl methacrylate	80-62-6	100.12	0.200	0.819	0.305	1.25		1	WG828146	
TBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG828146	
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG828146	
Propanol	67-63-0	60.10	1.25	3.07	1.73	4.26		1	WG828140 WG828146	
•	115-07-1	42.10	0.400	0.689	1.73	32.0		1		
opene									WG828951	
yrene	100-42-5	104	0.200	0.851	0.241	1.02		1	WG828146	
I,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG828146	
etrachloroethylene	127-18-4	166	0.200	1.36	1.70	11.5		1	WG828951	
etrahydrofuran	109-99-9	72.10	0.200	0.590	0.355	1.05		1	WG828146	
oluene	108-88-3	92.10	0.200	0.753	5.62	21.2		1	WG828146	
2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG828146	
	OUNT: - Hixson TN.			PROJECT: 4181-15-036		SDG: L799444		DATE/TI 11/13/15 1		PAG 5 of

₩

GI

Â

Sc

Vinyl Bromide 593-60-2 106.95 0.200 0.875 ND ND 1 WG828146 Vinyl acetate 108-05-4 86.10 0.200 0.704 ND ND 1 WG828146 m&p-Xylene 1330-20-7 106 0.400 1.73 1.44 6.24 1 WG828146		CAS #	Mol. Wt.	RDL1	RDL2	ppbv	ug/m3	Qualifier	Dilution	Batch	
1,1,2-Trichloroethane79-00-51330.2001.09NDND1WG828146Trichloroethylene79-01-61310.2001.070.3281.761WG8289511,2,4-Trimethylbenzene95-63-61200.2000.9820.4962.431WG8281461,3,5-Trimethylbenzene108-67-81200.2000.982NDND1WG8281462,2,4-Trimethylpentane540-84-1114.220.2000.9340.5092.381WG8281462,2,4-Trimethylpentane540-84-114.220.2000.511NDND1WG828146Vinyl chloride75-01-462.500.2000.511NDND1WG828146Vinyl acetate108-05-486.100.2000.704NDND1WG828146why Aylene1330-20-71060.4001.731.446.241WG828146o-Xylene95-47-61060.2000.8670.6502.821WG828146	Analyte			ppb	ug/m3	ppb					
Trichloroethylene79-01-61310.2001.070.3281.761WG8289511,2,4-Trimethylbenzene95-63-61200.2000.9820.4962.431WG8281461,3,5-Trimethylbenzene108-67-81200.2000.982NDND1WG8281462,2,4-Trimethylpentane540-84-1114.220.2000.9340.5092.381WG8281462,2,4-Trimethylpentane540-84-114.220.2000.511NDND1WG828146Vinyl chloride75-01-462.500.2000.511NDND1WG828146Vinyl Bromide593-60-2106.950.2000.875NDND1WG828146Vinyl acetate108-05-486.100.2000.704NDND1WG828146why Axylene1330-20-71060.4001.731.446.241WG828146o-Xylene95-47-61060.2000.8670.6502.821WG828146	1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG828146	
1,2,4-Trimethylbenzene95-63-61200.2000.9820.4962.431WG8281461,3,5-Trimethylbenzene108-67-81200.2000.982NDND1WG8281462,2,4-Trimethylpentane540-84-1114.220.2000.9340.5092.381WG8281462,2,4-Trimethylpentane540-84-1114.220.2000.9340.5092.381WG828146Vinyl chloride75-01-462.500.2000.511NDND1WG828146Vinyl Bromide593-60-2106.950.2000.875NDND1WG828146Vinyl acetate108-05-486.100.2000.704NDND1WG828146wap-Xylene1330-20-71060.4001.731.446.241WG828146o-Xylene95-47-61060.2000.8670.6502.821WG828146	1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG828146	
1,3,5-Trimethylbenzene108-67-81200.2000.982NDND1WG8281462,2,4-Trimethylpentane540-84-1114.220.2000.9340.5092.381WG828146Vinyl chloride75-01-462.500.2000.511NDND1WG828146Vinyl Bromide593-60-2106.950.2000.875NDND1WG828146Vinyl acetate108-05-486.100.2000.704NDND1WG828146wap-Xylene1330-20-71060.4001.731.446.241WG828146o-Xylene95-47-61060.2000.8670.6502.821WG828146	Trichloroethylene	79-01-6	131	0.200	1.07	0.328	1.76		1	WG828951	
2,2,4-Trimethylpentane540-84-1114.220.2000.9340.5092.381WG828146Vinyl chloride75-01-462.500.2000.511NDND1WG828146Vinyl Bromide593-60-2106.950.2000.875NDND1WG828146Vinyl acetate108-05-486.100.2000.704NDND1WG828146m&p-Xylene1330-20-71060.4001.731.446.241WG828146o-Xylene95-47-61060.2000.8670.6502.821WG828146	1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	0.496	2.43		1	WG828146	
Vinyl chloride 75-01-4 62.50 0.200 0.511 ND ND 1 WG828146 Vinyl Bromide 593-60-2 106.95 0.200 0.875 ND ND 1 WG828146 Vinyl acetate 108-05-4 86.10 0.200 0.704 ND ND 1 WG828146 m&p-Xylene 1330-20-7 106 0.400 1.73 1.44 6.24 1 WG828146 o-Xylene 95-47-6 106 0.200 0.867 0.650 2.82 1 WG828146	1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG828146	
Vinyl Bromide593-60-2106.950.2000.875NDND1WG828146Vinyl acetate108-05-486.100.2000.704NDND1WG828146m&p-Xylene1330-20-71060.4001.731.446.241WG828146o-Xylene95-47-61060.2000.8670.6502.821WG828146	2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	0.509	2.38		1	WG828146	
Vinyl acetate 108-05-4 86.10 0.200 0.704 ND ND 1 WG828146 m&p-Xylene 1330-20-7 106 0.400 1.73 1.44 6.24 1 WG828146 o-Xylene 95-47-6 106 0.200 0.867 0.650 2.82 1 WG828146	Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG828146	
m&p-Xylene 1330-20-7 106 0.400 1.73 1.44 6.24 1 WG828146 o-Xylene 95-47-6 106 0.200 0.867 0.650 2.82 1 WG828146	Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG828146	
o-Xylene 95-47-6 106 0.200 0.867 0.650 2.82 1 WG828146	Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG828146	
	m&p-Xylene	1330-20-7	106	0.400	1.73	1.44	6.24		1	WG828146	
(S) 1,4-Bromofluorobenzene 460-00-4 175 60.0-140 104 WG828146	o-Xylene	95-47-6	106	0.200	0.867	0.650	2.82		1	WG828146	
	(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		104				WG828146	

SAMPLE RESULTS - 02 L799444

¥

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	ppbv	ug/m3	Qualifier	Dilution	Batch	
Analyte			ppb	ug/m3	ppb					
cetone	67-64-1	58.10	1.25	2.97	13.6	32.4		1	WG828146	
Allyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG828146	
Benzene	71-43-2	78.10	0.200	0.639	1.65	5.26		1	WG828146	
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG828146	
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG828146	
romoform	75-25-2	253	0.600	6.21	ND	ND		1	WG828146	
romomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG828146	
.3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG828146	
arbon disulfide	75-15-0	76.10	0.200	0.622	1.21	3.77		1	WG828146	
arbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG828146	
hlorobenzene	108-90-7	113	0.200	0.924	0.636	2.94		1	WG828146	
hloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG828146	
hloroform	67-66-3	119	0.200	0.973	0.326	1.59		1	WG828146	
hloromethane	74-87-3	50.50	0.200	0.413	0.234	0.484		1	WG828146	
-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG828146	
yclohexane	110-82-7	84.20	0.200	0.689	0.433	1.49		1	WG828146	
ibromochloromethane	124-48-1	208	0.200	1.70	0.435 ND	ND		1	WG828146	
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG828146	
2-Dichlorobenzene	95-50-1	100	0.200	1.54	0.246	1.48		1		
									WG828146	
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG828146	
4-Dichlorobenzene	106-46-7	147	0.200	1.20	0.326	1.96		1	WG828146	
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG828146	
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG828146	
1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG828146	
s-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG828146	
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG828146	
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG828146	
s-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG828146	
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG828146	
4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG828146	
thanol	64-17-5	46.10	0.630	1.19	17.3	32.7		1	WG828146	
hylbenzene	100-41-4	106	0.200	0.867	0.277	1.20		1	WG828146	
-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG828146	
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.306	1.72		1	WG828146	
ichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.528	2.61		1	WG828146	
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG828146	
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG828146	
eptane	142-82-5	100	0.200	0.818	0.392	1.60		1	WG828146	
lexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG828146	
-Hexane	110-54-3	86.20	0.200	0.705	1.08	3.82		1	WG828146	
opropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG828146	
lethylene Chloride	75-09-2	84.90	0.200	0.694	0.552	1.92		1	WG828146	
ethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG828146	
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	1.43	4.21		1	WG828146	
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG828146	
lethyl methacrylate	80-62-6	100.10	0.200	0.819	ND	ND		1	WG828146	
TBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG828146	
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG828146	
Propanol	91-20-3 67-63-0	60.10	1.25	3.30	ND 1.76	ND 4.33		1		
•									WG828146	
ropene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG828146	
yrene	100-42-5	104	0.200	0.851	ND	ND		1	WG828146	
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG828146	
etrachloroethylene	127-18-4	166	0.200	1.36	3.18	21.6		1	WG828146	
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG828146	
oluene	108-88-3	92.10	0.200	0.753	4.73	17.8		1	WG828146	
2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG828146	
	OUNT: - Hixson TN.			PROJECT: 4181-15-036		SDG: L799444		DATE/TI 11/13/15 1		PAG 7 of 3

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	ppbv	ug/m3	Qualifier	Dilution	Batch
Analyte			ppb	ug/m3	ppb				
1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG828146
1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG828146
richloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG828146
,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	0.351	1.72		1	WG828146
,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	0.248	1.22		1	WG828146
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG828146
/inyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG828146
'inyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG828146
/inyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG828146
n&p-Xylene	1330-20-7	106	0.400	1.73	1.86	8.07		1	WG828146
-Xylene	95-47-6	106	0.200	0.867	0.635	2.75		1	WG828146
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		101				WG828146

SDG: L799444

*

	CAS #	Mol. Wt.	RDL1	RDL2	ppbv	ug/m3	Qualifier	Dilution	Batch	
nalyte			ppb	ug/m3	ppb					
cetone	67-64-1	58.10	1.25	2.97	4.05	9.63		1	WG828146	
llyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG828146	
Benzene	71-43-2	78.10	0.200	0.639	5.14	16.4		1	WG828146	
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG828146	
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG828146	
Bromoform	75-25-2	253	0.600	6.21	ND	ND		1	WG828146	
Bromomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG828146	
.3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG828146	
arbon disulfide	75-15-0	76.10	0.200	0.622	2.47	7.68		1	WG828146	
arbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG828146	
hlorobenzene	108-90-7	113	0.200	0.924	0.381	1.76		1	WG828146	
hloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG828146	
hloroform	67-66-3	119	0.200	0.973	0.352	1.71		1	WG828146	
hloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG828146	
-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG828146	
yclohexane	110-82-7	84.20	0.200	0.689	0.456	1.57		1	WG828146	
ibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG828146	
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG828146	
2-Dichlorobenzene	95-50-1	147	0.200	1.20	ND	ND		1	WG828146	
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG828146	
	106-46-7	147	0.200	1.20	0.259	1.56		1		
4-Dichlorobenzene									WG828146	
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG828146	
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG828146	
1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG828146	
s-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG828146	
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG828146	
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG828146	
s-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG828146	
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG828146	
4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG828146	
thanol	64-17-5	46.10	0.630	1.19	6.28	11.8		1	WG828146	
thylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG828146	
-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG828146	
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.282	1.58		1	WG828146	
vichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.398	1.97		1	WG828146	
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG828146	
,2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG828146	
leptane	142-82-5	100	0.200	0.818	1.01	4.12		1	WG828146	
lexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG828146	
-Hexane	110-54-3	86.20	0.200	0.705	0.761	2.68		1	WG828146	
sopropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG828146	
lethylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG828146	
lethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG828146	
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG828146	
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG828146	
lethyl methacrylate	80-62-6	100.10	0.200	0.819	ND	ND		1	WG828146	
ITBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG828146	
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG828146	
-Propanol	67-63-0	60.10	1.25	3.07	1.30	3.20		1	WG828146	
ropene	115-07-1	42.10	0.400	0.689	2.83	4.87		1	WG828146	
yrene	100-42-5	104	0.200	0.851	ND	ND		1	WG828146	
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG828146	
etrachloroethylene	127-18-4	166	0.200	1.36	11.9	80.5		1	WG828146	
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG828146	
oluene	108-88-3	92.10	0.200	0.753	2.65	9.96		1	WG828146	
2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG828146	
	DUNT:			PROJECT:		SDG:		DATE/TI		PAG

*

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	ppbv	ug/m3	Qualifier	Dilution	Batch	
Analyte			ppb	ug/m3	ppb					
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG828146	_
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG828146	
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG828146	
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG828146	
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG828146	
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG828146	
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG828146	
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG828146	
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG828146	
m&p-Xylene	1330-20-7	106	0.400	1.73	0.595	2.58		1	WG828146	
o-Xylene	95-47-6	106	0.200	0.867	0.307	1.33		1	WG828146	
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		102				WG828146	

SDG: L799444

*

	CAS #	Mol. Wt.	RDL1	RDL2	ppbv	ug/m3	Qualifier	Dilution	Batch	
Analyte			ppb	ug/m3	ppb					
Acetone	67-64-1	58.10	1.25	2.97	9.44	22.4		1	WG828146	
llyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG828146	
Benzene	71-43-2	78.10	0.200	0.639	1.30	4.17		1	WG828146	
Benzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG828146	
Bromodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG828146	
romoform	75-25-2	253	0.600	6.21	ND	ND		1	WG828146	
romomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG828146	
3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG828146	
arbon disulfide	75-15-0	76.10	0.200	0.622	1.37	4.27		1	WG828146	
arbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG828146	
hlorobenzene	108-90-7	113	0.200	0.924	0.516	2.38		1	WG828146	
hloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG828146	
hloroform	67-66-3	119	0.200	0.973	0.233	1.14		1	WG828146	
hloromethane	74-87-3	50.50	0.200	0.413	0.341	0.705		1	WG828146	
Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG828146	
yclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG828146	
ibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG828146	
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG828146	
2-Dichlorobenzene	95-50-1	147	0.200	1.20	0.221	1.33		1	WG828146	
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG828146	
	106-46-7	147	0.200	1.20	0.301	ND 1.81				
4-Dichlorobenzene								1	WG828146	
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG828146	
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG828146	
1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG828146	
s-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG828146	
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG828146	
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG828146	
s-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG828146	
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG828146	
4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG828146	
hanol	64-17-5	46.10	0.630	1.19	8.17	15.4		1	WG828146	
thylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG828146	
-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG828146	
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.294	1.65		1	WG828146	
Vichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.479	2.37		1	WG828146	
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG828146	
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG828146	
leptane	142-82-5	100	0.200	0.818	ND	ND		1	WG828146	
lexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG828146	
-Hexane	110-54-3	86.20	0.200	0.705	0.268	0.946		1	WG828146	
opropylbenzene	98-82-8	120.20	0.200	0.705	0.268 ND	0.946 ND		1	WG828146	
lethylene Chloride	98-82-8 75-09-2	84.90		0.983	ND	ND		1		
•			0.200						WG828146	
lethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG828146	
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	2.38	7.01		1	WG828146	
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG828146	
ethyl methacrylate	80-62-6	100.12	0.200	0.819	0.248	1.01		1	WG828146	
ITBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG828146	
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG828146	
Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG828146	
opene	115-07-1	42.10	0.800	1.38	4.27	7.35		2	WG828951	
yrene	100-42-5	104	0.200	0.851	ND	ND		1	WG828146	
I,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG828146	
etrachloroethylene	127-18-4	166	0.200	1.36	ND	ND		1	WG828146	
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG828146	
oluene	108-88-3	92.10	0.200	0.753	3.32	12.5		1	WG828146	
,2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG828146	
E, E HIGHOLOUCHZCHC	120 02 1	101	0.000	1.00	nu			1		
	OUNT: - Hixson TN.			PROJECT: 4181-15-036		SDG: L799444		DATE/TI 11/13/15 1		PAG 11 of 3

*

GI

Â

Sc

	CAS #	Mol. Wt.	RDL1	RDL2	ppbv	ug/m3	Qualifier	Dilution	Batch
Analyte			ppb	ug/m3	ppb				
,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG828146
,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG828146
Frichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG828146
,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG828146
,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG828146
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG828146
/inyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG828146
inyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG828146
/inyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG828146
n&p-Xylene	1330-20-7	106	0.400	1.73	ND	ND		1	WG828146
-Xylene	95-47-6	106	0.200	0.867	0.266	1.15		1	WG828146
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		103				WG828146

*

	CAS #	Mol. Wt.	RDL1	RDL2	ppbv	ug/m3	Qualifier	Dilution	Batch	
nalyte			ppb	ug/m3	ppb					
cetone	67-64-1	58.10	1.25	2.97	8.01	19.0		1	WG828146	
llyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG828146	
enzene	71-43-2	78.10	0.200	0.639	2.37	7.58		1	WG828146	
enzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG828146	
romodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG828146	
romoform	75-25-2	253	0.600	6.21	ND	ND		1	WG828146	
romomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG828146	
3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG828146	
arbon disulfide	75-15-0	76.10	0.200	0.622	0.484	1.51		1	WG828146	
arbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG828146	
hlorobenzene	108-90-7	113	0.200	0.924	0.739	3.42		1	WG828146	
hloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG828146	
hloroform	67-66-3	119	0.200	0.973	1.44	7.03		1	WG828146	
hloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG828146	
-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG828146	
yclohexane	110-82-7	84.20	0.200	0.689	1.41	4.87		1	WG828146	
ibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG828146	
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG828146	
2-Dichlorobenzene	95-50-1	147	0.200	1.34	0.311	1.87		1	WG828146	
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG828146	
4-Dichlorobenzene	106-46-7	147	0.200	1.20	0.384	2.31		1	WG828146	
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG828146	
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG828146	
1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG828146	
s-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG828146	
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG828146	
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG828146	
s-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG828146	
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG828146	
4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG828146	
hanol	64-17-5	46.10	0.630	1.19	9.28	17.5		1	WG828146	
thylbenzene	100-41-4	106	0.200	0.867	0.384	1.67		1	WG828146	
-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG828146	
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.718	4.04		1	WG828146	
ichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.420	2.08		1	WG828146	
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG828146	
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG828146	
eptane	142-82-5	100	0.200	0.818	1.20	4.93		1	WG828146	
exachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG828146	
-Hexane	110-54-3	86.20	0.200	0.705	1.75	6.17		1	WG828146	
opropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG828146	
lethylene Chloride	75-09-2	84.90	0.200	0.985	ND	ND		1	WG828146	
lethyl Butyl Ketone	75-09-2 591-78-6	84.90 100	1.25	5.11	ND	ND		1	WG828146	
-Butanone (MEK)	78-93-3	72.10		3.69	ND 1.47	4.35		1		
1 7			1.25						WG828146	
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG828146	
lethyl methacrylate	80-62-6	100.12	0.200	0.819	0.333	1.37		1	WG828146	
ITBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG828146	
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG828146	
Propanol	67-63-0	60.10	1.25	3.07	ND	ND		1	WG828146	
ropene	115-07-1	42.10	0.800	1.38	6.66	11.5		2	WG828674	
tyrene	100-42-5	104	0.200	0.851	0.301	1.28		1	WG828146	
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG828146	
etrachloroethylene	127-18-4	166	0.200	1.36	1.35	9.13		1	WG828146	
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG828146	
oluene	108-88-3	92.10	0.200	0.753	6.43	24.2		1	WG828146	
2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG828146	
ACC	OUNT: - Hixson TN.			PROJECT: 4181-15-036		SDG: L799444		DATE/TI 11/13/15 17		PAG 13 of

*

GI

Â

Sc

	CAS #	Mol. Wt.	RDL1	RDL2	ppbv	ug/m3	Qualifier	Dilution	Batch
Analyte			ppb	ug/m3	ppb				
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG828146
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG828146
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG828146
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	0.421	2.07		1	WG828146
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG828146
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG828146
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG828146
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG828146
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG828146
m&p-Xylene	1330-20-7	106	0.400	1.73	1.44	6.25		1	WG828146
o-Xylene	95-47-6	106	0.200	0.867	0.907	3.93		1	WG828146
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		106				WG828146

*

Volatile Organic Compounds (MS) by Method TO-15

S&ME Inc. - Hixson TN.

	CAS #	Mol. Wt.	RDL1	RDL2	ppbv	ug/m3	Qualifier	Dilution	Batch	
nalyte			ppb	ug/m3	ppb					
cetone	67-64-1	58.10	1.25	2.97	14.4	34.3		1	WG828146	
llyl chloride	107-05-1	76.53	0.200	0.626	ND	ND		1	WG828146	
lenzene	71-43-2	78.10	0.200	0.639	1.66	5.31		1	WG828146	
enzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG828146	
romodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG828146	
romoform	75-25-2	253	0.600	6.21	ND	ND		1	WG828146	
romomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG828146	
3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG828146	
Carbon disulfide	75-15-0	76.10	0.200	0.622	0.737	2.29		1	WG828146	
Carbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG828146	
Chlorobenzene	108-90-7	113	0.200	0.924	0.747	3.45		1	WG828146	
hloroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG828146	
Chloroform	67-66-3	119	0.200	0.973	0.484	2.35		1	WG828146	
Chloromethane	74-87-3	50.50	0.200	0.413	ND	ND		1	WG828146	
-Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG828146	
Cyclohexane	110-82-7	84.20	0.200	0.689	ND	ND		1	WG828146	
ibromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG828146	
.2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG828146	
2-Dichlorobenzene	95-50-1	166	0.200	1.54	0.283	1.70		1	WG828146	
3-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG828146	
4-Dichlorobenzene	106-46-7	147	0.200	1.20	0.395	2.37		1	WG828146	
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG828146	
1-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG828146	
1-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG828146	
is-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG828146	
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG828146	
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG828146	
s-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG828146	
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG828146	
4-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG828146	
thanol	64-17-5	46.10	0.630	1.19	72.4	136	E	1	WG828146	
thylbenzene	100-41-4	106	0.200	0.867	ND	ND		1	WG828146	
-Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG828146	
richlorofluoromethane	75-69-4	137.40	0.200	1.12	0.360	2.02		1	WG828146	
ichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.325	1.61		1	WG828146	
1,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG828146	
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG828146	
leptane	142-82-5	100	0.200	0.818	ND	ND		1	WG828146	
lexachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG828146	
-Hexane	110-54-3	86.20	0.030	0.75	0.208	0.734		1	WG828146	
opropylbenzene	98-82-8	120.20	0.200	0.705	0.208 ND	0.734 ND		1		
									WG828146	
lethylene Chloride	75-09-2	84.90	0.200	0.694 E 11	ND	ND		1	WG828146	
lethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG828146	
-Butanone (MEK)	78-93-3	72.10	1.25	3.69	ND	ND		1	WG828146	
-Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG828146	
lethyl methacrylate	80-62-6	100.12	0.200	0.819	0.231	0.944		1	WG828146	
ITBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG828146	
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG828146	
Propanol	67-63-0	60.10	1.25	3.07	2.30	5.66		1	WG828146	
ropene	115-07-1	42.10	0.400	0.689	ND	ND		1	WG828146	
tyrene	100-42-5	104	0.200	0.851	ND	ND		1	WG828146	
1,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37	ND	ND		1	WG828146	
etrachloroethylene	127-18-4	166	0.200	1.36	2.23	15.2		1	WG828146	
etrahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG828146	
oluene	108-88-3	92.10	0.200	0.753	4.63	17.4		1	WG828146	
2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG828146	

4181-15-036A

L799444

11/13/15 17:38

15 of 30

*

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	ppbv	ug/m3	Qualifier	Dilution	Batch
Analyte			ppb	ug/m3	ppb				
1,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG828146
1,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG828146
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG828146
1,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	ND	ND		1	WG828146
1,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	ND	ND		1	WG828146
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG828146
Vinyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG828146
Vinyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG828146
Vinyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG828146
m&p-Xylene	1330-20-7	106	0.400	1.73	0.833	3.61		1	WG828146
o-Xylene	95-47-6	106	0.200	0.867	0.357	1.55		1	WG828146
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		103				WG828146

SAMPLE RESULTS - 07 L799444

¥

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	ppbv	ug/m3	Qualifier	Dilution	Batch	
nalyte	67 6 4 4	E0.40	ppb	ug/m3	ppb	10.0		1	WC020C74	
cetone	67-64-1	58.10	1.25	2.97	19.4	46.2		1	WG828674	
llyl chloride	107-05-1 71-43-2	76.53	0.200	0.626	ND	ND		1	WG828674	
enzene		78.10	0.200	0.639	8.27	26.4		1	WG828674	
enzyl Chloride	100-44-7	127	0.200	1.04	ND	ND		1	WG828674	
romodichloromethane	75-27-4	164	0.200	1.34	ND	ND		1	WG828674	
omoform	75-25-2	253	0.600	6.21	ND	ND		1	WG828674	
omomethane	74-83-9	94.90	0.200	0.776	ND	ND		1	WG828674	
3-Butadiene	106-99-0	54.10	2.00	4.43	ND	ND		1	WG828674	
arbon disulfide	75-15-0	76.10	0.200	0.622	2.41	7.50		1	WG828674	
arbon tetrachloride	56-23-5	154	0.200	1.26	ND	ND		1	WG828674	
llorobenzene	108-90-7	113	0.200	0.924	0.929	4.29		1	WG828674	
loroethane	75-00-3	64.50	0.200	0.528	ND	ND		1	WG828674	
nloroform	67-66-3	119	0.200	0.973	0.483	2.35		1	WG828674	
nloromethane	74-87-3	50.50	0.200	0.413	0.248	0.512		1	WG828674	
Chlorotoluene	95-49-8	126	0.200	1.03	ND	ND		1	WG828674	
clohexane	110-82-7	84.20	0.200	0.689	5.56	19.1		1	WG828674	
bromochloromethane	124-48-1	208	0.200	1.70	ND	ND		1	WG828674	
2-Dibromoethane	106-93-4	188	0.200	1.54	ND	ND		1	WG828674	
2-Dichlorobenzene	95-50-1	147	0.200	1.20	0.318	1.91		1	WG828674	
B-Dichlorobenzene	541-73-1	147	0.200	1.20	ND	ND		1	WG828674	
l-Dichlorobenzene	106-46-7	147	0.200	1.20	0.435	2.61		1	WG828674	
2-Dichloroethane	107-06-2	99	0.200	0.810	ND	ND		1	WG828674	
l-Dichloroethane	75-34-3	98	0.200	0.802	ND	ND		1	WG828674	
-Dichloroethene	75-35-4	96.90	0.200	0.793	ND	ND		1	WG828674	
s-1,2-Dichloroethene	156-59-2	96.90	0.200	0.793	ND	ND		1	WG828674	
ans-1,2-Dichloroethene	156-60-5	96.90	0.200	0.793	ND	ND		1	WG828674	
2-Dichloropropane	78-87-5	113	0.200	0.924	ND	ND		1	WG828674	
s-1,3-Dichloropropene	10061-01-5	111	0.200	0.908	ND	ND		1	WG828674	
ans-1,3-Dichloropropene	10061-02-6	111	0.200	0.908	ND	ND		1	WG828674	
l-Dioxane	123-91-1	88.10	0.200	0.721	ND	ND		1	WG828674	
hanol	64-17-5	46.10	0.630	1.19	35.8	67.5		1	WG828674	
hylbenzene	100-41-4	106	0.200	0.867	0.597	2.59		1	WG828674	
Ethyltoluene	622-96-8	120	0.200	0.982	ND	ND		1	WG828674	
ichlorofluoromethane	75-69-4	137.40	0.200	1.12	0.332	1.87		1	WG828674	
ichlorodifluoromethane	75-71-8	120.92	0.200	0.989	0.634	3.14		1	WG828674	
I,2-Trichlorotrifluoroethane	76-13-1	187.40	0.200	1.53	ND	ND		1	WG828674	
2-Dichlorotetrafluoroethane	76-14-2	171	0.200	1.40	ND	ND		1	WG828674	
eptane	142-82-5	100	0.200	0.818	7.81	31.9		1	WG828674	
exachloro-1,3-butadiene	87-68-3	261	0.630	6.73	ND	ND		1	WG828674	
Hexane	110-54-3	86.20	0.200	0.705	15.8	55.7		1	WG828674	
opropylbenzene	98-82-8	120.20	0.200	0.983	ND	ND		1	WG828674	
ethylene Chloride	75-09-2	84.90	0.200	0.694	ND	ND		1	WG828674	
ethyl Butyl Ketone	591-78-6	100	1.25	5.11	ND	ND		1	WG828674	
Butanone (MEK)	78-93-3	72.10	1.25	3.69	2.55	7.51		1	WG828674	
Methyl-2-pentanone (MIBK)	108-10-1	100.10	1.25	5.12	ND	ND		1	WG828674	
ethyl methacrylate	80-62-6	100.10	0.200	0.819	ND	ND		1	WG828674	
TBE	1634-04-4	88.10	0.200	0.721	ND	ND		1	WG828674	
aphthalene	91-20-3	128	0.630	3.30	ND	ND		1	WG828674	
Propanol	91-20-3 67-63-0	60.10	1.25	3.30	2.92	7.18		1	WG828674 WG828674	
opene	115-07-1	42.10	0.400	0.689	2.92	4.95		1	WG828674 WG828674	
	100-42-5	42.10 104	0.400	0.689	0.229	4.95 0.976		1		
/rene					0.229 ND				WG828674	
,2,2-Tetrachloroethane	79-34-5	168	0.200	1.37		ND		1	WG828674	
trachloroethylene	127-18-4	166	0.200	1.36	0.395	2.68		1	WG828674	
trahydrofuran	109-99-9	72.10	0.200	0.590	ND	ND		1	WG828674	
bluene	108-88-3	92.10	0.200	0.753	10.9	41.2		1	WG828674	
2,4-Trichlorobenzene	120-82-1	181	0.630	4.66	ND	ND		1	WG828674	
	OUNT: - Hixson TN.			PROJECT: 4181-15-036		SDG: L799444		DATE/TI 11/13/15 1		PA 17 o

*

GI

Â

Sc

Volatile Organic Compounds (MS) by Method TO-15

	CAS #	Mol. Wt.	RDL1	RDL2	ppbv	ug/m3	Qualifier	Dilution	Batch
Analyte			ppb	ug/m3	ppb				
I,1,1-Trichloroethane	71-55-6	133	0.200	1.09	ND	ND		1	WG828674
I,1,2-Trichloroethane	79-00-5	133	0.200	1.09	ND	ND		1	WG828674
Trichloroethylene	79-01-6	131	0.200	1.07	ND	ND		1	WG828674
I,2,4-Trimethylbenzene	95-63-6	120	0.200	0.982	1.16	5.70		1	WG828674
I,3,5-Trimethylbenzene	108-67-8	120	0.200	0.982	0.494	2.42		1	WG828674
2,2,4-Trimethylpentane	540-84-1	114.22	0.200	0.934	ND	ND		1	WG828674
/inyl chloride	75-01-4	62.50	0.200	0.511	ND	ND		1	WG828674
/inyl Bromide	593-60-2	106.95	0.200	0.875	ND	ND		1	WG828674
/inyl acetate	108-05-4	86.10	0.200	0.704	ND	ND		1	WG828674
m&p-Xylene	1330-20-7	106	0.400	1.73	2.91	12.6		1	WG828674
o-Xylene	95-47-6	106	0.200	0.867	1.08	4.68		1	WG828674
(S) 1,4-Bromofluorobenzene	460-00-4	175	60.0-140		99.5				WG828674

WG828146

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) 11/11/15 10:09				
	MB Result	MB Qualifier	MB RDL	
Analyte	ppb		ppb	
Acetone	ND		1.25	
Allyl Chloride	ND		0.200	
Benzene	ND		0.200	
Benzyl Chloride	ND		0.200	
Bromodichloromethane	ND		0.200	
Bromoform	ND		0.600	
Bromomethane	ND		0.200	
1,3-Butadiene	ND		2.00	
Carbon disulfide	ND		0.200	
Carbon tetrachloride	ND		0.200	
Chlorobenzene	ND		0.200	
Chloroethane	ND		0.200	
Chloroform	ND		0.200	
Chloromethane	ND		0.200	
2-Chlorotoluene	ND		0.200	
Cyclohexane	ND		0.200	
Dibromochloromethane	ND		0.200	
1,2-Dibromoethane	ND		0.200	
1,2-Dichlorobenzene	ND		0.200	
1,3-Dichlorobenzene	ND		0.200	
1,4-Dichlorobenzene	ND		0.200	
1,2-Dichloroethane	ND		0.200	
1,1-Dichloroethane	ND		0.200	
1,1-Dichloroethene	ND		0.200	
cis-1,2-Dichloroethene	ND		0.200	
trans-1,2-Dichloroethene	ND		0.200	
1,2-Dichloropropane	ND		0.200	
cis-1,3-Dichloropropene	ND		0.200	
trans-1,3-Dichloropropene	ND		0.200	
1,4-Dioxane	ND		0.200	
Ethylbenzene	ND		0.200	
4-Ethyltoluene	ND		0.200	
Trichlorofluoromethane	ND		0.200	
Dichlorodifluoromethane	ND		0.200	
1,1,2-Trichlorotrifluoroethane	ND		0.200	

SDG: L799444 DATE/TIME: 11/13/15 17:38 PAGE: 19 of 30

WG828146

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

-

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) 11/11/15 10:09							
(UIU) 1/11/13 U.US	MB Result	MB Qualifier	MB RDL				
Analyte	ppb	mb Quamer	ppb				
Heptane	ND		0.200				
Hexachloro-1,3-butadiene	ND		0.630				
n-Hexane	ND		0.200				
Isopropylbenzene	ND		0.200				
Methylene Chloride	ND		0.200				
Methyl Butyl Ketone	ND		1.25				
2-Butanone (MEK)	ND		1.25				
4-Methyl-2-pentanone (MIBK)	ND		1.25				
Methyl Methacrylate	ND		0.200				
MTBE	ND		0.200				
Naphthalene	ND		0.630				
2-Propanol	ND		1.25				
Propene	ND		0.400				
Styrene	ND		0.200				
1,1,2,2-Tetrachloroethane	ND		0.200				
Tetrachloroethylene	ND		0.200				
Tetrahydrofuran	ND		0.200				
Toluene	ND		0.200				
1,2,4-Trichlorobenzene	ND		0.630				
1,1,1-Trichloroethane	ND		0.200				
1,1,2-Trichloroethane	ND		0.200				
Trichloroethylene	ND		0.200				
1,2,4-Trimethylbenzene	ND		0.200				
1,3,5-Trimethylbenzene	ND		0.200				
2,2,4-Trimethylpentane	ND		0.200				
Vinyl chloride	ND		0.200				
Vinyl Bromide	ND		0.200				
Vinyl acetate	ND		0.200				
m&p-Xylene	ND		0.400				
o-Xylene	ND		0.200				
Ethanol	ND		0.630				
(S) 1,4-Bromofluorobenzene	94.6		60.0-140				

SDG: L799444 DATE/TIME: 11/13/15 17:38 PAGE: 20 of 30 Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/11/15 08:24 • (LCSD) 11/11/15 09:16

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppb	ppb	ppb	%	%	%			%	%
Ethanol	3.75	4.39	4.14	117	110	34.3-167			5.92	25
Propene	3.75	4.57	4.69	122	125	53.9-143			2.66	25
Dichlorodifluoromethane	3.75	4.18	4.02	111	107	56.7-140			3.79	25
1,2-Dichlorotetrafluoroethane	3.75	4.18	4.25	112	113	70.0-130			1.48	25
Chloromethane	3.75	4.14	4.22	110	113	70.0-130			1.93	25
Vinyl chloride	3.75	4.28	4.27	114	114	70.0-130			0.170	25
1,3-Butadiene	3.75	4.38	4.13	117	110	70.0-130			5.87	25
Bromomethane	3.75	4.40	4.10	117	109	70.0-130			6.99	25
Chloroethane	3.75	4.47	4.11	119	110	70.0-130			8.40	25
Trichlorofluoromethane	3.75	4.42	4.14	118	110	70.0-130			6.46	25
1,1,2-Trichlorotrifluoroethane	3.75	4.27	4.13	114	110	70.0-130			3.33	25
1,1-Dichloroethene	3.75	4.20	4.08	112	109	70.0-130			2.93	25
1,1-Dichloroethane	3.75	4.25	4.21	113	112	70.0-130			0.950	25
Acetone	3.75	3.99	4.06	106	108	70.0-130			1.77	25
2-Propanol	3.75	3.85	4.10	103	109	50.4-152			6.06	25
Carbon disulfide	3.75	4.14	4.05	110	108	70.0-130			2.32	25
Methylene Chloride	3.75	3.92	3.81	105	102	70.0-130			2.93	25
МТВЕ	3.75	4.10	4.08	109	109	70.0-130			0.400	25
trans-1,2-Dichloroethene	3.75	4.12	4.09	110	109	70.0-130			0.770	25
n-Hexane	3.75	4.26	4.20	114	112	70.0-130			1.26	25
Vinyl acetate	3.75	4.06	4.33	108	116	70.0-130			6.46	25
Methyl Ethyl Ketone	3.75	4.15	4.27	111	114	70.0-130			2.87	25
cis-1,2-Dichloroethene	3.75	4.13	4.16	110	111	70.0-130			0.810	25
Chloroform	3.75	4.22	4.21	112	112	70.0-130			0.110	25
Cyclohexane	3.75	4.28	4.29	114	114	70.0-130			0.160	25
1,1,1-Trichloroethane	3.75	4.21	4.20	112	112	70.0-130			0.220	25
Carbon tetrachloride	3.75	4.21	4.19	112	112	70.0-130			0.400	25
Benzene	3.75	4.35	4.27	116	114	70.0-130			1.80	25
1,2-Dichloroethane	3.75	4.23	4.15	113	111	70.0-130			1.87	25
Heptane	3.75	4.39	4.41	117	118	70.0-130			0.370	25
Trichloroethylene	3.75	4.23	4.19	113	112	70.0-130			0.920	25
1,2-Dichloropropane	3.75	4.29	4.26	114	113	70.0-130			0.820	25
1,4-Dioxane	3.75	4.16	4.26	111	114	48.0-156			2.56	25
Bromodichloromethane	3.75	4.22	4.28	112	114	70.0-130			1.44	25
cis-1,3-Dichloropropene	3.75	4.31	4.27	115	114	70.0-130			0.890	25
4-Methyl-2-pentanone (MIBK)	3.75	4.26	4.18	114	111	55.3-154			1.83	25

ACCOUNT:	
S&ME Inc Hixson	TN.

PROJECT: 4181-15-036A SDG: L799444 DATE/TIME: 11/13/15 17:38 PAGE: 21 of 30 Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/11/15 08:24 • (LCSD) 11/11/15 09:16

(LCS) 11/11/13 08.24 • (LCSD) 11/11	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppb	ppb	ppb	%	%	%			%	%
Toluene	3.75	4.30	4.34	115	116	70.0-130			0.950	25
trans-1,3-Dichloropropene	3.75	4.27	4.19	114	112	70.0-130			1.76	25
1,1,2-Trichloroethane	3.75	4.21	4.22	112	113	70.0-130			0.350	25
Tetrachloroethylene	3.75	4.26	4.30	114	115	70.0-130			0.930	25
Methyl Butyl Ketone	3.75	4.35	4.44	116	118	47.9-165			2.02	25
Dibromochloromethane	3.75	4.24	4.32	113	115	70.0-130			1.93	25
1,2-Dibromoethane	3.75	4.12	4.18	110	111	70.0-130			1.48	25
Chlorobenzene	3.75	4.16	4.20	111	112	70.0-130			1.03	25
Ethylbenzene	3.75	4.25	4.22	113	113	70.0-130			0.590	25
m&p-Xylene	7.50	8.35	8.32	111	111	70.0-130			0.380	25
o-Xylene	3.75	4.32	4.29	115	114	70.0-130			0.800	25
Styrene	3.75	4.32	4.33	115	115	70.0-130			0.120	25
Bromoform	3.75	4.23	4.28	113	114	70.0-130			1.24	25
1,1,2,2-Tetrachloroethane	3.75	4.13	4.12	110	110	70.0-130			0.260	25
4-Ethyltoluene	3.75	4.28	4.27	114	114	70.0-130			0.300	25
1,3,5-Trimethylbenzene	3.75	4.03	4.15	107	111	70.0-130			2.99	25
1,2,4-Trimethylbenzene	3.75	4.26	4.25	114	113	70.0-130			0.130	25
1,3-Dichlorobenzene	3.75	4.19	4.29	112	114	70.0-130			2.14	25
1,4-Dichlorobenzene	3.75	4.28	4.38	114	117	70.0-130			2.33	25
Benzyl Chloride	3.75	4.31	4.43	115	118	55.6-160			2.68	25
1,2-Dichlorobenzene	3.75	4.13	4.19	110	112	70.0-130			1.38	25
1,2,4-Trichlorobenzene	3.75	3.94	4.39	105	117	53.6-154			10.8	25
Hexachloro-1,3-butadiene	3.75	3.96	4.07	106	109	62.1-143			2.84	25
Naphthalene	3.75	4.15	4.53	111	121	52.0-158			8.64	25
Allyl Chloride	3.75	4.22	4.12	113	110	70.0-130			2.54	25
2-Chlorotoluene	3.75	4.21	4.16	112	111	70.0-130			1.24	25
Methyl Methacrylate	3.75	3.91	3.93	104	105	70.0-130			0.580	25
Tetrahydrofuran	3.75	4.21	4.23	112	113	65.0-140			0.390	25
2,2,4-Trimethylpentane	3.75	4.34	4.32	116	115	70.0-130			0.280	25
Vinyl Bromide	3.75	4.44	4.12	118	110	70.0-130			7.63	25
lsopropylbenzene	3.75	4.32	4.26	115	114	70.0-130			1.35	25
(S) 1,4-Bromofluorobenzene				102	99.5	60.0-140				

Cn

Sr

ິQc

GI

ΆI

Sc

WG828674

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MD) 11/12/1E 12:12			
(MB) 11/12/15 12:12	MB Result	MP Qualifiar	MB RDL
Analyte	ppb	MB Qualifier	ppb
Acetone	ND ND		1.25
Allyl Chloride			0.200
Benzene Benzene	ND		0.200
Benzyl Chloride	ND		0.200
Bromodichloromethane	ND		0.200
Bromoform	ND		0.600
Bromomethane	ND		0.200
1,3-Butadiene	ND		2.00
Carbon disulfide	ND		0.200
Carbon tetrachloride	ND		0.200
Chlorobenzene	ND		0.200
Chloroethane	ND		0.200
Chloroform	ND		0.200
Chloromethane	ND		0.200
2-Chlorotoluene	ND		0.200
Cyclohexane	ND		0.200
Dibromochloromethane	ND		0.200
1,2-Dibromoethane	ND		0.200
1,2-Dichlorobenzene	ND		0.200
1,3-Dichlorobenzene	ND		0.200
1,4-Dichlorobenzene	ND		0.200
1,2-Dichloroethane	ND		0.200
1,1-Dichloroethane	ND		0.200
1,1-Dichloroethene	ND		0.200
cis-1,2-Dichloroethene	ND		0.200
trans-1,2-Dichloroethene	ND		0.200
1,2-Dichloropropane	ND		0.200
cis-1,3-Dichloropropene	ND		0.200
trans-1,3-Dichloropropene	ND		0.200
1,4-Dioxane	ND		0.200
Ethylbenzene	ND		0.200
4-Ethyltoluene	ND		0.200
Trichlorofluoromethane	ND		0.200
Dichlorodifluoromethane	ND		0.200
1,1,2-Trichlorotrifluoroethane	ND		0.200
1,2-Dichlorotetrafluoroethane	ND		0.200

SDG: L799444 DATE/TIME: 11/13/15 17:38

WG828674

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

-

Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) 11/12/15 12:12				
	MB Result	MB Qualifier	MB RDL	
Analyte	ppb		ppb	
Heptane	ND		0.200	
Hexachloro-1,3-butadiene	ND		0.630	
n-Hexane	ND		0.200	
lsopropylbenzene	ND		0.200	
Methylene Chloride	ND		0.200	
Methyl Butyl Ketone	ND		1.25	
2-Butanone (MEK)	ND		1.25	
4-Methyl-2-pentanone (MIBK)	ND		1.25	
Methyl Methacrylate	ND		0.200	
MTBE	ND		0.200	
Naphthalene	ND		0.630	
2-Propanol	ND		1.25	
Propene	ND		0.400	
Styrene	ND		0.200	
1,1,2,2-Tetrachloroethane	ND		0.200	
Tetrachloroethylene	ND		0.200	
Tetrahydrofuran	ND		0.200	
Toluene	ND		0.200	
1,2,4-Trichlorobenzene	ND		0.630	
1,1,1-Trichloroethane	ND		0.200	
1,1,2-Trichloroethane	ND		0.200	
Trichloroethylene	ND		0.200	
1,2,4-Trimethylbenzene	ND		0.200	
1,3,5-Trimethylbenzene	ND		0.200	
2,2,4-Trimethylpentane	ND		0.200	
Vinyl chloride	ND		0.200	
Vinyl Bromide	ND		0.200	
Vinyl acetate	ND		0.200	
m&p-Xylene	ND		0.400	
o-Xylene	ND		0.200	
Ethanol	ND		0.630	
(S) 1,4-Bromofluorobenzene	94.0		60.0-140	

SDG: L799444 DATE/TIME: 11/13/15 17:38 PAGE: 24 of 30

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/12/15 09:35 • (LCSD) 11/12/15 10:26

Analyte Ethanol Propene Dichlorodifluoromethane 1,2-Dichlorotetrafluoroethane Chloromethane Vinyl chloride 1,3-Butadiene	ppb 3.75 3.75 3.75 3.75 3.75 3.75 3.75	ppb 4.54 4.46 4.25 4.18 4.12	ppb 3.89 4.31 3.94 3.90	% 121 119 113	% 104 115	% 34.3-167		% 15.4	% 25
Propene Dichlorodifluoromethane 1,2-Dichlorotetrafluoroethane Chloromethane Vinyl chloride	3.75 3.75 3.75 3.75 3.75 3.75	4.46 4.25 4.18	4.31 3.94	119				15.4	25
Dichlorodifluoromethane 1,2-Dichlorotetrafluoroethane Chloromethane Vinyl chloride	3.75 3.75 3.75 3.75	4.25 4.18	3.94		115				
1,2-Dichlorotetrafluoroethane Chloromethane Vinyl chloride	3.75 3.75 3.75	4.18		113		53.9-143		3.46	25
Chloromethane Vinyl chloride	3.75 3.75		3.90		105	56.7-140		7.51	25
Vinyl chloride	3.75	4.12		111	104	70.0-130		6.81	25
			3.83	110	102	70.0-130		7.21	25
1,3-Butadiene		4.22	3.92	112	105	70.0-130		7.29	25
	3.75	4.38	3.92	117	105	70.0-130		11.0	25
Bromomethane	3.75	4.24	3.87	113	103	70.0-130		8.95	25
Chloroethane	3.75	4.33	3.84	115	102	70.0-130		12.0	25
Trichlorofluoromethane	3.75	4.26	3.84	114	102	70.0-130		10.4	25
1,1,2-Trichlorotrifluoroethane	3.75	4.19	3.86	112	103	70.0-130		8.25	25
1,1-Dichloroethene	3.75	4.16	3.86	111	103	70.0-130		7.58	25
1,1-Dichloroethane	3.75	4.23	3.91	113	104	70.0-130		7.94	25
Acetone	3.75	4.06	3.80	108	101	70.0-130		6.61	25
2-Propanol	3.75	4.00	3.81	107	102	50.4-152		4.87	25
Carbon disulfide	3.75	4.16	3.79	111	101	70.0-130		9.38	25
Methylene Chloride	3.75	3.93	3.62	105	96.6	70.0-130		8.09	25
MTBE	3.75	4.14	3.81	110	102	70.0-130		8.19	25
trans-1,2-Dichloroethene	3.75	4.16	3.77	111	100	70.0-130		9.77	25
n-Hexane	3.75	4.32	3.94	115	105	70.0-130		9.20	25
Vinyl acetate	3.75	4.22	3.96	112	106	70.0-130		6.24	25
Methyl Ethyl Ketone	3.75	4.29	3.91	115	104	70.0-130		9.47	25
cis-1,2-Dichloroethene	3.75	4.18	3.86	112	103	70.0-130		7.88	25
Chloroform	3.75	4.18	3.86	111	103	70.0-130		8.05	25
Cyclohexane	3.75	4.30	3.95	115	105	70.0-130		8.28	25
1,1,1-Trichloroethane	3.75	4.18	3.87	111	103	70.0-130		7.74	25
Carbon tetrachloride	3.75	4.22	3.86	112	103	70.0-130		8.97	25
Benzene	3.75	4.30	3.96	115	106	70.0-130		8.18	25
1,2-Dichloroethane	3.75	4.19	3.84	112	102	70.0-130		8.80	25
Heptane	3.75	4.45	4.03	119	107	70.0-130		10.1	25
Trichloroethylene	3.75	4.18	3.84	112	102	70.0-130		8.64	25
1,2-Dichloropropane	3.75	4.25	3.89	113	104	70.0-130		8.81	25
1,4-Dioxane	3.75	4.21	3.82	112	102	48.0-156		9.79	25
Bromodichloromethane	3.75	4.23	3.90	113	104	70.0-130		8.09	25
cis-1,3-Dichloropropene	3.75	4.22	3.92	113	104	70.0-130		7.54	25
4-Methyl-2-pentanone (MIBK)	3.75	4.12	3.87	110	103	55.3-154		6.25	25

PROJECT: 4181-15-036A SDG: L799444 DATE/TIME: 11/13/15 17:38 PAGE: 25 of 30

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/12/15 09:35 • (LCSD) 11/12/15 10:26

(200) /// /2/ 10 00:00 (2002) /// /2	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppb	ppb	ppb	%	%	%			%	%
Toluene	3.75	4.27	3.91	114	104	70.0-130			8.58	25
trans-1,3-Dichloropropene	3.75	4.18	3.86	111	103	70.0-130			7.93	25
1,1,2-Trichloroethane	3.75	4.13	3.85	110	103	70.0-130			6.94	25
Tetrachloroethylene	3.75	4.22	3.88	113	103	70.0-130			8.39	25
Methyl Butyl Ketone	3.75	4.37	4.03	116	108	47.9-165			7.99	25
Dibromochloromethane	3.75	4.21	3.92	112	105	70.0-130			7.04	25
1,2-Dibromoethane	3.75	4.17	3.83	111	102	70.0-130			8.49	25
Chlorobenzene	3.75	4.16	3.81	111	102	70.0-130			8.71	25
Ethylbenzene	3.75	4.23	3.89	113	104	70.0-130			8.47	25
m&p-Xylene	7.50	8.31	7.64	111	102	70.0-130			8.45	25
o-Xylene	3.75	4.30	3.92	115	104	70.0-130			9.22	25
Styrene	3.75	4.37	3.95	116	105	70.0-130			10.0	25
Bromoform	3.75	4.28	3.90	114	104	70.0-130			9.34	25
1,1,2,2-Tetrachloroethane	3.75	4.14	3.72	110	99.1	70.0-130			10.8	25
4-Ethyltoluene	3.75	4.27	3.88	114	103	70.0-130			9.60	25
1,3,5-Trimethylbenzene	3.75	4.12	3.71	110	99.0	70.0-130			10.5	25
1,2,4-Trimethylbenzene	3.75	4.28	3.85	114	103	70.0-130			10.5	25
1,3-Dichlorobenzene	3.75	4.25	3.83	113	102	70.0-130			10.6	25
1,4-Dichlorobenzene	3.75	4.30	3.87	115	103	70.0-130			10.5	25
Benzyl Chloride	3.75	4.36	3.84	116	102	55.6-160			12.8	25
1,2-Dichlorobenzene	3.75	4.13	3.71	110	98.8	70.0-130			10.9	25
1,2,4-Trichlorobenzene	3.75	4.27	3.97	114	106	53.6-154			7.33	25
Hexachloro-1,3-butadiene	3.75	4.00	3.65	107	97.2	62.1-143			9.16	25
Naphthalene	3.75	4.46	4.03	119	107	52.0-158			10.2	25
Allyl Chloride	3.75	4.28	3.94	114	105	70.0-130			8.32	25
2-Chlorotoluene	3.75	4.24	3.79	113	101	70.0-130			11.1	25
Methyl Methacrylate	3.75	3.86	3.57	103	95.3	70.0-130			7.72	25
Tetrahydrofuran	3.75	4.18	3.79	111	101	65.0-140			9.76	25
2,2,4-Trimethylpentane	3.75	4.38	4.06	117	108	70.0-130			7.55	25
Vinyl Bromide	3.75	4.31	3.96	115	106	70.0-130			8.56	25
lsopropylbenzene	3.75	4.33	3.89	115	104	70.0-130			10.7	25
(S) 1,4-Bromofluorobenzene				102	102	60.0-140				

DATE/TIME: 11/13/15 17:38

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

WG828951

Volatile Organic Compounds (MS) by Method TO-15

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) 11/13/15 11:28			
	MB Result	MB Qualifier	MB RDL
Analyte	ppb		ppb
Propene	ND		0.400
Tetrachloroethylene	ND		0.200
Trichloroethylene	ND		0.200

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/13/15 10:42 • (LCSD) 11/13/15 12:35											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	ppb	ppb	ppb	%	%	%			%	%	
Propene	3.75	4.06	3.99	108	106	53.9-143			1.69	25	
Trichloroethylene	3.75	4.41	4.34	118	116	70.0-130			1.50	25	
Tetrachloroethylene	3.75	4.54	4.45	121	119	70.0-130			2.15	25	

SDG: L799444 DATE/TIME: 11/13/15 17:38

GLOSSARY OF TERMS

*

'Ср
² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

Abbreviations and Definitions

Method Detection Limit.
Reported Detection Limit.
Not detected at the Reporting Limit (or MDL where applicable).
Relative Percent Difference.
Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Recovery.
Sample Detection Limit.
Method Quantitation Limit.
Unadjusted Method Quantitation Limit.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE**.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA	100789	
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01	
Canada	1461.01	USDA	S-67674	
EPA-Crypto	TN00003			

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
S&ME Inc Hixson TN.	4181-15-036A	L799444	11/13/15 17:38	29 of 30

		979 - P.P.	Billing Infor	mation:	4.04		10.44		Analysis	/ Contai	ner / Preser	vative		Chain of Custody	Page of
4291				ounts Payable 1 HWY 58 Suite 101 ttanooga, TN 37416										YOU'R LAB	INE IN CIES
eport to: Ar. Pat Gribben				gribben@smeinc.com									1	12065 Lebanon Rd Mount Juliet, TN 371 Phone: 615-758-5858 Phone: 800-767-5858	14. 201
oject escription: Miller Park Limite	ed Phase II	2 F 1.6 A	na series no series	City/State Collected: Cha	Hannoa -	N					222			Fac: 615-758-5859	
hone: 423-499-0957 ax:	Client Project 4181-15-03			Lab Project # SMETHN-4181										Tablett RACK	
ollected by (print): Pat Gribben	Site/Facility ID	#		P.O. #				1						Acctnum: SME	HTN
ollected by (signature):	Same D	lyinternation		Date Re 5 Jan Email?N FAX?N	lo X_Yes	No. cf	15 Summa				> . 			Prelogin: P530 TSR: 690 - Tom PB: <u>841</u>	Mellette
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	T0-1	1.00			1.14				Sample # (lab only)
56-1	Gras	Air	3'	11/5/15	0903	1	Х	1.1			19.15				-01
56-2	Service March 18	Air	6"		0952	1	Х	di "		1					-08
567-3	statistics of	Air	3'		0946	1	X						100		193
56-4		Air	3'		1019	1	X					1.6			- 04
56-5		Air	14"		1107	1	X				1.10	1.8			(0-
56-6		Air	. 6"		1115	1	X	100.00						n an ann an an ann an an an an an an an	- ek
5G-6 5G-7	¥	Air	6"	+	1129	1	X	1.3.4						i con i cerio. Antes de cerior	-2]
	8	11-12-1 14-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-			$= \frac{1}{2} \left(\frac{1}{2} \right)^{-1} \left$										Actor 1
	1. 1. 1. 1			100											
Matrix: SS - Soil GW - Groundwa emarks:	ater WW - WasteW	ater DW - D	rinking Wate	er OT - Other					pH Flow	<u>AT</u>	Temp Other		Hold #	<u>il al c</u>	Maria I.
Relinquished by : (Signature)	H	Date:	-/15	1510	ceived by: (Signa		1	***	11/	(11) (11) (11) (11) (11) (11) (11) (11)	ned via: 🗖	□	Conditio	n: (lab) c⊀7	use only) OK
Relinquished by : (Signature)		Date:			ceived by: (Signa	-	X		Temp	13	°C Bottie	7		the second day of the	NNA
Relinquished by : (Signature)	Same Stars	Date:		Time: Re	ceived for lab by	r: (Signa	ature)		Date:	:75	Time:	900	pH Chec	ked: NCF:	

Share and a set of the lite

ANALYTICAL REPORT

November 19, 2015

S&ME Inc. - Hixson TN.

Sample Delivery Group: Samples Received: Project Number: Description:

L800673 11/12/2015 4181-15-036A Miller Park Limited Phase II

Report To:

Mr. Pat Gribben 4291 HWY 58 Suite 101 Chattanooga, TN 37416

Entire Report Reviewed By:

om

Tom Mellette Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

1

*	
¹ Cp	
² Tc	
³ Ss	
⁴ Cn	
⁵Sr	

Qc

GI

ΆI

Sc

² Tc: Table of Contents	2
³ Ss: Sample Summary	3
⁴ Cn: Case Narrative	6
⁵ Sr: Sample Results	7
B1C 5-8.2FT L800673-01	7
B2 17.5-20FT L800673-02	9
B3 5-7.5FT L800673-03	12
B4 17.5-18.1FT L800673-04	14
B5 .3-2.6FT L800673-05	17
B6 .5-5.3FT L800673-06	20
B7 10-12.5FT L800673-07	23
B8 .8-2.5FT L800673-08	26
B1 (GEO) 8.5-10FT L800673-09	29
B3 (GEO) 6-7.5FT L800673-10	30
B-1 C L800673-11	31
B-3 L800673-12	33
B-7 L800673-13	35
B-1 C L800673-14	37
B-3 L800673-15	38
⁶ Qc: Quality Control Summary	39
Total Solids by Method 2540 G-2011	39
Mercury by Method 7470A	40
Mercury by Method 7471A	41
Metals (ICP) by Method 6010B	42
Volatile Organic Compounds (GC/MS) by Method 8260B	44
Semi-Volatile Organic Compounds (GC) by Method EPH	62
Pesticides (GC) by Method 8081	63
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	66
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	68
⁷ GI: Glossary of Terms	70
⁸ AI: Accreditations & Locations	71
⁹ Sc: Chain of Custody	72

¹Cp: Cover Page

ONE LAB. NATIONWIDE.

*

	SAMPLE SU	JMMA	۲Y	10	IE LAB. NATIONWIDE	E. 🤻
B1C 5-8.2FT L800673-01 Solid			Collected by Pat Gribben	Collected date/time 11/10/15 16:20	Received date/time 11/12/15 09:00	¹ Cp
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	² Tc
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG828715	1	11/13/15 20:45	11/16/15 03:14	KMP	TC .
Semi-Volatile Organic Compounds (GC) by Method EPH	WG829444	1	11/16/15 17:27	11/16/15 23:59	AAT	3
Volatile Organic Compounds (GC/MS) by Method 8260B	WG828758	5	11/13/15 00:24	11/14/15 16:05	DAH	[°] Ss
B2 17.5-20FT L800673-02 Solid			Collected by Pat Gribben	Collected date/time 11/10/15 07:15	Received date/time 11/12/15 09:00	⁴ Cn
Method	Batch	Dilution	Preparation	Analysis	Analyst	⁵Sr
			date/time	date/time		
Mercury by Method 7471A	WG828700	1	11/13/15 19:00	11/14/15 09:57	TRB	⁶ Qc
Metals (ICP) by Method 6010B	WG829272	1	11/18/15 22:48	11/19/15 08:48	LTB	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG828715	1	11/13/15 20:45	11/16/15 03:35	KMP	7
Semi-Volatile Organic Compounds (GC) by Method EPH	WG829444	1	11/16/15 17:27	11/17/15 00:41	AAT	GI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG828758	5	11/13/15 00:24	11/14/15 16:29	DAH	⁸ AI
B3 5-7.5FT L800673-03 Solid			Collected by Pat Gribben	Collected date/time 11/10/15 16:25	Received date/time 11/12/15 09:00	°Sc
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	SC
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG828715	1	11/13/15 20:45	11/16/15 04:39	KMP	
Semi-Volatile Organic Compounds (GC) by Method EPH	WG829444	1	11/16/15 17:27	11/17/15 00:55	AAT	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG828758	5	11/13/15 00:24	11/14/15 16:53	DAH	
B4 17.5-18.1FT L800673-04 Solid			Collected by Pat Gribben	Collected date/time 11/11/15 16:15	Received date/time 11/12/15 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	
Mercury by Method 7471A	WG828700	1	11/13/15 19:00	11/14/15 10:00	TRB	
Metals (ICP) by Method 6010B	WG829272	1	11/18/15 22:48	11/19/15 08:51	LTB	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG828715	1	11/13/15 20:45	11/16/15 05:01	KMP	
Semi-Volatile Organic Compounds (GC) by Method EPH	WG829444	1	11/16/15 17:27	11/17/15 01:08	AAT	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG828758	5	11/13/15 00:24	11/14/15 17:17	DAH	
B5 .3-2.6FT L800673-05 Solid			Collected by Pat Gribben	Collected date/time 11/10/15 16:40	Received date/time 11/12/15 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	
Mercury by Method 7471A	WG828700	1	11/13/15 19:00	11/14/15 10:03	TRB	
Metals (ICP) by Method 6010B	WG829272	1	11/18/15 22:48	11/19/15 08:54	LTB	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG828715	1	11/13/15 20:45	11/16/15 05:22	KMP	
Semi-Volatile Organic Compounds (GC) by Method EPH	WG829444	1	11/16/15 17:27	11/17/15 01:22	AAT	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG828758	5	11/13/15 00:24	11/14/15 10:51	DAH	
B6 .5-5.3FT L800673-06 Solid			Collected by Pat Gribben	Collected date/time 11/10/15 07:40	Received date/time 11/12/15 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	
Mercury by Method 7471A	WG828700	1	11/13/15 19:00	11/14/15 10:06	TRB	
Metals (ICP) by Method 6010B	WG829272	1	11/18/15 22:48	11/19/15 08:57	LTB	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG828715	1	11/13/15 20:45	11/16/15 05:43	KMP	
Semi-Volatile Organic Compounds (GC) by Method EPH	WG829444	1	11/16/15 17:27	11/17/15 01:36	AAT	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG828758	5	11/13/15 00:24	11/14/15 17:41	DAH	
ACCOUNT: S&ME Inc Hixson TN.	PROJECT: 4181-15-036A		SDG: L800673	DATE/TIME: 11/19/15 15:58		AGE: of 73

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

	SAMPLE SU	JIVIIVIAI	T I	UN ON	IE LAB. NATIONW
B7 10-12.5FT L800673-07 Solid			Collected by Pat Gribben	Collected date/time 11/10/15 16:50	Received date/time 11/12/15 09:00
Nethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Vercury by Method 7471A	WG828700	1	11/13/15 19:00	11/14/15 10:15	TRB
Metals (ICP) by Method 6010B	WG829272	1	11/18/15 22:48	11/19/15 08:28	LTB
Pesticides (GC) by Method 8081	WG828716	1	11/16/15 06:25	11/16/15 20:28	ADF
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG828715	1	11/13/15 20:45	11/16/15 06:05	KMP
Semi-Volatile Organic Compounds (GC) by Method EPH	WG829444	1	11/16/15 17:27	11/17/15 01:50	AAT
/olatile Organic Compounds (GC/MS) by Method 8260B	WG828758	5	11/13/15 00:24	11/14/15 18:05	DAH
B8 .8-2.5FT L800673-08 Solid			Collected by Pat Gribben	Collected date/time 11/10/15 17:00	Received date/tim 11/12/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Mercury by Method 7471A	WG828700	1	11/13/15 19:00	11/14/15 10:18	TRB
Metals (ICP) by Method 6010B	WG829272	1	11/18/15 22:48	11/19/15 09:00	LTB
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG828715	1	11/13/15 20:45	11/16/15 06:26	KMP
Semi-Volatile Organic Compounds (GC) by Method EPH	WG829444	1	11/16/15 17:27	11/17/15 02:04	AAT
/olatile Organic Compounds (GC/MS) by Method 2111	WG829444 WG830101	5	11/18/15 18:44	11/19/15 05:53	ACG
B1 (GEO) 8.5-10FT L800673-09 Solid			Collected by Pat Gribben	Collected date/time 11/11/15 16:25	Received date/time 11/12/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	,
Vercury by Method 7471A	WG828700	1	11/13/15 19:00	11/14/15 10:21	TRB
Aetals (ICP) by Method 6010B	WG829272	1	11/18/15 22:48	11/19/15 09:03	LTB
Fotal Solids by Method 2540 G-2011	WG829022	1	11/13/15 21:23	11/14/15 15:35	MEL
B3 (GEO) 6-7.5FT L800673-10 Solid			Collected by Pat Gribben	Collected date/time 11/11/15 16:30	Received date/tim 11/12/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
	Bateri	Dilation	date/time	date/time	, margae
Vercury by Method 7471A	WG828700	1	11/13/15 19:00	11/14/15 10:23	TRB
Vetals (ICP) by Method 6010B	WG829272	1	11/18/15 22:48	11/19/15 09:06	LTB
Fotal Solids by Method 2540 G-2011	WG829272	1	11/13/15 21:23	11/14/15 15:34	MEL
B-1 C L800673-11 GW			Collected by Pat Gribben	Collected date/time 11/10/15 13:15	Received date/tim 11/12/15 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG828643	1	11/12/15 22:26	11/13/15 12:33	FMB
/olatile Organic Compounds (GC/MS) by Method 8260B	WG828976	1	11/14/15 03:39	11/14/15 03:39	BMB
3-3 L800673-12 GW			Collected by Pat Gribben	Collected date/time 11/10/15 15:25	Received date/tim 11/12/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM	WG828643	1	11/12/15 22:26	11/13/15 12:54	FMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG828976	1	11/14/15 03:58	11/14/15 03:58	BMB

SDG: L800673

11/19/15 15:58

DATE/TIME:

PAGE: 4 of 73

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

²Tc

Ss

Ċn

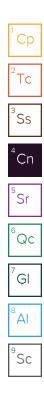
Sr

Qc

GI

ΆI

Sc


B-7 L800673-13 GW			Collected by Pat Gribben	Collected date/time 11/11/15 09:58	Received date/time 11/12/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG828976	1	11/14/15 04:18	11/14/15 04:18	BMB
			Collected by	Collected date/time	Received date/time
B-1 C L800673-14 GW			Pat Gribben	11/11/15 10:15	11/12/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Mercury by Method 7470A	WG828703	1	11/13/15 10:53	11/13/15 17:19	TRB
Metals (ICP) by Method 6010B	WG829262	1	11/17/15 16:02	11/17/15 22:37	ST
			Collected by	Collected date/time	Received date/time
B-3 L800673-15 GW			Pat Gribben	11/11/15 10:10	11/12/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Mercury by Method 7470A	WG828703	1	11/13/15 10:53	11/13/15 17:21	TRB
Metals (ICP) by Method 6010B	WG829262	1	11/17/15 16:02	11/17/15 22:40	ST

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Tom Mellette Technical Service Representative

SDG: L800673

E 11 PAGE: 6 of 73

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		2
cetone	ND		0.250	5	11/14/2015 16:05	WG828758	2
crylonitrile	ND		0.0500	5	11/14/2015 16:05	WG828758	
Benzene	ND		0.00500	5	11/14/2015 16:05	WG828758	3
Bromobenzene	ND		0.00500	5	11/14/2015 16:05	WG828758	
Bromodichloromethane	ND		0.00500	5	11/14/2015 16:05	WG828758	4
Bromoform	ND		0.00500	5	11/14/2015 16:05	<u>WG828758</u>	
Bromomethane	ND		0.0250	5	11/14/2015 16:05	WG828758	L
n-Butylbenzene	ND		0.00500	5	11/14/2015 16:05	WG828758	5
ec-Butylbenzene	ND		0.00500	5	11/14/2015 16:05	WG828758	
ert-Butylbenzene	ND		0.00500	5	11/14/2015 16:05	WG828758	
Carbon tetrachloride	ND		0.00500	5	11/14/2015 16:05	WG828758	c
Chlorobenzene	ND		0.00500	5	11/14/2015 16:05	WG828758	L
Chlorodibromomethane	ND		0.00500	5	11/14/2015 16:05	WG828758	7
Chloroethane	ND		0.0250	5	11/14/2015 16:05	WG828758	,
2-Chloroethyl vinyl ether	ND		0.250	5	11/14/2015 16:05	WG828758	
Chloroform	ND		0.0250	5	11/14/2015 16:05	WG828758	3
Chloromethane	ND		0.0125	5	11/14/2015 16:05	WG828758	
-Chlorotoluene	ND		0.00500	5	11/14/2015 16:05	WG828758	c
	ND		0.00500		11/14/2015 16:05		
-Chlorotoluene				5		WG828758	L
2-Dibromo-3-Chloropropane	ND		0.0250	5	11/14/2015 16:05	WG828758	
2-Dibromoethane	ND		0.00500	5	11/14/2015 16:05	WG828758	
Dibromomethane	ND		0.00500	5	11/14/2015 16:05	WG828758	
2-Dichlorobenzene	ND		0.00500	5	11/14/2015 16:05	<u>WG828758</u>	
3-Dichlorobenzene	ND		0.00500	5	11/14/2015 16:05	WG828758	
4-Dichlorobenzene	ND		0.00500	5	11/14/2015 16:05	WG828758	
Dichlorodifluoromethane	ND		0.0250	5	11/14/2015 16:05	WG828758	
1-Dichloroethane	ND		0.00500	5	11/14/2015 16:05	WG828758	
2-Dichloroethane	ND		0.00500	5	11/14/2015 16:05	WG828758	
1-Dichloroethene	ND		0.00500	5	11/14/2015 16:05	WG828758	
is-1,2-Dichloroethene	ND		0.00500	5	11/14/2015 16:05	<u>WG828758</u>	
rans-1,2-Dichloroethene	ND		0.00500	5	11/14/2015 16:05	WG828758	
,2-Dichloropropane	ND		0.00500	5	11/14/2015 16:05	WG828758	
,1-Dichloropropene	ND		0.00500	5	11/14/2015 16:05	WG828758	
,3-Dichloropropane	ND		0.00500	5	11/14/2015 16:05	WG828758	
is-1,3-Dichloropropene	ND		0.00500	5	11/14/2015 16:05	WG828758	
rans-1,3-Dichloropropene	ND		0.00500	5	11/14/2015 16:05	WG828758	
,2-Dichloropropane	ND		0.00500	5	11/14/2015 16:05	WG828758	
)i-isopropyl ether	ND		0.00500	5	11/14/2015 16:05	WG828758	
thylbenzene	ND		0.00500	5	11/14/2015 16:05	WG828758	
lexachloro-1,3-butadiene	ND		0.00500	5	11/14/2015 16:05	WG828758	
sopropylbenzene	ND		0.00500	5	11/14/2015 16:05	WG828758	
-Isopropyltoluene	ND		0.00500	5	11/14/2015 16:05	WG828758	
-Isopropylloluene -Butanone (MEK)							
()	ND		0.0500	5	11/14/2015 16:05	WG828758	
Aethylene Chloride	ND		0.0250	5	11/14/2015 16:05	WG828758	
-Methyl-2-pentanone (MIBK)	ND		0.0500	5	11/14/2015 16:05	WG828758	
lethyl tert-butyl ether	ND		0.00500	5	11/14/2015 16:05	WG828758	
laphthalene	ND		0.0250	5	11/14/2015 16:05	WG828758	
-Propylbenzene	ND		0.00500	5	11/14/2015 16:05	<u>WG828758</u>	
tyrene	ND		0.00500	5	11/14/2015 16:05	WG828758	
1,1,2-Tetrachloroethane	ND		0.00500	5	11/14/2015 16:05	WG828758	
1,2,2-Tetrachloroethane	ND		0.00500	5	11/14/2015 16:05	WG828758	
1,2-Trichlorotrifluoroethane	ND		0.00500	5	11/14/2015 16:05	WG828758	
etrachloroethene	ND		0.00500	5	11/14/2015 16:05	WG828758	
oluene	ND		0.0250	5	11/14/2015 16:05	WG828758	
,2,3-Trichlorobenzene	ND		0.00500	5	11/14/2015 16:05	WG828758	
,2,4-Trichlorobenzene	ND		0.00500	5	11/14/2015 16:05	WG828758	

4181-15-036A

S&ME Inc. - Hixson TN.

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	C
Analyte	mg/kg		mg/kg		date / time		
1,1,1-Trichloroethane	ND		0.00500	5	11/14/2015 16:05	WG828758	2 T
1,1,2-Trichloroethane	ND		0.00500	5	11/14/2015 16:05	WG828758	
Trichloroethene	ND		0.00500	5	11/14/2015 16:05	WG828758	3
Trichlorofluoromethane	ND		0.0250	5	11/14/2015 16:05	WG828758	³ Ss
1,2,3-Trichloropropane	ND		0.0125	5	11/14/2015 16:05	WG828758	
1,2,4-Trimethylbenzene	ND		0.00500	5	11/14/2015 16:05	WG828758	⁴ C
1,2,3-Trimethylbenzene	ND		0.00500	5	11/14/2015 16:05	WG828758	
Vinyl chloride	ND		0.00500	5	11/14/2015 16:05	WG828758	5
1,3,5-Trimethylbenzene	ND		0.00500	5	11/14/2015 16:05	WG828758	⁵ Sr
Xylenes, Total	ND		0.0150	5	11/14/2015 16:05	WG828758	
(S) Toluene-d8	105		88.7-115		11/14/2015 16:05	WG828758	⁶ Q
(S) Dibromofluoromethane	93.8		76.3-123		11/14/2015 16:05	WG828758	
(S) 4-Bromofluorobenzene	102		69.7-129		11/14/2015 16:05	WG828758	⁷ G

Semi-Volatile Organic Compounds (GC) by Method EPH

	Result	Qualifier	RDL	Dilution	Analysis	Batch	ÅI
Analyte	mg/kg		mg/kg		date / time		
Extractable Petroleum Hydrocarbon	ND		4.00	1	11/16/2015 23:59	WG829444	Sc
(S) o-Terphenyl	106		50.0-150		11/16/2015 23:59	<u>WG829444</u>	

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.0330	1	11/16/2015 03:14	WG828715
Acenaphthene	ND		0.0330	1	11/16/2015 03:14	WG828715
Acenaphthylene	ND		0.0330	1	11/16/2015 03:14	WG828715
Benzo(a)anthracene	ND		0.0330	1	11/16/2015 03:14	WG828715
Benzo(a)pyrene	ND		0.0330	1	11/16/2015 03:14	WG828715
Benzo(b)fluoranthene	ND		0.0330	1	11/16/2015 03:14	<u>WG828715</u>
Benzo(g,h,i)perylene	ND		0.0330	1	11/16/2015 03:14	WG828715
Benzo(k)fluoranthene	ND		0.0330	1	11/16/2015 03:14	<u>WG828715</u>
Chrysene	ND		0.0330	1	11/16/2015 03:14	WG828715
Dibenz(a,h)anthracene	ND		0.0330	1	11/16/2015 03:14	<u>WG828715</u>
Fluoranthene	ND		0.0330	1	11/16/2015 03:14	WG828715
Fluorene	ND		0.0330	1	11/16/2015 03:14	<u>WG828715</u>
Indeno(1,2,3-cd)pyrene	ND		0.0330	1	11/16/2015 03:14	WG828715
Naphthalene	ND		0.0330	1	11/16/2015 03:14	<u>WG828715</u>
Phenanthrene	ND		0.0330	1	11/16/2015 03:14	WG828715
Pyrene	ND		0.0330	1	11/16/2015 03:14	<u>WG828715</u>
(S) Nitrobenzene-d5	86.3		28.3-148		11/16/2015 03:14	WG828715
(S) 2-Fluorobiphenyl	87.3		41.4-134		11/16/2015 03:14	WG828715
(S) p-Terphenyl-d14	74.0		35.8-140		11/16/2015 03:14	WG828715

SDG: L800673

Ss

Cn

Qc

GI

Â

Sc

Mercury by Method 7471A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/kg		mg/kg		date / time		2
Mercury	0.124		0.0200	1	11/14/2015 09:57	WG828700	Tc

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Arsenic	3.64		2.00	1	11/19/2015 08:48	WG829272	
Barium	52.5		0.500	1	11/19/2015 08:48	WG829272	
Cadmium	ND		0.500	1	11/19/2015 08:48	WG829272	
Chromium	18.3		1.00	1	11/19/2015 08:48	WG829272	
Lead	7.96		0.500	1	11/19/2015 08:48	WG829272	
Selenium	ND		2.00	1	11/19/2015 08:48	WG829272	
Silver	ND		1.00	1	11/19/2015 08:48	WG829272	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND		0.250	5	11/14/2015 16:29	WG828758	
Acrylonitrile	ND		0.0500	5	11/14/2015 16:29	WG828758	
Benzene	ND		0.00500	5	11/14/2015 16:29	WG828758	
Bromobenzene	ND		0.00500	5	11/14/2015 16:29	WG828758	
Bromodichloromethane	ND		0.00500	5	11/14/2015 16:29	WG828758	
Bromoform	ND		0.00500	5	11/14/2015 16:29	WG828758	
Bromomethane	ND		0.0250	5	11/14/2015 16:29	WG828758	
n-Butylbenzene	ND		0.00500	5	11/14/2015 16:29	WG828758	
ec-Butylbenzene	ND		0.00500	5	11/14/2015 16:29	WG828758	
ert-Butylbenzene	ND		0.00500	5	11/14/2015 16:29	WG828758	
Carbon tetrachloride	ND		0.00500	5	11/14/2015 16:29	WG828758	
Chlorobenzene	ND		0.00500	5	11/14/2015 16:29	WG828758	
Chlorodibromomethane	ND		0.00500	5	11/14/2015 16:29	WG828758	
Chloroethane	ND		0.0250	5	11/14/2015 16:29	WG828758	
2-Chloroethyl vinyl ether	ND		0.250	5	11/14/2015 16:29	WG828758	
Chloroform	ND		0.0250	5	11/14/2015 16:29	WG828758	
Chloromethane	ND		0.0125	5	11/14/2015 16:29	WG828758	
2-Chlorotoluene	ND		0.00500	5	11/14/2015 16:29	WG828758	
l-Chlorotoluene	ND		0.00500	5	11/14/2015 16:29	WG828758	
,2-Dibromo-3-Chloropropane	ND		0.0250	5	11/14/2015 16:29	WG828758	
,2-Dibromoethane	ND		0.00500	5	11/14/2015 16:29	WG828758	
Dibromomethane	ND		0.00500	5	11/14/2015 16:29	WG828758	
,2-Dichlorobenzene	ND		0.00500	5	11/14/2015 16:29	WG828758	
,3-Dichlorobenzene	ND		0.00500	5	11/14/2015 16:29	WG828758	
,4-Dichlorobenzene	ND		0.00500	5	11/14/2015 16:29	WG828758	
Dichlorodifluoromethane	ND		0.0250	5	11/14/2015 16:29	WG828758	
,1-Dichloroethane	ND		0.00500	5	11/14/2015 16:29	WG828758	
,2-Dichloroethane	ND		0.00500	5	11/14/2015 16:29	WG828758	
,1-Dichloroethene	ND		0.00500	5	11/14/2015 16:29	WG828758	
sis-1,2-Dichloroethene	ND		0.00500	5	11/14/2015 16:29	WG828758	
rans-1,2-Dichloroethene	ND		0.00500	5	11/14/2015 16:29	WG828758	
,2-Dichloropropane	ND		0.00500	5	11/14/2015 16:29	WG828758	
,1-Dichloropropene	ND		0.00500	5	11/14/2015 16:29	WG828758	
,3-Dichloropropane	ND		0.00500	5	11/14/2015 16:29	WG828758	
is-1,3-Dichloropropene	ND		0.00500	5	11/14/2015 16:29	WG828758	
rans-1,3-Dichloropropene	ND		0.00500	5	11/14/2015 16:29	WG828758	
2,2-Dichloropropane	ND		0.00500	5	11/14/2015 16:29	WG828758	
Di-isopropyl ether	ND		0.00500	5	11/14/2015 16:29	WG828758	
Ethylbenzene	ND		0.00500	5	11/14/2015 16:29	WG828758	
ACCOUN	T:		PROJE	CT:	SDG:	DATE/TIME:	PA
S&ME Inc Hix	son TN.		4181-15-0	36A	L800673	11/19/15 15:58	9 0

B2 17.5-20FT Collected date/time: 11/10/15 07:15

SAMPLE RESULTS - 02

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/kg		mg/kg		date / time		
Hexachloro-1,3-butadiene	ND		0.00500	5	11/14/2015 16:29	WG828758	² Tc
Isopropylbenzene	ND		0.00500	5	11/14/2015 16:29	WG828758	10
p-lsopropyltoluene	ND		0.00500	5	11/14/2015 16:29	WG828758	3
2-Butanone (MEK)	ND		0.0500	5	11/14/2015 16:29	WG828758	ຶSs
Methylene Chloride	ND		0.0250	5	11/14/2015 16:29	<u>WG828758</u>	
4-Methyl-2-pentanone (MIBK)	ND		0.0500	5	11/14/2015 16:29	WG828758	⁴ Cn
Methyl tert-butyl ether	ND		0.00500	5	11/14/2015 16:29	WG828758	CI
Naphthalene	ND		0.0250	5	11/14/2015 16:29	WG828758	5
n-Propylbenzene	ND		0.00500	5	11/14/2015 16:29	<u>WG828758</u>	ິSr
Styrene	ND		0.00500	5	11/14/2015 16:29	WG828758	
1,1,1,2-Tetrachloroethane	ND		0.00500	5	11/14/2015 16:29	<u>WG828758</u>	⁶ Qc
1,1,2,2-Tetrachloroethane	ND		0.00500	5	11/14/2015 16:29	WG828758	de
1,1,2-Trichlorotrifluoroethane	ND		0.00500	5	11/14/2015 16:29	<u>WG828758</u>	7
Tetrachloroethene	ND		0.00500	5	11/14/2015 16:29	WG828758	GI
Toluene	ND		0.0250	5	11/14/2015 16:29	<u>WG828758</u>	
1,2,3-Trichlorobenzene	ND		0.00500	5	11/14/2015 16:29	WG828758	⁸ Al
1,2,4-Trichlorobenzene	ND		0.00500	5	11/14/2015 16:29	<u>WG828758</u>	7.4
1,1,1-Trichloroethane	ND		0.00500	5	11/14/2015 16:29	WG828758	9
1,1,2-Trichloroethane	ND		0.00500	5	11/14/2015 16:29	<u>WG828758</u>	ŠC
Trichloroethene	ND		0.00500	5	11/14/2015 16:29	WG828758	
Trichlorofluoromethane	ND		0.0250	5	11/14/2015 16:29	<u>WG828758</u>	
1,2,3-Trichloropropane	ND		0.0125	5	11/14/2015 16:29	WG828758	
1,2,4-Trimethylbenzene	ND		0.00500	5	11/14/2015 16:29	<u>WG828758</u>	
1,2,3-Trimethylbenzene	ND		0.00500	5	11/14/2015 16:29	WG828758	
Vinyl chloride	ND		0.00500	5	11/14/2015 16:29	<u>WG828758</u>	
1,3,5-Trimethylbenzene	ND		0.00500	5	11/14/2015 16:29	WG828758	
Xylenes, Total	ND		0.0150	5	11/14/2015 16:29	WG828758	
(S) Toluene-d8	105		88.7-115		11/14/2015 16:29	WG828758	
(S) Dibromofluoromethane	95.9		76.3-123		11/14/2015 16:29	WG828758	
(S) 4-Bromofluorobenzene	102		69.7-129		11/14/2015 16:29	WG828758	

Semi-Volatile Organic Compounds (GC) by Method EPH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Extractable Petroleum Hydrocarbon	ND		4.00	1	11/17/2015 00:41	<u>WG829444</u>
(S) o-Terphenyl	105		50.0-150		11/17/2015 00:41	WG829444

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Anthracene	ND		0.0330	1	11/16/2015 03:35	WG828715	
Acenaphthene	ND		0.0330	1	11/16/2015 03:35	<u>WG828715</u>	
Acenaphthylene	ND		0.0330	1	11/16/2015 03:35	<u>WG828715</u>	
Benzo(a)anthracene	ND		0.0330	1	11/16/2015 03:35	<u>WG828715</u>	
Benzo(a)pyrene	ND		0.0330	1	11/16/2015 03:35	<u>WG828715</u>	
Benzo(b)fluoranthene	ND		0.0330	1	11/16/2015 03:35	<u>WG828715</u>	
Benzo(g,h,i)perylene	ND		0.0330	1	11/16/2015 03:35	<u>WG828715</u>	
Benzo(k)fluoranthene	ND		0.0330	1	11/16/2015 03:35	<u>WG828715</u>	
Chrysene	ND		0.0330	1	11/16/2015 03:35	<u>WG828715</u>	
Dibenz(a,h)anthracene	ND		0.0330	1	11/16/2015 03:35	<u>WG828715</u>	
Fluoranthene	ND		0.0330	1	11/16/2015 03:35	<u>WG828715</u>	
Fluorene	ND		0.0330	1	11/16/2015 03:35	<u>WG828715</u>	
Indeno(1,2,3-cd)pyrene	ND		0.0330	1	11/16/2015 03:35	<u>WG828715</u>	
Naphthalene	ND		0.0330	1	11/16/2015 03:35	<u>WG828715</u>	
Phenanthrene	ND		0.0330	1	11/16/2015 03:35	<u>WG828715</u>	
1000			22.0.15		07.0		

ACCOUNT:	
S&ME Inc Hixson TN.	

PROJECT: 4181-15-036A SDG: L800673

B2 17.5-20FT Collected date/time: 11/10/15 07:15

SAMPLE RESULTS - 02

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/kg		mg/kg		date / time		
Pyrene	ND		0.0330	1	11/16/2015 03:35	WG828715	^{2}Tc
(S) Nitrobenzene-d5	84.1		28.3-148		11/16/2015 03:35	WG828715	10
(S) 2-Fluorobiphenyl	85.1		41.4-134		11/16/2015 03:35	WG828715	3
(S) p-Terphenyl-d14	69.3		35.8-140		11/16/2015 03:35	WG828715	Ss

³ Ss
⁴ Cn
⁵Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

畿

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg		date / time	WC0207E0		² T(
Acetone	ND ND		0.250 0.0500	5 5	11/14/2015 16:53	WG828758		
Acrylonitrile	ND		0.00500	5	11/14/2015 16:53	WG828758		3
Benzene	ND		0.00500	5	11/14/2015 16:53	WG828758		ĭS
Bromobenzene					11/14/2015 16:53	WG828758		
Bromodichloromethane	ND		0.00500	5	11/14/2015 16:53	WG828758		⁴ C
Bromoform	ND		0.00500	5	11/14/2015 16:53	WG828758		
Bromomethane	ND		0.0250	5	11/14/2015 16:53	WG828758		F
n-Butylbenzene	ND		0.00500	5	11/14/2015 16:53	WG828758		ٌSr
sec-Butylbenzene	ND		0.00500	5	11/14/2015 16:53	WG828758		
tert-Butylbenzene	ND		0.00500	5	11/14/2015 16:53	WG828758		6
Carbon tetrachloride	ND		0.00500	5	11/14/2015 16:53	WG828758		Q
Chlorobenzene	ND		0.00500	5	11/14/2015 16:53	WG828758		
Chlorodibromomethane	ND		0.00500	5	11/14/2015 16:53	WG828758		Ġ.
Chloroethane	ND		0.0250	5	11/14/2015 16:53	WG828758		
2-Chloroethyl vinyl ether	ND		0.250	5	11/14/2015 16:53	<u>WG828758</u>		8
Chloroform	ND		0.0250	5	11/14/2015 16:53	WG828758		A
Chloromethane	ND		0.0125	5	11/14/2015 16:53	WG828758		
2-Chlorotoluene	ND		0.00500	5	11/14/2015 16:53	WG828758		°Sc
4-Chlorotoluene	ND		0.00500	5	11/14/2015 16:53	WG828758		
1,2-Dibromo-3-Chloropropane	ND		0.0250	5	11/14/2015 16:53	<u>WG828758</u>		
1,2-Dibromoethane	ND		0.00500	5	11/14/2015 16:53	WG828758		
Dibromomethane	ND		0.00500	5	11/14/2015 16:53	WG828758		
1,2-Dichlorobenzene	ND		0.00500	5	11/14/2015 16:53	WG828758		
1,3-Dichlorobenzene	ND		0.00500	5	11/14/2015 16:53	WG828758		
1,4-Dichlorobenzene	ND		0.00500	5	11/14/2015 16:53	WG828758		
Dichlorodifluoromethane	ND		0.0250	5	11/14/2015 16:53	WG828758		
1,1-Dichloroethane	ND		0.00500	5	11/14/2015 16:53	WG828758		
1,2-Dichloroethane	ND		0.00500	5	11/14/2015 16:53	WG828758		
1,1-Dichloroethene	ND		0.00500	5	11/14/2015 16:53	WG828758		
cis-1,2-Dichloroethene	ND		0.00500	5	11/14/2015 16:53	WG828758		
trans-1,2-Dichloroethene	ND		0.00500	5	11/14/2015 16:53	WG828758		
1,2-Dichloropropane	ND		0.00500	5	11/14/2015 16:53	WG828758		
1,1-Dichloropropene	ND		0.00500	5	11/14/2015 16:53	WG828758		
1,3-Dichloropropane	ND		0.00500	5	11/14/2015 16:53	WG828758		
cis-1,3-Dichloropropene	ND		0.00500	5	11/14/2015 16:53	WG828758		
trans-1,3-Dichloropropene	ND		0.00500	5	11/14/2015 16:53	WG828758		
2,2-Dichloropropane	ND		0.00500	5	11/14/2015 16:53	WG828758		
Di-isopropyl ether	ND		0.00500	5	11/14/2015 16:53	WG828758		
Ethylbenzene	ND		0.00500	5	11/14/2015 16:53	WG828758		
Hexachloro-1,3-butadiene	ND		0.00500	5	11/14/2015 16:53	WG828758		
Isopropylbenzene	ND		0.00500	5	11/14/2015 16:53	WG828758		
p-lsopropyltoluene	ND		0.00500	5	11/14/2015 16:53	WG828758		
2-Butanone (MEK)	ND		0.0500	5	11/14/2015 16:53	WG828758		
Methylene Chloride	ND		0.0500	5	11/14/2015 16:53	WG828758		
4-Methyl-2-pentanone (MIBK)	ND		0.0250	5	11/14/2015 16:53	WG828758		
Methyl tert-butyl ether	ND		0.00500	5	11/14/2015 16:53	WG828758 WG828758		
	ND		0.00500	5				
Naphthalene					11/14/2015 16:53	WG828758		
n-Propylbenzene	ND		0.00500	5	11/14/2015 16:53	WG828758		
Styrene	ND		0.00500	5	11/14/2015 16:53	WG828758		
1,1,1,2-Tetrachloroethane	ND		0.00500	5	11/14/2015 16:53	WG828758		
1,1,2,2-Tetrachloroethane	ND		0.00500	5	11/14/2015 16:53	WG828758		
1,1,2-Trichlorotrifluoroethane	ND		0.00500	5	11/14/2015 16:53	WG828758		
Tetrachloroethene	ND		0.00500	5	11/14/2015 16:53	WG828758		
Toluene	ND		0.0250	5	11/14/2015 16:53	WG828758		
1,2,3-Trichlorobenzene	ND		0.00500	5	11/14/2015 16:53	WG828758		
1,2,4-Trichlorobenzene	ND		0.00500	5	11/14/2015 16:53	WG828758		
ACCOUN S&ME Inc Hix			PROJE 4181-15-0		SDG: L800673	3	DATE/TIME: 11/19/15 15:58	PAGE: 12 of 73

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
1,1,1-Trichloroethane	ND		0.00500	5	11/14/2015 16:53	WG828758	²
1,1,2-Trichloroethane	ND		0.00500	5	11/14/2015 16:53	WG828758	
Trichloroethene	ND		0.00500	5	11/14/2015 16:53	<u>WG828758</u>	3
Trichlorofluoromethane	ND		0.0250	5	11/14/2015 16:53	<u>WG828758</u>	³ S
1,2,3-Trichloropropane	ND		0.0125	5	11/14/2015 16:53	WG828758	
1,2,4-Trimethylbenzene	ND		0.00500	5	11/14/2015 16:53	<u>WG828758</u>	4
1,2,3-Trimethylbenzene	ND		0.00500	5	11/14/2015 16:53	WG828758	
Vinyl chloride	ND		0.00500	5	11/14/2015 16:53	<u>WG828758</u>	5
1,3,5-Trimethylbenzene	ND		0.00500	5	11/14/2015 16:53	WG828758	⁵ S
Xylenes, Total	ND		0.0150	5	11/14/2015 16:53	<u>WG828758</u>	
(S) Toluene-d8	105		88.7-115		11/14/2015 16:53	<u>WG828758</u>	6
(S) Dibromofluoromethane	96.1		76.3-123		11/14/2015 16:53	<u>WG828758</u>	
(S) 4-Bromofluorobenzene	99.1		69.7-129		11/14/2015 16:53	WG828758	⁷ G

Semi-Volatile Organic Compounds (GC) by Method EPH

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Å
Analyte	mg/kg		mg/kg		date / time		
Extractable Petroleum Hydrocarbon	6.66		4.00	1	11/17/2015 00:55	WG829444	Sc
(S) o-Terphenyl	98.2		50.0-150		11/17/2015 00:55	WG829444	

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Anthracene	ND		0.0330	1	11/16/2015 04:39	<u>WG828715</u>
Acenaphthene	ND		0.0330	1	11/16/2015 04:39	WG828715
Acenaphthylene	ND		0.0330	1	11/16/2015 04:39	WG828715
Benzo(a)anthracene	ND		0.0330	1	11/16/2015 04:39	WG828715
Benzo(a)pyrene	ND		0.0330	1	11/16/2015 04:39	WG828715
Benzo(b)fluoranthene	ND		0.0330	1	11/16/2015 04:39	WG828715
Benzo(g,h,i)perylene	ND		0.0330	1	11/16/2015 04:39	WG828715
Benzo(k)fluoranthene	ND		0.0330	1	11/16/2015 04:39	WG828715
Chrysene	ND		0.0330	1	11/16/2015 04:39	WG828715
Dibenz(a,h)anthracene	ND		0.0330	1	11/16/2015 04:39	WG828715
Fluoranthene	ND		0.0330	1	11/16/2015 04:39	WG828715
Fluorene	ND		0.0330	1	11/16/2015 04:39	WG828715
Indeno(1,2,3-cd)pyrene	ND		0.0330	1	11/16/2015 04:39	WG828715
Naphthalene	ND		0.0330	1	11/16/2015 04:39	WG828715
Phenanthrene	ND		0.0330	1	11/16/2015 04:39	WG828715
Pyrene	ND		0.0330	1	11/16/2015 04:39	WG828715
(S) Nitrobenzene-d5	93.7		28.3-148		11/16/2015 04:39	WG828715
(S) 2-Fluorobiphenyl	86.7		41.4-134		11/16/2015 04:39	WG828715
(S) p-Terphenyl-d14	73.9		35.8-140		11/16/2015 04:39	WG828715

SDG: L800673

Ss

Cn

Qc

GI

ΆI

Sc

Mercury by Method 7471A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ср
Analyte	mg/kg		mg/kg		date / time		2
Mercury	0.0629		0.0200	1	11/14/2015 10:00	WG828700	⁻Tc

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Arsenic	3.35		2.00	1	11/19/2015 08:51	WG829272	
Barium	54.1		0.500	1	11/19/2015 08:51	WG829272	
Cadmium	ND		0.500	1	11/19/2015 08:51	WG829272	
Chromium	19.6		1.00	1	11/19/2015 08:51	WG829272	
Lead	10.4		0.500	1	11/19/2015 08:51	WG829272	
Selenium	ND		2.00	1	11/19/2015 08:51	WG829272	
Silver	ND		1.00	1	11/19/2015 08:51	WG829272	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg		date / time			I
Acetone	ND		0.250	5	11/14/2015 17:17	WG828758		
Acrylonitrile	ND		0.0500	5	11/14/2015 17:17	WG828758		
Benzene	ND		0.00500	5	11/14/2015 17:17	WG828758		
Bromobenzene	ND		0.00500	5	11/14/2015 17:17	WG828758		
Bromodichloromethane	ND		0.00500	5	11/14/2015 17:17	WG828758		
Bromoform	ND		0.00500	5	11/14/2015 17:17	WG828758		
Bromomethane	ND		0.0250	5	11/14/2015 17:17	WG828758		
n-Butylbenzene	ND		0.00500	5	11/14/2015 17:17	WG828758		
sec-Butylbenzene	ND		0.00500	5	11/14/2015 17:17	WG828758		
tert-Butylbenzene	ND		0.00500	5	11/14/2015 17:17	WG828758		
Carbon tetrachloride	ND		0.00500	5	11/14/2015 17:17	WG828758		
Chlorobenzene	ND		0.00500	5	11/14/2015 17:17	WG828758		
Chlorodibromomethane	ND		0.00500	5	11/14/2015 17:17	WG828758		
Chloroethane	ND		0.0250	5	11/14/2015 17:17	WG828758		
2-Chloroethyl vinyl ether	ND		0.250	5	11/14/2015 17:17	WG828758		
Chloroform	ND		0.0250	5	11/14/2015 17:17	WG828758		
Chloromethane	ND		0.0125	5	11/14/2015 17:17	WG828758		
2-Chlorotoluene	ND		0.00500	5	11/14/2015 17:17	WG828758		
4-Chlorotoluene	ND		0.00500	5	11/14/2015 17:17	WG828758		
1,2-Dibromo-3-Chloropropane	ND		0.0250	5	11/14/2015 17:17	WG828758		
1,2-Dibromoethane	ND		0.00500	5	11/14/2015 17:17	WG828758		
Dibromomethane	ND		0.00500	5	11/14/2015 17:17	WG828758		
1,2-Dichlorobenzene	ND		0.00500	5	11/14/2015 17:17	WG828758		
1,3-Dichlorobenzene	ND		0.00500	5	11/14/2015 17:17	WG828758		
1,4-Dichlorobenzene	ND		0.00500	5	11/14/2015 17:17	WG828758		
Dichlorodifluoromethane	ND		0.0250	5	11/14/2015 17:17	WG828758		
1,1-Dichloroethane	ND		0.00500	5	11/14/2015 17:17	WG828758		
1,2-Dichloroethane	ND		0.00500	5	11/14/2015 17:17	WG828758		
1,1-Dichloroethene	ND		0.00500	5	11/14/2015 17:17	WG828758		
cis-1,2-Dichloroethene	ND		0.00500	5	11/14/2015 17:17	WG828758		
trans-1,2-Dichloroethene	ND		0.00500	5	11/14/2015 17:17	WG828758		
1,2-Dichloropropane	ND		0.00500	5	11/14/2015 17:17	WG828758		
1,1-Dichloropropene	ND		0.00500	5	11/14/2015 17:17	WG828758		
1,3-Dichloropropane	ND		0.00500	5	11/14/2015 17:17	WG828758		
cis-1,3-Dichloropropene	ND		0.00500	5	11/14/2015 17:17	WG828758		
trans-1,3-Dichloropropene	ND		0.00500	5	11/14/2015 17:17	WG828758		
2,2-Dichloropropane	ND		0.00500	5	11/14/2015 17:17	WG828758		
Di-isopropyl ether	ND		0.00500	5	11/14/2015 17:17	WG828758		
Ethylbenzene	ND		0.00500	5	11/14/2015 17:17	WG828758		
ACCOUN	T·		PROJE	~т.	SDG:		DATE/TIME:	PAGE:
ACCOUNT	•••		11.05		500.			I AOL.

B4 17.5-18.1FT Collected date/time: 11/11/15 16:15

SAMPLE RESULTS - 04

*

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Hexachloro-1,3-butadiene	ND		0.00500	5	11/14/2015 17:17	WG828758	²
Isopropylbenzene	ND		0.00500	5	11/14/2015 17:17	WG828758	'
p-Isopropyltoluene	ND		0.00500	5	11/14/2015 17:17	WG828758	3
2-Butanone (MEK)	ND		0.0500	5	11/14/2015 17:17	WG828758	ິເ
Methylene Chloride	ND		0.0250	5	11/14/2015 17:17	<u>WG828758</u>	
4-Methyl-2-pentanone (MIBK)	ND		0.0500	5	11/14/2015 17:17	WG828758	4
Methyl tert-butyl ether	ND		0.00500	5	11/14/2015 17:17	WG828758	Ľ
Naphthalene	ND		0.0250	5	11/14/2015 17:17	WG828758	5
n-Propylbenzene	ND		0.00500	5	11/14/2015 17:17	<u>WG828758</u>	ີ 🤇
Styrene	ND		0.00500	5	11/14/2015 17:17	WG828758	
1,1,1,2-Tetrachloroethane	ND		0.00500	5	11/14/2015 17:17	WG828758	6
1,1,2,2-Tetrachloroethane	ND		0.00500	5	11/14/2015 17:17	WG828758	
1,1,2-Trichlorotrifluoroethane	ND		0.00500	5	11/14/2015 17:17	WG828758	7
Tetrachloroethene	ND		0.00500	5	11/14/2015 17:17	WG828758	í (
Toluene	ND		0.0250	5	11/14/2015 17:17	WG828758	L
1,2,3-Trichlorobenzene	ND		0.00500	5	11/14/2015 17:17	WG828758	8
1,2,4-Trichlorobenzene	ND		0.00500	5	11/14/2015 17:17	WG828758	· · · · · · · · · · · · · · · · · · ·
1,1,1-Trichloroethane	ND		0.00500	5	11/14/2015 17:17	WG828758	9
1,1,2-Trichloroethane	ND		0.00500	5	11/14/2015 17:17	WG828758	Ĩ
Trichloroethene	ND		0.00500	5	11/14/2015 17:17	WG828758	
Trichlorofluoromethane	ND		0.0250	5	11/14/2015 17:17	WG828758	
1,2,3-Trichloropropane	ND		0.0125	5	11/14/2015 17:17	WG828758	
1,2,4-Trimethylbenzene	ND		0.00500	5	11/14/2015 17:17	<u>WG828758</u>	
1,2,3-Trimethylbenzene	ND		0.00500	5	11/14/2015 17:17	<u>WG828758</u>	
Vinyl chloride	ND		0.00500	5	11/14/2015 17:17	<u>WG828758</u>	
1,3,5-Trimethylbenzene	ND		0.00500	5	11/14/2015 17:17	<u>WG828758</u>	
Xylenes, Total	ND		0.0150	5	11/14/2015 17:17	WG828758	
(S) Toluene-d8	98.9		88.7-115		11/14/2015 17:17	WG828758	
(S) Dibromofluoromethane	98.7		76.3-123		11/14/2015 17:17	WG828758	
(S) 4-Bromofluorobenzene	102		69.7-129		11/14/2015 17:17	WG828758	

Semi-Volatile Organic Compounds (GC) by Method EPH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Extractable Petroleum Hydrocarbon	ND		4.00	1	11/17/2015 01:08	WG829444
(S) o-Terphenyl	96.6		50.0-150		11/17/2015 01:08	WG829444

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Anthracene	ND		0.0330	1	11/16/2015 05:01	WG828715	
Acenaphthene	ND		0.0330	1	11/16/2015 05:01	WG828715	
Acenaphthylene	ND		0.0330	1	11/16/2015 05:01	WG828715	
Benzo(a)anthracene	ND		0.0330	1	11/16/2015 05:01	WG828715	
Benzo(a)pyrene	ND		0.0330	1	11/16/2015 05:01	WG828715	
Benzo(b)fluoranthene	ND		0.0330	1	11/16/2015 05:01	WG828715	
Benzo(g,h,i)perylene	ND		0.0330	1	11/16/2015 05:01	WG828715	
Benzo(k)fluoranthene	ND		0.0330	1	11/16/2015 05:01	WG828715	
Chrysene	ND		0.0330	1	11/16/2015 05:01	WG828715	
Dibenz(a,h)anthracene	ND		0.0330	1	11/16/2015 05:01	WG828715	
Fluoranthene	ND		0.0330	1	11/16/2015 05:01	WG828715	
Fluorene	ND		0.0330	1	11/16/2015 05:01	WG828715	
ndeno(1,2,3-cd)pyrene	ND		0.0330	1	11/16/2015 05:01	WG828715	
Naphthalene	ND		0.0330	1	11/16/2015 05:01	WG828715	
Phenanthrene	ND		0.0330	1	11/16/2015 05:01	WG828715	
ACCO	UNT:		PROJE	CT:	SDG:	DATE/TIME:	PAG

PROJECT: 4181-15-036A SDG: L800673

DATE/TIME: 11/19/15 15:58

*

Cn

Qc

Gl

Â

Sc

B4 17.5-18.1FT Collected date/time: 11/11/15 16:15

SAMPLE RESULTS - 04

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	ľ
Analyte	mg/kg		mg/kg		date / time		L
Pyrene	ND		0.0330	1	11/16/2015 05:01	<u>WG828715</u>	2
(S) Nitrobenzene-d5	92.0		28.3-148		11/16/2015 05:01	<u>WG828715</u>	
(S) 2-Fluorobiphenyl	92.0		41.4-134		11/16/2015 05:01	<u>WG828715</u>	3
(S) p-Terphenyl-d14	74.5		35.8-140		11/16/2015 05:01	<u>WG828715</u>	

SDG: L800673

Ss

Cn

Qc

GI

Â

Sc

Mercury by Method 7471A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/kg		mg/kg		date / time		2
Mercury	0.0747		0.0200	1	11/14/2015 10:03	WG828700	Tc

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Arsenic	6.74		2.00	1	11/19/2015 08:54	WG829272	
Barium	200		0.500	1	11/19/2015 08:54	WG829272	
Cadmium	ND		0.500	1	11/19/2015 08:54	WG829272	
Chromium	23.6		1.00	1	11/19/2015 08:54	WG829272	
Lead	39.5		0.500	1	11/19/2015 08:54	WG829272	
Selenium	ND		2.00	1	11/19/2015 08:54	WG829272	
Silver	ND		1.00	1	11/19/2015 08:54	WG829272	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg		date / time			
Acetone	ND		0.250	5	11/14/2015 10:51	WG828758		
Acrylonitrile	ND		0.0500	5	11/14/2015 10:51	WG828758		
Benzene	ND		0.00500	5	11/14/2015 10:51	WG828758		
Bromobenzene	ND		0.00500	5	11/14/2015 10:51	WG828758		
Bromodichloromethane	ND		0.00500	5	11/14/2015 10:51	WG828758		
Bromoform	ND		0.00500	5	11/14/2015 10:51	WG828758		
Bromomethane	ND		0.0250	5	11/14/2015 10:51	WG828758		
n-Butylbenzene	ND		0.00500	5	11/14/2015 10:51	WG828758		
sec-Butylbenzene	ND		0.00500	5	11/14/2015 10:51	WG828758		
tert-Butylbenzene	ND		0.00500	5	11/14/2015 10:51	WG828758		
Carbon tetrachloride	ND		0.00500	5	11/14/2015 10:51	WG828758		
Chlorobenzene	ND		0.00500	5	11/14/2015 10:51	WG828758		
Chlorodibromomethane	ND		0.00500	5	11/14/2015 10:51	WG828758		
Chloroethane	ND		0.0250	5	11/14/2015 10:51	WG828758		
2-Chloroethyl vinyl ether	ND		0.250	5	11/14/2015 10:51	WG828758		
Chloroform	ND		0.0250	5	11/14/2015 10:51	WG828758		
Chloromethane	ND		0.0125	5	11/14/2015 10:51	WG828758		
2-Chlorotoluene	ND		0.00500	5	11/14/2015 10:51	WG828758		
4-Chlorotoluene	ND		0.00500	5	11/14/2015 10:51	WG828758		
1,2-Dibromo-3-Chloropropane	ND		0.0250	5	11/14/2015 10:51	WG828758		
1,2-Dibromoethane	ND		0.00500	5	11/14/2015 10:51	WG828758		
Dibromomethane	ND		0.00500	5	11/14/2015 10:51	WG828758		
1,2-Dichlorobenzene	ND		0.00500	5	11/14/2015 10:51	WG828758		
1,3-Dichlorobenzene	ND		0.00500	5	11/14/2015 10:51	WG828758		
1,4-Dichlorobenzene	ND		0.00500	5	11/14/2015 10:51	WG828758		
Dichlorodifluoromethane	ND		0.0250	5	11/14/2015 10:51	WG828758		
1,1-Dichloroethane	ND		0.00500	5	11/14/2015 10:51	WG828758		
1,2-Dichloroethane	ND		0.00500	5	11/14/2015 10:51	WG828758		
1,1-Dichloroethene	ND		0.00500	5	11/14/2015 10:51	WG828758		
cis-1,2-Dichloroethene	ND		0.00500	5	11/14/2015 10:51	WG828758		
trans-1,2-Dichloroethene	ND		0.00500	5	11/14/2015 10:51	WG828758		
1,2-Dichloropropane	ND		0.00500	5	11/14/2015 10:51	WG828758		
1,1-Dichloropropene	ND		0.00500	5	11/14/2015 10:51	WG828758		
1,3-Dichloropropane	ND		0.00500	5	11/14/2015 10:51	WG828758		
cis-1,3-Dichloropropene	ND		0.00500	5	11/14/2015 10:51	WG828758		
trans-1,3-Dichloropropene	ND		0.00500	5	11/14/2015 10:51	WG828758		
2,2-Dichloropropane	ND		0.00500	5	11/14/2015 10:51	WG828758		
Di-isopropyl ether	ND		0.00500	5	11/14/2015 10:51	WG828758		
Ethylbenzene	ND		0.00500	5	11/14/2015 10:51	WG828758		
ACCOUN	T·		PROJE	CT:	SDG:		DATE/TIME:	PAGE:
S&ME Inc Hix			4181-15-0		L80067	3	11/19/15 15:58	17 of 73

₩

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	_
Analyte	mg/kg		mg/kg		date / time		L
Hexachloro-1,3-butadiene	ND		0.00500	5	11/14/2015 10:51	<u>WG828758</u>	
Isopropylbenzene	ND		0.00500	5	11/14/2015 10:51	<u>WG828758</u>	
p-Isopropyltoluene	ND		0.00500	5	11/14/2015 10:51	WG828758	[
2-Butanone (MEK)	ND		0.0500	5	11/14/2015 10:51	<u>WG828758</u>	
Methylene Chloride	ND		0.0250	5	11/14/2015 10:51	<u>WG828758</u>	L
4-Methyl-2-pentanone (MIBK)	ND		0.0500	5	11/14/2015 10:51	<u>WG828758</u>	
Methyl tert-butyl ether	ND		0.00500	5	11/14/2015 10:51	WG828758	
Naphthalene	ND		0.0250	5	11/14/2015 10:51	WG828758	
n-Propylbenzene	ND		0.00500	5	11/14/2015 10:51	WG828758	
Styrene	ND		0.00500	5	11/14/2015 10:51	WG828758	
1,1,1,2-Tetrachloroethane	ND		0.00500	5	11/14/2015 10:51	WG828758	
1,1,2,2-Tetrachloroethane	ND		0.00500	5	11/14/2015 10:51	WG828758	
1,1,2-Trichlorotrifluoroethane	ND		0.00500	5	11/14/2015 10:51	WG828758	[
Tetrachloroethene	ND		0.00500	5	11/14/2015 10:51	WG828758	
Toluene	ND		0.0250	5	11/14/2015 10:51	WG828758	L
1,2,3-Trichlorobenzene	ND		0.00500	5	11/14/2015 10:51	WG828758	
1,2,4-Trichlorobenzene	ND		0.00500	5	11/14/2015 10:51	WG828758	
1,1,1-Trichloroethane	ND		0.00500	5	11/14/2015 10:51	WG828758	ſ
1,1,2-Trichloroethane	ND		0.00500	5	11/14/2015 10:51	<u>WG828758</u>	
Trichloroethene	ND		0.00500	5	11/14/2015 10:51	WG828758	L
Trichlorofluoromethane	ND		0.0250	5	11/14/2015 10:51	<u>WG828758</u>	
1,2,3-Trichloropropane	ND		0.0125	5	11/14/2015 10:51	WG828758	
1,2,4-Trimethylbenzene	ND		0.00500	5	11/14/2015 10:51	WG828758	
1,2,3-Trimethylbenzene	ND		0.00500	5	11/14/2015 10:51	WG828758	
Vinyl chloride	ND		0.00500	5	11/14/2015 10:51	WG828758	
1,3,5-Trimethylbenzene	ND		0.00500	5	11/14/2015 10:51	WG828758	
Xylenes, Total	ND		0.0150	5	11/14/2015 10:51	WG828758	
(S) Toluene-d8	104		88.7-115		11/14/2015 10:51	WG828758	
(S) Dibromofluoromethane	95.1		76.3-123		11/14/2015 10:51	WG828758	
(S) 4-Bromofluorobenzene	99.9		69.7-129		11/14/2015 10:51	WG828758	

Semi-Volatile Organic Compounds (GC) by Method EPH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Extractable Petroleum Hydrocarbon	19.6		4.00	1	11/17/2015 01:22	<u>WG829444</u>
(S) o-Terphenyl	86.3		50.0-150		11/17/2015 01:22	WG829444

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg		date / time			
Anthracene	ND		0.0330	1	11/16/2015 05:22	WG828715		
Acenaphthene	ND		0.0330	1	11/16/2015 05:22	WG828715		
Acenaphthylene	ND		0.0330	1	11/16/2015 05:22	WG828715		
Benzo(a)anthracene	ND		0.0330	1	11/16/2015 05:22	WG828715		
Benzo(a)pyrene	ND		0.0330	1	11/16/2015 05:22	WG828715		
Benzo(b)fluoranthene	ND		0.0330	1	11/16/2015 05:22	WG828715		
Benzo(g,h,i)perylene	ND		0.0330	1	11/16/2015 05:22	WG828715		
Benzo(k)fluoranthene	ND		0.0330	1	11/16/2015 05:22	WG828715		
Chrysene	ND		0.0330	1	11/16/2015 05:22	WG828715		
Dibenz(a,h)anthracene	ND		0.0330	1	11/16/2015 05:22	WG828715		
Fluoranthene	ND		0.0330	1	11/16/2015 05:22	WG828715		
Fluorene	ND		0.0330	1	11/16/2015 05:22	WG828715		
Indeno(1,2,3-cd)pyrene	ND		0.0330	1	11/16/2015 05:22	WG828715		
Naphthalene	ND		0.0330	1	11/16/2015 05:22	WG828715		
Phenanthrene	ND		0.0330	1	11/16/2015 05:22	WG828715		
ACCC	UNT:		PROJE	ECT:	SDG:		DATE/TIME:	PAGE

PROJECT: 4181-15-036A

L800673

DATE/TIME: 11/19/15 15:58

Cn

Qc

Gl

Â

Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Pyrene	ND		0.0330	1	11/16/2015 05:22	WG828715	2
(S) Nitrobenzene-d5	84.5		28.3-148		11/16/2015 05:22	WG828715	
(S) 2-Fluorobiphenyl	78.5		41.4-134		11/16/2015 05:22	WG828715	3
(S) p-Terphenyl-d14	69.7		35.8-140		11/16/2015 05:22	WG828715	

SDG: L800673

SAMPLE RESULTS - 06 L800673

Cn

Qc

Gl

Â

Sc

Mercury by Method 7471A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	(Ср
Analyte	mg/kg		mg/kg		date / time		2	
Mercury	0.0632		0.0200	1	11/14/2015 10:06	WG828700	2 <u> </u>	Тс
Metals (ICP) by	Method 6010B						3	Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Arsenic	3.24		2.00	1	11/19/2015 08:57	WG829272	
Barium	89.2		0.500	1	11/19/2015 08:57	WG829272	
Cadmium	ND		0.500	1	11/19/2015 08:57	WG829272	
Chromium	18.4		1.00	1	11/19/2015 08:57	WG829272	
Lead	7.49		0.500	1	11/19/2015 08:57	WG829272	
Selenium	ND		2.00	1	11/19/2015 08:57	WG829272	
Silver	ND		1.00	1	11/19/2015 08:57	WG829272	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg		date / time			l	
Acetone	ND		0.250	5	11/14/2015 17:41	WG828758		!	
Acrylonitrile	ND		0.0500	5	11/14/2015 17:41	WG828758			
Benzene	ND		0.00500	5	11/14/2015 17:41	WG828758			
Bromobenzene	ND		0.00500	5	11/14/2015 17:41	WG828758			
Bromodichloromethane	ND		0.00500	5	11/14/2015 17:41	WG828758			
Bromoform	ND		0.00500	5	11/14/2015 17:41	WG828758			
Bromomethane	ND		0.0250	5	11/14/2015 17:41	WG828758			
n-Butylbenzene	ND		0.00500	5	11/14/2015 17:41	WG828758			
sec-Butylbenzene	ND		0.00500	5	11/14/2015 17:41	WG828758			
tert-Butylbenzene	ND		0.00500	5	11/14/2015 17:41	WG828758			
Carbon tetrachloride	ND		0.00500	5	11/14/2015 17:41	WG828758			
Chlorobenzene	ND		0.00500	5	11/14/2015 17:41	WG828758			
Chlorodibromomethane	ND		0.00500	5	11/14/2015 17:41	WG828758			
Chloroethane	ND		0.0250	5	11/14/2015 17:41	WG828758			
2-Chloroethyl vinyl ether	ND		0.250	5	11/14/2015 17:41	WG828758			
Chloroform	ND		0.0250	5	11/14/2015 17:41	WG828758			
Chloromethane	ND		0.0125	5	11/14/2015 17:41	WG828758			
2-Chlorotoluene	ND		0.00500	5	11/14/2015 17:41	WG828758			
4-Chlorotoluene	ND		0.00500	5	11/14/2015 17:41	WG828758			
1,2-Dibromo-3-Chloropropane	ND		0.0250	5	11/14/2015 17:41	WG828758			
1,2-Dibromoethane	ND		0.00500	5	11/14/2015 17:41	WG828758			
Dibromomethane	ND		0.00500	5	11/14/2015 17:41	WG828758			
1,2-Dichlorobenzene	ND		0.00500	5	11/14/2015 17:41	WG828758			
1,3-Dichlorobenzene	ND		0.00500	5	11/14/2015 17:41	WG828758			
1,4-Dichlorobenzene	ND		0.00500	5	11/14/2015 17:41	WG828758			
Dichlorodifluoromethane	ND		0.0250	5	11/14/2015 17:41	WG828758			
1,1-Dichloroethane	ND		0.00500	5	11/14/2015 17:41	WG828758			
1,2-Dichloroethane	ND		0.00500	5	11/14/2015 17:41	WG828758			
1,1-Dichloroethene	ND		0.00500	5	11/14/2015 17:41	WG828758			
cis-1,2-Dichloroethene	ND		0.00500	5	11/14/2015 17:41	WG828758			
trans-1,2-Dichloroethene	ND		0.00500	5	11/14/2015 17:41	WG828758			
1,2-Dichloropropane	ND		0.00500	5	11/14/2015 17:41	WG828758			
1,1-Dichloropropene	ND		0.00500	5	11/14/2015 17:41	WG828758			
1,3-Dichloropropane	ND		0.00500	5	11/14/2015 17:41	WG828758			
cis-1,3-Dichloropropene	ND		0.00500	5	11/14/2015 17:41	WG828758			
trans-1,3-Dichloropropene	ND		0.00500	5	11/14/2015 17:41	WG828758			
2,2-Dichloropropane	ND		0.00500	5	11/14/2015 17:41	WG828758			
Di-isopropyl ether	ND		0.00500	5	11/14/2015 17:41	WG828758			
Ethylbenzene	ND		0.00500	5	11/14/2015 17:41	WG828758			
ACCOUN	IT:		PROJE	CT:	SDG:		DATE/TIME:	PAGE:	
S&ME Inc Hixson TN.			4181-15-036A		L800673		11/19/15 15:58	20 of 73	

SAMPLE RESULTS - 06

₩

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Hexachloro-1,3-butadiene	ND		0.00500	5	11/14/2015 17:41	WG828758	² T
Isopropylbenzene	ND		0.00500	5	11/14/2015 17:41	WG828758	
p-Isopropyltoluene	ND		0.00500	5	11/14/2015 17:41	WG828758	3
2-Butanone (MEK)	ND		0.0500	5	11/14/2015 17:41	WG828758	3
Methylene Chloride	ND		0.0250	5	11/14/2015 17:41	WG828758	
4-Methyl-2-pentanone (MIBK)	ND		0.0500	5	11/14/2015 17:41	WG828758	4
Methyl tert-butyl ether	ND		0.00500	5	11/14/2015 17:41	WG828758	Ľ
Naphthalene	ND		0.0250	5	11/14/2015 17:41	WG828758	5
n-Propylbenzene	ND		0.00500	5	11/14/2015 17:41	WG828758	ິເ
Styrene	ND		0.00500	5	11/14/2015 17:41	WG828758	
1,1,1,2-Tetrachloroethane	ND		0.00500	5	11/14/2015 17:41	WG828758	6
1,1,2,2-Tetrachloroethane	ND		0.00500	5	11/14/2015 17:41	WG828758	Ľ
1,1,2-Trichlorotrifluoroethane	ND		0.00500	5	11/14/2015 17:41	WG828758	7
Tetrachloroethene	ND		0.00500	5	11/14/2015 17:41	WG828758	ľ (
Toluene	ND		0.0250	5	11/14/2015 17:41	WG828758	
1,2,3-Trichlorobenzene	ND		0.00500	5	11/14/2015 17:41	WG828758	8
1,2,4-Trichlorobenzene	ND		0.00500	5	11/14/2015 17:41	WG828758	
1,1,1-Trichloroethane	ND		0.00500	5	11/14/2015 17:41	WG828758	9
1,1,2-Trichloroethane	ND		0.00500	5	11/14/2015 17:41	WG828758	Ĩ
Trichloroethene	ND		0.00500	5	11/14/2015 17:41	WG828758	
Trichlorofluoromethane	ND		0.0250	5	11/14/2015 17:41	WG828758	
1,2,3-Trichloropropane	ND		0.0125	5	11/14/2015 17:41	WG828758	
1,2,4-Trimethylbenzene	ND		0.00500	5	11/14/2015 17:41	<u>WG828758</u>	
1,2,3-Trimethylbenzene	ND		0.00500	5	11/14/2015 17:41	<u>WG828758</u>	
Vinyl chloride	ND		0.00500	5	11/14/2015 17:41	WG828758	
1,3,5-Trimethylbenzene	ND		0.00500	5	11/14/2015 17:41	<u>WG828758</u>	
Xylenes, Total	ND		0.0150	5	11/14/2015 17:41	WG828758	
(S) Toluene-d8	106		88.7-115		11/14/2015 17:41	WG828758	
(S) Dibromofluoromethane	98.3		76.3-123		11/14/2015 17:41	WG828758	
(S) 4-Bromofluorobenzene	105		69.7-129		11/14/2015 17:41	WG828758	

Semi-Volatile Organic Compounds (GC) by Method EPH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Extractable Petroleum Hydrocarbon	8.89		4.00	1	11/17/2015 01:36	<u>WG829444</u>
(S) o-Terphenyl	88.7		50.0-150		11/17/2015 01:36	WG829444

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg		date / time			
Anthracene	ND		0.0330	1	11/16/2015 05:43	WG828715		
Acenaphthene	ND		0.0330	1	11/16/2015 05:43	WG828715		
Acenaphthylene	ND		0.0330	1	11/16/2015 05:43	WG828715		
Benzo(a)anthracene	ND		0.0330	1	11/16/2015 05:43	WG828715		
Benzo(a)pyrene	ND		0.0330	1	11/16/2015 05:43	WG828715		
Benzo(b)fluoranthene	ND		0.0330	1	11/16/2015 05:43	WG828715		
Benzo(g,h,i)perylene	ND		0.0330	1	11/16/2015 05:43	WG828715		
Benzo(k)fluoranthene	ND		0.0330	1	11/16/2015 05:43	WG828715		
Chrysene	ND		0.0330	1	11/16/2015 05:43	WG828715		
Dibenz(a,h)anthracene	ND		0.0330	1	11/16/2015 05:43	WG828715		
Fluoranthene	ND		0.0330	1	11/16/2015 05:43	WG828715		
Fluorene	ND		0.0330	1	11/16/2015 05:43	WG828715		
Indeno(1,2,3-cd)pyrene	ND		0.0330	1	11/16/2015 05:43	WG828715		
Naphthalene	ND		0.0330	1	11/16/2015 05:43	WG828715		
Phenanthrene	ND		0.0330	1	11/16/2015 05:43	WG828715		
ACCO	UNT:		PROJE	CT:	SDG:	D	ATE/TIME:	PAGE

ACCOUNT:	
S&ME Inc Hixson TN.	

SDG: L800673

SAMPLE RESULTS - 06

Cn

Qc

Gl

Â

Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	[
Analyte	mg/kg		mg/kg		date / time		L
Pyrene	ND		0.0330	1	11/16/2015 05:43	<u>WG828715</u>	2
(S) Nitrobenzene-d5	87.7		28.3-148		11/16/2015 05:43	<u>WG828715</u>	
(S) 2-Fluorobiphenyl	92.2		41.4-134		11/16/2015 05:43	<u>WG828715</u>	
(S) p-Terphenyl-d14	75.2		35.8-140		11/16/2015 05:43	WG828715	

SAMPLE RESULTS - 07 L800673

Cn

Qc

GI

ΆI

Sc

Mercury by Method 7471A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	 Ср
Analyte	mg/kg		mg/kg		date / time		2
Mercury	0.0820		0.0200	1	11/14/2015 10:15	<u>WG828700</u>	² Tc
Metals (ICP) by I	Method 6010B						³ Ss

ivietais (ICP) by iviethod 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Arsenic	2.04		2.00	1	11/19/2015 08:28	WG829272	
Barium	44.1		0.500	1	11/19/2015 08:28	WG829272	
Cadmium	ND		0.500	1	11/19/2015 08:28	WG829272	
Chromium	13.4		1.00	1	11/19/2015 08:28	WG829272	
Lead	14.7		0.500	1	11/19/2015 08:28	WG829272	
Selenium	ND		2.00	1	11/19/2015 08:28	WG829272	
Silver	ND		1.00	1	11/19/2015 08:28	WG829272	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg		date / time			L
Acetone	ND		0.250	5	11/14/2015 18:05	WG828758		
Acrylonitrile	ND		0.0500	5	11/14/2015 18:05	WG828758		
Benzene	ND		0.00500	5	11/14/2015 18:05	WG828758		_
Bromobenzene	ND		0.00500	5	11/14/2015 18:05	WG828758		
Bromodichloromethane	ND		0.00500	5	11/14/2015 18:05	WG828758		
Bromoform	ND		0.00500	5	11/14/2015 18:05	WG828758		
Bromomethane	ND		0.0250	5	11/14/2015 18:05	WG828758		
n-Butylbenzene	ND		0.00500	5	11/14/2015 18:05	WG828758		
sec-Butylbenzene	ND		0.00500	5	11/14/2015 18:05	WG828758		
tert-Butylbenzene	ND		0.00500	5	11/14/2015 18:05	WG828758		
Carbon tetrachloride	ND		0.00500	5	11/14/2015 18:05	WG828758		
Chlorobenzene	ND		0.00500	5	11/14/2015 18:05	WG828758		
Chlorodibromomethane	ND		0.00500	5	11/14/2015 18:05	WG828758		
Chloroethane	ND		0.0250	5	11/14/2015 18:05	WG828758		
2-Chloroethyl vinyl ether	ND		0.250	5	11/14/2015 18:05	WG828758		
Chloroform	ND		0.0250	5	11/14/2015 18:05	WG828758		
Chloromethane	ND		0.0125	5	11/14/2015 18:05	WG828758		
2-Chlorotoluene	ND		0.00500	5	11/14/2015 18:05	WG828758		
4-Chlorotoluene	ND		0.00500	5	11/14/2015 18:05	WG828758		
1,2-Dibromo-3-Chloropropane	ND		0.0250	5	11/14/2015 18:05	WG828758		
1,2-Dibromoethane	ND		0.00500	5	11/14/2015 18:05	WG828758		
Dibromomethane	ND		0.00500	5	11/14/2015 18:05	WG828758		
1,2-Dichlorobenzene	ND		0.00500	5	11/14/2015 18:05	WG828758		
1,3-Dichlorobenzene	ND		0.00500	5	11/14/2015 18:05	WG828758		
1,4-Dichlorobenzene	ND		0.00500	5	11/14/2015 18:05	WG828758		
Dichlorodifluoromethane	ND		0.0250	5	11/14/2015 18:05	WG828758		
1,1-Dichloroethane	ND		0.00500	5	11/14/2015 18:05	WG828758		
1,2-Dichloroethane	ND		0.00500	5	11/14/2015 18:05	WG828758		
1,1-Dichloroethene	ND		0.00500	5	11/14/2015 18:05	WG828758		
cis-1,2-Dichloroethene	ND		0.00500	5	11/14/2015 18:05	WG828758		
trans-1,2-Dichloroethene	ND		0.00500	5	11/14/2015 18:05	WG828758		
1,2-Dichloropropane	ND		0.00500	5	11/14/2015 18:05	WG828758		
1,1-Dichloropropene	ND		0.00500	5	11/14/2015 18:05	WG828758		
1,3-Dichloropropane	ND		0.00500	5	11/14/2015 18:05	WG828758		
cis-1,3-Dichloropropene	ND		0.00500	5	11/14/2015 18:05	WG828758		
trans-1,3-Dichloropropene	ND		0.00500	5	11/14/2015 18:05	WG828758		
2,2-Dichloropropane	ND		0.00500	5	11/14/2015 18:05	WG828758		
Di-isopropyl ether	ND		0.00500	5	11/14/2015 18:05	WG828758		
Ethylbenzene	ND		0.00500	5	11/14/2015 18:05	WG828758		
ACCOUN	IT:		PROJE	CT:	SDG:		DATE/TIME:	PAGE:
S&ME Inc Hix			4181-15-0		L800673	3	11/19/15 15:58	23 of 73

B7 10-12.5FT Collected date/time: 11/10/15 16:50

SAMPLE RESULTS - 07

₩

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Hexachloro-1,3-butadiene	ND		0.00500	5	11/14/2015 18:05	WG828758	2.
Isopropylbenzene	ND		0.00500	5	11/14/2015 18:05	WG828758	
p-Isopropyltoluene	ND		0.00500	5	11/14/2015 18:05	WG828758	3
2-Butanone (MEK)	ND		0.0500	5	11/14/2015 18:05	WG828758	5
Methylene Chloride	ND		0.0250	5	11/14/2015 18:05	WG828758	L
4-Methyl-2-pentanone (MIBK)	ND		0.0500	5	11/14/2015 18:05	WG828758	4
Methyl tert-butyl ether	ND		0.00500	5	11/14/2015 18:05	WG828758	
Naphthalene	ND		0.0250	5	11/14/2015 18:05	WG828758	5
n-Propylbenzene	ND		0.00500	5	11/14/2015 18:05	WG828758	
Styrene	ND		0.00500	5	11/14/2015 18:05	WG828758	
1,1,1,2-Tetrachloroethane	ND		0.00500	5	11/14/2015 18:05	WG828758	6
1,1,2,2-Tetrachloroethane	ND		0.00500	5	11/14/2015 18:05	WG828758	
1,1,2-Trichlorotrifluoroethane	ND		0.00500	5	11/14/2015 18:05	WG828758	7
Tetrachloroethene	ND		0.00500	5	11/14/2015 18:05	WG828758	
Toluene	ND		0.0250	5	11/14/2015 18:05	WG828758	L
1,2,3-Trichlorobenzene	ND		0.00500	5	11/14/2015 18:05	WG828758	8
1,2,4-Trichlorobenzene	ND		0.00500	5	11/14/2015 18:05	WG828758	
1,1,1-Trichloroethane	ND		0.00500	5	11/14/2015 18:05	WG828758	9
1,1,2-Trichloroethane	ND		0.00500	5	11/14/2015 18:05	WG828758	5
Trichloroethene	ND		0.00500	5	11/14/2015 18:05	WG828758	L
Trichlorofluoromethane	ND		0.0250	5	11/14/2015 18:05	WG828758	
1,2,3-Trichloropropane	ND		0.0125	5	11/14/2015 18:05	WG828758	
1,2,4-Trimethylbenzene	ND		0.00500	5	11/14/2015 18:05	WG828758	
1,2,3-Trimethylbenzene	ND		0.00500	5	11/14/2015 18:05	WG828758	
Vinyl chloride	ND		0.00500	5	11/14/2015 18:05	WG828758	
1,3,5-Trimethylbenzene	ND		0.00500	5	11/14/2015 18:05	WG828758	
Xylenes, Total	ND		0.0150	5	11/14/2015 18:05	WG828758	
(S) Toluene-d8	104		88.7-115		11/14/2015 18:05	WG828758	
(S) Dibromofluoromethane	96.5		76.3-123		11/14/2015 18:05	WG828758	
(S) 4-Bromofluorobenzene	98.7		69.7-129		11/14/2015 18:05	WG828758	

Semi-Volatile Organic Compounds (GC) by Method EPH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Extractable Petroleum Hydrocarbon	ND		4.00	1	11/17/2015 01:50	WG829444
(S) o-Terphenyl	94.0		50.0-150		11/17/2015 01:50	WG829444

Pesticides (GC) by Method 8081

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Aldrin	ND		0.0200	1	11/16/2015 20:28	WG828716
Alpha BHC	ND		0.0200	1	11/16/2015 20:28	WG828716
Beta BHC	ND		0.0200	1	11/16/2015 20:28	WG828716
Delta BHC	ND		0.0200	1	11/16/2015 20:28	WG828716
Gamma BHC	ND		0.0200	1	11/16/2015 20:28	WG828716
Chlordane	ND		0.200	1	11/16/2015 20:28	WG828716
4,4-DDD	ND		0.0200	1	11/16/2015 20:28	WG828716
4,4-DDE	ND	<u>J4</u>	0.0200	1	11/16/2015 20:28	WG828716
4,4-DDT	ND		0.0200	1	11/16/2015 20:28	WG828716
Dieldrin	ND		0.0200	1	11/16/2015 20:28	WG828716
Endosulfan I	ND		0.0200	1	11/16/2015 20:28	WG828716
Endosulfan II	ND		0.0200	1	11/16/2015 20:28	WG828716
Endosulfan sulfate	ND		0.0200	1	11/16/2015 20:28	WG828716
Endrin	ND		0.0200	1	11/16/2015 20:28	WG828716
Endrin aldehyde	ND		0.0200	1	11/16/2015 20:28	WG828716

PROJECT: 4181-15-036A SDG: L800673 DATE/TIME: 11/19/15 15:58

B7 10-12.5FT Collected date/time: 11/10/15 16:50

SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

Pesticides (GC) by Method 8081

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Endrin ketone	ND		0.0200	1	11/16/2015 20:28	WG828716
Hexachlorobenzene	ND		0.0200	1	11/16/2015 20:28	WG828716
Heptachlor	ND		0.0200	1	11/16/2015 20:28	WG828716
Heptachlor epoxide	ND		0.0200	1	11/16/2015 20:28	WG828716
Methoxychlor	ND		0.0200	1	11/16/2015 20:28	WG828716
Toxaphene	ND		0.400	1	11/16/2015 20:28	WG828716
(S) Decachlorobiphenyl	120		10.0-143		11/16/2015 20:28	<u>WG828716</u>
(S) Tetrachloro-m-xylene	119		29.2-144		11/16/2015 20:28	WG828716

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		l
Anthracene	ND		0.0330	1	11/16/2015 06:05	WG828715	
Acenaphthene	ND		0.0330	1	11/16/2015 06:05	WG828715	
Acenaphthylene	ND		0.0330	1	11/16/2015 06:05	WG828715	
Benzo(a)anthracene	ND		0.0330	1	11/16/2015 06:05	WG828715	
Benzo(a)pyrene	ND		0.0330	1	11/16/2015 06:05	WG828715	
Benzo(b)fluoranthene	ND		0.0330	1	11/16/2015 06:05	WG828715	
Benzo(g,h,i)perylene	ND		0.0330	1	11/16/2015 06:05	WG828715	
Benzo(k)fluoranthene	ND		0.0330	1	11/16/2015 06:05	WG828715	
Chrysene	ND		0.0330	1	11/16/2015 06:05	WG828715	
Dibenz(a,h)anthracene	ND		0.0330	1	11/16/2015 06:05	WG828715	
Fluoranthene	0.0506		0.0330	1	11/16/2015 06:05	WG828715	
Fluorene	ND		0.0330	1	11/16/2015 06:05	WG828715	
Indeno(1,2,3-cd)pyrene	ND		0.0330	1	11/16/2015 06:05	WG828715	
Naphthalene	ND		0.0330	1	11/16/2015 06:05	WG828715	
Phenanthrene	ND		0.0330	1	11/16/2015 06:05	WG828715	
Pyrene	0.0472		0.0330	1	11/16/2015 06:05	WG828715	
(S) Nitrobenzene-d5	85.2		28.3-148		11/16/2015 06:05	WG828715	
(S) 2-Fluorobiphenyl	90.7		41.4-134		11/16/2015 06:05	WG828715	
(S) p-Terphenyl-d14	78.0		35.8-140		11/16/2015 06:05	WG828715	

SDG: L800673

SAMPLE RESULTS - 08 L800673

Qc

GI

Â

Sc

Mercury by Method 7471A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	(
Analyte	mg/kg		mg/kg		date / time		2		
Mercury	0.0355		0.0200	1	11/14/2015 10:18	<u>WG828700</u>	<u></u>		
Metals (ICP) by	Method 6010B						3		
	Result	Qualifier	RDL	Dilution	Analysis	Batch			
Analyte	mg/kg		mg/kg		date / time		4		
Arsenic	3.19		2.00	1	11/19/2015 09:00	WG829272			
Parium	40.4		0 500	1	11/10/2015 00:00	MCODOJ			

Barium	40.4	0.500	1	11/19/2015 09:00	WG829272
Cadmium	ND	0.500	1	11/19/2015 09:00	WG829272
Chromium	25.5	1.00	1	11/19/2015 09:00	WG829272
Lead	15.2	0.500	1	11/19/2015 09:00	WG829272
Selenium	ND	2.00	1	11/19/2015 09:00	WG829272
Silver	ND	1.00	1	11/19/2015 09:00	WG829272

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Acetone	ND		0.250	5	11/19/2015 05:53	<u>WG830101</u>	
Acrylonitrile	ND		0.0500	5	11/19/2015 05:53	WG830101	
Benzene	ND		0.00500	5	11/19/2015 05:53	WG830101	
Bromobenzene	ND		0.00500	5	11/19/2015 05:53	WG830101	
Bromodichloromethane	ND		0.00500	5	11/19/2015 05:53	WG830101	
Bromoform	ND		0.00500	5	11/19/2015 05:53	WG830101	
Bromomethane	ND		0.0250	5	11/19/2015 05:53	WG830101	
n-Butylbenzene	ND		0.00500	5	11/19/2015 05:53	<u>WG830101</u>	
sec-Butylbenzene	ND		0.00500	5	11/19/2015 05:53	WG830101	
tert-Butylbenzene	ND		0.00500	5	11/19/2015 05:53	<u>WG830101</u>	
Carbon tetrachloride	ND		0.00500	5	11/19/2015 05:53	WG830101	
Chlorobenzene	ND		0.00500	5	11/19/2015 05:53	WG830101	
Chlorodibromomethane	ND		0.00500	5	11/19/2015 05:53	WG830101	
Chloroethane	ND		0.0250	5	11/19/2015 05:53	WG830101	
2-Chloroethyl vinyl ether	ND	<u>J4</u>	0.250	5	11/19/2015 05:53	WG830101	
Chloroform	ND		0.0250	5	11/19/2015 05:53	WG830101	
Chloromethane	ND		0.0125	5	11/19/2015 05:53	WG830101	
2-Chlorotoluene	ND		0.00500	5	11/19/2015 05:53	WG830101	
4-Chlorotoluene	ND		0.00500	5	11/19/2015 05:53	WG830101	
1,2-Dibromo-3-Chloropropane	ND		0.0250	5	11/19/2015 05:53	WG830101	
1,2-Dibromoethane	ND		0.00500	5	11/19/2015 05:53	WG830101	
Dibromomethane	ND		0.00500	5	11/19/2015 05:53	WG830101	
1,2-Dichlorobenzene	ND		0.00500	5	11/19/2015 05:53	WG830101	
1,3-Dichlorobenzene	ND		0.00500	5	11/19/2015 05:53	WG830101	
1,4-Dichlorobenzene	ND		0.00500	5	11/19/2015 05:53	WG830101	
Dichlorodifluoromethane	ND		0.0250	5	11/19/2015 05:53	WG830101	
1,1-Dichloroethane	ND		0.00500	5	11/19/2015 05:53	WG830101	
1,2-Dichloroethane	ND		0.00500	5	11/19/2015 05:53	WG830101	
1,1-Dichloroethene	ND		0.00500	5	11/19/2015 05:53	WG830101	
cis-1,2-Dichloroethene	ND		0.00500	5	11/19/2015 05:53	WG830101	
trans-1,2-Dichloroethene	ND		0.00500	5	11/19/2015 05:53	WG830101	
1,2-Dichloropropane	ND		0.00500	5	11/19/2015 05:53	WG830101	
1,1-Dichloropropene	ND		0.00500	5	11/19/2015 05:53	WG830101	
1,3-Dichloropropane	ND		0.00500	5	11/19/2015 05:53	WG830101	
cis-1,3-Dichloropropene	ND		0.00500	5	11/19/2015 05:53	WG830101	
trans-1,3-Dichloropropene	ND		0.00500	5	11/19/2015 05:53	WG830101	
2,2-Dichloropropane	ND		0.00500	5	11/19/2015 05:53	WG830101	
Di-isopropyl ether	ND		0.00500	5	11/19/2015 05:53	WG830101	
Ethylbenzene	ND		0.00500	5	11/19/2015 05:53	WG830101	
10001	-			oT.	00.0		DAGE
ACCOUN S&ME Inc Hix			PROJE 4181-15-0		SDG: L800673	DATE/TIME: 11/19/15 15:58	PAGE 26 of 7
Salvie IIIC HIX	5011111.		4101-15-0	130A	L0000/3	10.00	20 01 /

E: 26 of 73

SAMPLE RESULTS - 08

₩

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Hexachloro-1,3-butadiene	ND		0.00500	5	11/19/2015 05:53	WG830101	
lsopropylbenzene	ND		0.00500	5	11/19/2015 05:53	WG830101	
p-Isopropyltoluene	ND		0.00500	5	11/19/2015 05:53	WG830101	
2-Butanone (MEK)	ND		0.0500	5	11/19/2015 05:53	WG830101	
Methylene Chloride	ND		0.0250	5	11/19/2015 05:53	WG830101	
4-Methyl-2-pentanone (MIBK)	ND		0.0500	5	11/19/2015 05:53	<u>WG830101</u>	
Methyl tert-butyl ether	ND		0.00500	5	11/19/2015 05:53	<u>WG830101</u>	
Naphthalene	ND		0.0250	5	11/19/2015 05:53	WG830101	
n-Propylbenzene	ND		0.00500	5	11/19/2015 05:53	<u>WG830101</u>	
Styrene	ND		0.00500	5	11/19/2015 05:53	WG830101	
1,1,1,2-Tetrachloroethane	ND		0.00500	5	11/19/2015 05:53	<u>WG830101</u>	
1,1,2,2-Tetrachloroethane	ND		0.00500	5	11/19/2015 05:53	<u>WG830101</u>	
1,1,2-Trichlorotrifluoroethane	ND		0.00500	5	11/19/2015 05:53	<u>WG830101</u>	
Tetrachloroethene	ND		0.00500	5	11/19/2015 05:53	<u>WG830101</u>	
Toluene	ND		0.0250	5	11/19/2015 05:53	<u>WG830101</u>	
1,2,3-Trichlorobenzene	ND		0.00500	5	11/19/2015 05:53	<u>WG830101</u>	
1,2,4-Trichlorobenzene	ND		0.00500	5	11/19/2015 05:53	<u>WG830101</u>	
1,1,1-Trichloroethane	ND		0.00500	5	11/19/2015 05:53	<u>WG830101</u>	
1,1,2-Trichloroethane	ND		0.00500	5	11/19/2015 05:53	<u>WG830101</u>	
Trichloroethene	ND		0.00500	5	11/19/2015 05:53	<u>WG830101</u>	
Trichlorofluoromethane	ND		0.0250	5	11/19/2015 05:53	WG830101	
1,2,3-Trichloropropane	ND		0.0125	5	11/19/2015 05:53	<u>WG830101</u>	
1,2,4-Trimethylbenzene	0.00985		0.00500	5	11/19/2015 05:53	<u>WG830101</u>	
1,2,3-Trimethylbenzene	0.00565		0.00500	5	11/19/2015 05:53	<u>WG830101</u>	
Vinyl chloride	ND		0.00500	5	11/19/2015 05:53	<u>WG830101</u>	
1,3,5-Trimethylbenzene	ND		0.00500	5	11/19/2015 05:53	WG830101	
Xylenes, Total	ND		0.0150	5	11/19/2015 05:53	<u>WG830101</u>	
(S) Toluene-d8	102		88.7-115		11/19/2015 05:53	WG830101	
(S) Dibromofluoromethane	99.0		76.3-123		11/19/2015 05:53	<u>WG830101</u>	
(S) 4-Bromofluorobenzene	104		69.7-129		11/19/2015 05:53	WG830101	

Semi-Volatile Organic Compounds (GC) by Method EPH

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Extractable Petroleum Hydrocarbon	ND		4.00	1	11/17/2015 02:04	<u>WG829444</u>
(S) o-Terphenyl	117		50.0-150		11/17/2015 02:04	WG829444

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Anthracene	ND		0.0330	1	11/16/2015 06:26	WG828715	
Acenaphthene	ND		0.0330	1	11/16/2015 06:26	WG828715	
Acenaphthylene	ND		0.0330	1	11/16/2015 06:26	WG828715	
Benzo(a)anthracene	ND		0.0330	1	11/16/2015 06:26	WG828715	
Benzo(a)pyrene	ND		0.0330	1	11/16/2015 06:26	WG828715	
Benzo(b)fluoranthene	ND		0.0330	1	11/16/2015 06:26	WG828715	
Benzo(g,h,i)perylene	ND		0.0330	1	11/16/2015 06:26	WG828715	
Benzo(k)fluoranthene	ND		0.0330	1	11/16/2015 06:26	WG828715	
Chrysene	ND		0.0330	1	11/16/2015 06:26	WG828715	
Dibenz(a,h)anthracene	ND		0.0330	1	11/16/2015 06:26	WG828715	
Fluoranthene	0.0348		0.0330	1	11/16/2015 06:26	WG828715	
Fluorene	ND		0.0330	1	11/16/2015 06:26	WG828715	
Indeno(1,2,3-cd)pyrene	ND		0.0330	1	11/16/2015 06:26	WG828715	
Naphthalene	ND		0.0330	1	11/16/2015 06:26	WG828715	
Phenanthrene	ND		0.0330	1	11/16/2015 06:26	WG828715	
ACCO	UNT:		PROJE	ECT:	SDG:	DATE/TIME:	PAG

PROJECT: 4181-15-036A SDG: L800673

DATE/TIME: 11/19/15 15:58

27 of 73

SAMPLE RESULTS - 08

Cn

Qc

Gl

Â

Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Pyrene	0.0335		0.0330	1	11/16/2015 06:26	WG828715	
(S) Nitrobenzene-d5	88.4		28.3-148		11/16/2015 06:26	WG828715	
(S) 2-Fluorobiphenyl	85.8		41.4-134		11/16/2015 06:26	WG828715	
(S) p-Terphenyl-d14	74.7		35.8-140		11/16/2015 06:26	WG828715	

SAMPLE RESULTS - 09 L800673

⁵Sr

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	87.1		1	11/14/2015 15:35	WG829022	Tc

Mercury by Method 7471A

Mercury by Method 7471A								
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg		date / time			⁴ Cn
Mercury	ND		0.0200	1	11/14/2015 10:21	WG828700		СП

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	4.96		2.00	1	11/19/2015 09:03	WG829272
Barium	32.7		0.500	1	11/19/2015 09:03	WG829272
Cadmium	0.832		0.500	1	11/19/2015 09:03	WG829272
Chromium	34.7		1.00	1	11/19/2015 09:03	WG829272
Lead	43.6		0.500	1	11/19/2015 09:03	WG829272
Selenium	ND		2.00	1	11/19/2015 09:03	WG829272
Silver	ND		1.00	1	11/19/2015 09:03	WG829272

SDG: L800673

SAMPLE RESULTS - 10 L800673

⁵Sr

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	86.8		1	11/14/2015 15:34	WG829022	Tc

Mercury by Method 7471A

Mercury by Metho	od 7471A						³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		⁴ Cn
Mercury	0.0467		0.0200	1	11/14/2015 10:23	WG828700	CII

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Arsenic	5.80		2.00	1	11/19/2015 09:06	WG829272
Barium	38.5		0.500	1	11/19/2015 09:06	WG829272
Cadmium	0.600		0.500	1	11/19/2015 09:06	WG829272
Chromium	34.5		1.00	1	11/19/2015 09:06	WG829272
Lead	88.9		0.500	1	11/19/2015 09:06	WG829272
Selenium	ND		2.00	1	11/19/2015 09:06	WG829272
Silver	ND		1.00	1	11/19/2015 09:06	WG829272

S&ME Inc. - Hixson TN.

SAMPLE RESULTS - 11

*

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte	Result mg/l	Qualifier	RDL mg/l	Dilution	Analysis date / time	Batch	Ļ
Acetone	ND		0.0500	1	11/14/2015 03:39	WG828976	2
crolein	ND		0.0500	1	11/14/2015 03:39	WG828976	
crylonitrile	ND		0.0100	1	11/14/2015 03:39	WG828976	3
Benzene	ND		0.00100	1	11/14/2015 03:39	WG828976	3
Bromobenzene	ND		0.00100	1	11/14/2015 03:39	WG828976	
Bromodichloromethane	ND		0.00100	1	11/14/2015 03:39	WG828976	4
Bromoform	ND		0.00100	1	11/14/2015 03:39	WG828976	
Bromomethane	ND		0.00500	1	11/14/2015 03:39	WG828976	
-Butylbenzene	ND		0.00100	1	11/14/2015 03:39	WG828976	-
•	ND		0.00100	1	11/14/2015 03:39	WG828976	
ec-Butylbenzene ert-Butylbenzene	ND		0.00100	1	11/14/2015 03:39	W6828976	e
			0.00100				
Carbon tetrachloride	ND			1	11/14/2015 03:39	WG828976	5
Chlorobenzene	ND		0.00100	1	11/14/2015 03:39	WG828976	
Chlorodibromomethane	ND		0.00100	1	11/14/2015 03:39	WG828976	
Chloroethane	ND	14	0.00500	1	11/14/2015 03:39	WG828976	8
-Chloroethyl vinyl ether	ND	<u>J4</u>	0.0500	1	11/14/2015 03:39	WG828976	
hloroform	ND		0.00500	1	11/14/2015 03:39	WG828976	
hloromethane	ND		0.00250	1	11/14/2015 03:39	WG828976	ç
-Chlorotoluene	ND		0.00100	1	11/14/2015 03:39	<u>WG828976</u>	L
-Chlorotoluene	ND		0.00100	1	11/14/2015 03:39	WG828976	
2-Dibromo-3-Chloropropane	ND		0.00500	1	11/14/2015 03:39	WG828976	
2-Dibromoethane	ND		0.00100	1	11/14/2015 03:39	WG828976	
Dibromomethane	ND		0.00100	1	11/14/2015 03:39	WG828976	
2-Dichlorobenzene	ND		0.00100	1	11/14/2015 03:39	WG828976	
3-Dichlorobenzene	ND		0.00100	1	11/14/2015 03:39	WG828976	
4-Dichlorobenzene	ND		0.00100	1	11/14/2015 03:39	WG828976	
ichlorodifluoromethane	ND		0.00500	1	11/14/2015 03:39	WG828976	
1-Dichloroethane	ND		0.00100	1	11/14/2015 03:39	WG828976	
2-Dichloroethane	ND		0.00100	1	11/14/2015 03:39	WG828976	
1-Dichloroethene	ND		0.00100	1	11/14/2015 03:39	WG828976	
is-1,2-Dichloroethene	ND		0.00100	1	11/14/2015 03:39	WG828976	
rans-1,2-Dichloroethene	ND		0.00100	1	11/14/2015 03:39	WG828976	
,2-Dichloropropane	ND		0.00100	1	11/14/2015 03:39	WG828976	
1-Dichloropropene	ND		0.00100	1	11/14/2015 03:39	WG828976	
,3-Dichloropropane	ND		0.00100	1	11/14/2015 03:39	WG828976	
is-1,3-Dichloropropene	ND		0.00100	1	11/14/2015 03:39	WG828976	
rans-1,3-Dichloropropene	ND		0.00100	1	11/14/2015 03:39	WG828976	
			0.00100				
,2-Dichloropropane	ND		0.00100	1	11/14/2015 03:39	WG828976	
)i-isopropyl ether	ND			1	11/14/2015 03:39	WG828976	
thylbenzene	ND		0.00100	1	11/14/2015 03:39	WG828976	
lexachloro-1,3-butadiene	ND		0.00100	1	11/14/2015 03:39	WG828976	
opropylbenzene	ND		0.00100	1	11/14/2015 03:39	WG828976	
-Isopropyltoluene	ND		0.00100	1	11/14/2015 03:39	WG828976	
-Butanone (MEK)	ND		0.0100	1	11/14/2015 03:39	<u>WG828976</u>	
lethylene Chloride	ND		0.00500	1	11/14/2015 03:39	<u>WG828976</u>	
-Methyl-2-pentanone (MIBK)	ND		0.0100	1	11/14/2015 03:39	WG828976	
lethyl tert-butyl ether	ND		0.00100	1	11/14/2015 03:39	WG828976	
aphthalene	ND		0.00500	1	11/14/2015 03:39	WG828976	
Propylbenzene	ND		0.00100	1	11/14/2015 03:39	WG828976	
tyrene	ND		0.00100	1	11/14/2015 03:39	WG828976	
1,1,2-Tetrachloroethane	ND		0.00100	1	11/14/2015 03:39	WG828976	
1,2,2-Tetrachloroethane	ND		0.00100	1	11/14/2015 03:39	WG828976	
1,2-Trichlorotrifluoroethane	ND		0.00100	1	11/14/2015 03:39	WG828976	
etrachloroethene	ND		0.00100	1	11/14/2015 03:39	WG828976	
Toluene	ND		0.00500	1	11/14/2015 03:39	WG828976	
,2,3-Trichlorobenzene	ND		0.00100	1	11/14/2015 03:39	WG828976	
			0.00100				

4181-15-036A

L800673

11/19/15 15:58

31 of 73

SAMPLE RESULTS - 11

*

Â

Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		L
1,2,4-Trichlorobenzene	ND		0.00100	1	11/14/2015 03:39	<u>WG828976</u>	2
1,1,1-Trichloroethane	ND		0.00100	1	11/14/2015 03:39	<u>WG828976</u>	
1,1,2-Trichloroethane	ND		0.00100	1	11/14/2015 03:39	<u>WG828976</u>	3
Trichloroethene	ND		0.00100	1	11/14/2015 03:39	<u>WG828976</u>	
Trichlorofluoromethane	ND		0.00500	1	11/14/2015 03:39	<u>WG828976</u>	L
1,2,3-Trichloropropane	ND		0.00250	1	11/14/2015 03:39	<u>WG828976</u>	4
1,2,4-Trimethylbenzene	ND		0.00100	1	11/14/2015 03:39	<u>WG828976</u>	
1,2,3-Trimethylbenzene	ND		0.00100	1	11/14/2015 03:39	<u>WG828976</u>	Ę
1,3,5-Trimethylbenzene	ND		0.00100	1	11/14/2015 03:39	<u>WG828976</u>	3
Vinyl chloride	ND		0.00100	1	11/14/2015 03:39	<u>WG828976</u>	
Xylenes, Total	ND		0.00300	1	11/14/2015 03:39	<u>WG828976</u>	e
(S) Toluene-d8	103		90.0-115		11/14/2015 03:39	<u>WG828976</u>	
(S) Dibromofluoromethane	101		79.0-121		11/14/2015 03:39	<u>WG828976</u>	7
(S) 4-Bromofluorobenzene	102		80.1-120		11/14/2015 03:39	<u>WG828976</u>	

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Anthracene	ND		0.0000500	1	11/13/2015 12:33	WG828643
Acenaphthene	ND		0.0000500	1	11/13/2015 12:33	WG828643
Acenaphthylene	ND		0.0000500	1	11/13/2015 12:33	WG828643
Benzo(a)anthracene	ND		0.0000500	1	11/13/2015 12:33	WG828643
Benzo(a)pyrene	ND		0.0000500	1	11/13/2015 12:33	WG828643
Benzo(b)fluoranthene	ND		0.0000500	1	11/13/2015 12:33	WG828643
Benzo(g,h,i)perylene	ND		0.0000500	1	11/13/2015 12:33	WG828643
Benzo(k)fluoranthene	ND		0.0000500	1	11/13/2015 12:33	WG828643
Chrysene	ND		0.0000500	1	11/13/2015 12:33	WG828643
Dibenz(a,h)anthracene	ND		0.0000500	1	11/13/2015 12:33	WG828643
Fluoranthene	ND		0.0000500	1	11/13/2015 12:33	WG828643
Fluorene	ND		0.0000500	1	11/13/2015 12:33	WG828643
Indeno(1,2,3-cd)pyrene	ND		0.0000500	1	11/13/2015 12:33	WG828643
Naphthalene	ND		0.000250	1	11/13/2015 12:33	WG828643
Phenanthrene	ND		0.0000500	1	11/13/2015 12:33	WG828643
Pyrene	ND		0.0000500	1	11/13/2015 12:33	WG828643
(S) Nitrobenzene-d5	85.5		33.8-179		11/13/2015 12:33	WG828643
(S) 2-Fluorobiphenyl	109		55.5-150		11/13/2015 12:33	WG828643
(S) p-Terphenyl-d14	93.2		46.2-163		11/13/2015 12:33	<u>WG828643</u>

SDG: L800673

S&ME Inc. - Hixson TN.

SAMPLE RESULTS - 12

₩

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte Accetone Accolein	mg/l		mall		1		
			mg/l		date / time		2
Acrolein	ND		0.0500	1	11/14/2015 03:58	WG828976	2
	ND		0.0500	1	11/14/2015 03:58	WG828976	L
Acrylonitrile	ND		0.0100	1	11/14/2015 03:58	WG828976	3
Benzene	ND		0.00100	1	11/14/2015 03:58	WG828976	
Bromobenzene	ND		0.00100	1	11/14/2015 03:58	WG828976	4
Bromodichloromethane	ND		0.00100	1	11/14/2015 03:58	WG828976	-
Bromoform	ND		0.00100	1	11/14/2015 03:58	WG828976	L
Bromomethane	ND		0.00500	1	11/14/2015 03:58	WG828976	5
-Butylbenzene	ND		0.00100	1	11/14/2015 03:58	WG828976	
ec-Butylbenzene	ND		0.00100	1	11/14/2015 03:58	WG828976	
ert-Butylbenzene	ND		0.00100	1	11/14/2015 03:58	WG828976	6
Carbon tetrachloride	ND		0.00100	1	11/14/2015 03:58	WG828976	L
Chlorobenzene	ND		0.00100	1	11/14/2015 03:58	WG828976	7
Chlorodibromomethane	ND		0.00100	1	11/14/2015 03:58	WG828976	,
Chloroethane	ND		0.00500	1	11/14/2015 03:58	WG828976	
2-Chloroethyl vinyl ether	ND	<u>J4</u>	0.0500	1	11/14/2015 03:58	WG828976	8
Chloroform	ND	<u><u></u></u>	0.00500	1	11/14/2015 03:58	WG828976	
Chloromethane	ND		0.00300	1	11/14/2015 03:58	WG828976 WG828976	c
							9
2-Chlorotoluene	ND		0.00100	1	11/14/2015 03:58	WG828976	L
I-Chlorotoluene	ND		0.00100	1	11/14/2015 03:58	WG828976	
,2-Dibromo-3-Chloropropane	ND		0.00500	1	11/14/2015 03:58	WG828976	
,2-Dibromoethane	ND		0.00100	1	11/14/2015 03:58	WG828976	
Dibromomethane	ND		0.00100	1	11/14/2015 03:58	WG828976	
2-Dichlorobenzene	ND		0.00100	1	11/14/2015 03:58	WG828976	
3-Dichlorobenzene	ND		0.00100	1	11/14/2015 03:58	WG828976	
,4-Dichlorobenzene	ND		0.00100	1	11/14/2015 03:58	WG828976	
Dichlorodifluoromethane	ND		0.00500	1	11/14/2015 03:58	WG828976	
,1-Dichloroethane	ND		0.00100	1	11/14/2015 03:58	WG828976	
,2-Dichloroethane	ND		0.00100	1	11/14/2015 03:58	WG828976	
,1-Dichloroethene	ND		0.00100	1	11/14/2015 03:58	WG828976	
is-1,2-Dichloroethene	ND		0.00100	1	11/14/2015 03:58	WG828976	
rans-1,2-Dichloroethene	ND		0.00100	1	11/14/2015 03:58	WG828976	
,2-Dichloropropane	ND		0.00100	1	11/14/2015 03:58	WG828976	
,1-Dichloropropene	ND		0.00100	1	11/14/2015 03:58	WG828976	
,3-Dichloropropane	ND		0.00100	1	11/14/2015 03:58	WG828976	
is-1,3-Dichloropropene	ND		0.00100	1	11/14/2015 03:58	WG828976	
rans-1,3-Dichloropropene	ND		0.00100	1	11/14/2015 03:58	WG828976	
2,2-Dichloropropane	ND		0.00100	1	11/14/2015 03:58	WG828976	
Di-isopropyl ether	ND		0.00100	1	11/14/2015 03:58	WG828976	
thylbenzene	ND		0.00100	1	11/14/2015 03:58	WG828976	
lexachloro-1,3-butadiene	ND		0.00100	1	11/14/2015 03:58	WG828976	
sopropylbenzene	ND		0.00100	1	11/14/2015 03:58	WG828976	
-Isopropyltoluene	ND		0.00100	1	11/14/2015 03:58	WG828976 WG828976	
2-Butanone (MEK)	ND		0.0100	1	11/14/2015 03:58	WG828976 WG828976	
Aethylene Chloride	ND		0.00500	1		WG828976 WG828976	
,					11/14/2015 03:58		
I-Methyl-2-pentanone (MIBK)	ND		0.0100	1	11/14/2015 03:58	WG828976	
Nethyl tert-butyl ether	ND		0.00100	1	11/14/2015 03:58	WG828976	
laphthalene	ND		0.00500	1	11/14/2015 03:58	WG828976	
-Propylbenzene	ND		0.00100	1	11/14/2015 03:58	WG828976	
tyrene	ND		0.00100	1	11/14/2015 03:58	WG828976	
1,1,2-Tetrachloroethane	ND		0.00100	1	11/14/2015 03:58	WG828976	
1,2,2-Tetrachloroethane	ND		0.00100	1	11/14/2015 03:58	WG828976	
,1,2-Trichlorotrifluoroethane	ND		0.00100	1	11/14/2015 03:58	WG828976	
etrachloroethene	ND		0.00100	1	11/14/2015 03:58	WG828976	
oluene	ND		0.00500	1	11/14/2015 03:58	WG828976	
,2,3-Trichlorobenzene	ND		0.00100	1	11/14/2015 03:58	WG828976	

4181-15-036A

L800673

11/19/15 15:58

33 of 73

SAMPLE RESULTS - 12

₩

Â

Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	(
Analyte	mg/l		mg/l		date / time		
1,2,4-Trichlorobenzene	ND		0.00100	1	11/14/2015 03:58	<u>WG828976</u>	2_
1,1,1-Trichloroethane	ND		0.00100	1	11/14/2015 03:58	<u>WG828976</u>	
1,1,2-Trichloroethane	ND		0.00100	1	11/14/2015 03:58	WG828976	3
Trichloroethene	ND		0.00100	1	11/14/2015 03:58	<u>WG828976</u>	
Trichlorofluoromethane	ND		0.00500	1	11/14/2015 03:58	WG828976	
1,2,3-Trichloropropane	ND		0.00250	1	11/14/2015 03:58	<u>WG828976</u>	4
1,2,4-Trimethylbenzene	ND		0.00100	1	11/14/2015 03:58	WG828976	
1,2,3-Trimethylbenzene	ND		0.00100	1	11/14/2015 03:58	<u>WG828976</u>	5
1,3,5-Trimethylbenzene	ND		0.00100	1	11/14/2015 03:58	WG828976	5
Vinyl chloride	ND		0.00100	1	11/14/2015 03:58	<u>WG828976</u>	
Xylenes, Total	ND		0.00300	1	11/14/2015 03:58	WG828976	6
(S) Toluene-d8	102		90.0-115		11/14/2015 03:58	WG828976	
(S) Dibromofluoromethane	101		79.0-121		11/14/2015 03:58	WG828976	7
(S) 4-Bromofluorobenzene	103		80.1-120		11/14/2015 03:58	WG828976	, in the second s

Semi Volatile Organic Compounds $\,$ (GC/MS) by Method 8270C-SIM $\,$

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l		date / time	
Anthracene	0.000146		0.0000500	1	11/13/2015 12:54	WG828643
Acenaphthene	0.000166		0.0000500	1	11/13/2015 12:54	WG828643
Acenaphthylene	ND		0.0000500	1	11/13/2015 12:54	WG828643
Benzo(a)anthracene	ND		0.0000500	1	11/13/2015 12:54	WG828643
Benzo(a)pyrene	ND		0.0000500	1	11/13/2015 12:54	WG828643
Benzo(b)fluoranthene	ND		0.0000500	1	11/13/2015 12:54	WG828643
Benzo(g,h,i)perylene	ND		0.0000500	1	11/13/2015 12:54	WG828643
Benzo(k)fluoranthene	ND		0.0000500	1	11/13/2015 12:54	WG828643
Chrysene	ND		0.0000500	1	11/13/2015 12:54	WG828643
Dibenz(a,h)anthracene	ND		0.0000500	1	11/13/2015 12:54	WG828643
Fluoranthene	0.000155		0.0000500	1	11/13/2015 12:54	WG828643
Fluorene	0.000103		0.0000500	1	11/13/2015 12:54	WG828643
Indeno(1,2,3-cd)pyrene	ND		0.0000500	1	11/13/2015 12:54	WG828643
Naphthalene	ND		0.000250	1	11/13/2015 12:54	WG828643
Phenanthrene	0.000508		0.0000500	1	11/13/2015 12:54	WG828643
Pyrene	0.0000977		0.0000500	1	11/13/2015 12:54	WG828643
(S) Nitrobenzene-d5	126		33.8-179		11/13/2015 12:54	WG828643
(S) 2-Fluorobiphenyl	109		55.5-150		11/13/2015 12:54	WG828643
(S) p-Terphenyl-d14	93.0		46.2-163		11/13/2015 12:54	WG828643

SDG: L800673

S&ME Inc. - Hixson TN.

SAMPLE RESULTS - 13

₩

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
analyte	mg/l		mg/l		date / time		2
cetone	ND		0.0500	1	11/14/2015 04:18	<u>WG828976</u>	2
crolein	ND		0.0500	1	11/14/2015 04:18	<u>WG828976</u>	
crylonitrile	ND		0.0100	1	11/14/2015 04:18	WG828976	3
Benzene	ND		0.00100	1	11/14/2015 04:18	WG828976	
Bromobenzene	ND		0.00100	1	11/14/2015 04:18	WG828976	4
Bromodichloromethane	ND		0.00100	1	11/14/2015 04:18	<u>WG828976</u>	
Bromoform	ND		0.00100	1	11/14/2015 04:18	WG828976	L
Bromomethane	ND		0.00500	1	11/14/2015 04:18	WG828976	5
n-Butylbenzene	ND		0.00100	1	11/14/2015 04:18	WG828976	
sec-Butylbenzene	ND		0.00100	1	11/14/2015 04:18	WG828976	
ert-Butylbenzene	ND		0.00100	1	11/14/2015 04:18	WG828976	6
Carbon tetrachloride	ND		0.00100	1	11/14/2015 04:18	WG828976	
Chlorobenzene	ND		0.00100	1	11/14/2015 04:18	WG828976	7
Chlorodibromomethane	ND		0.00100	1	11/14/2015 04:18	WG828976	
Chloroethane	ND	14	0.00500	1	11/14/2015 04:18	WG828976	8
2-Chloroethyl vinyl ether	ND	<u>J4</u>	0.0500	1	11/14/2015 04:18	WG828976	
Chloroform	ND		0.00500	1	11/14/2015 04:18	WG828976	
Chloromethane	ND		0.00250	1	11/14/2015 04:18	<u>WG828976</u>	9
2-Chlorotoluene	ND		0.00100	1	11/14/2015 04:18	<u>WG828976</u>	
-Chlorotoluene	ND		0.00100	1	11/14/2015 04:18	WG828976	
,2-Dibromo-3-Chloropropane	ND		0.00500	1	11/14/2015 04:18	WG828976	
,2-Dibromoethane	ND		0.00100	1	11/14/2015 04:18	WG828976	
Dibromomethane	ND		0.00100	1	11/14/2015 04:18	WG828976	
2-Dichlorobenzene	ND		0.00100	1	11/14/2015 04:18	WG828976	
3-Dichlorobenzene	ND		0.00100	1	11/14/2015 04:18	WG828976	
4-Dichlorobenzene	ND		0.00100	1	11/14/2015 04:18	WG828976	
ichlorodifluoromethane	ND		0.00500	1	11/14/2015 04:18	WG828976	
1-Dichloroethane	ND		0.00100	1	11/14/2015 04:18	WG828976	
2-Dichloroethane			0.00100	1			
	ND				11/14/2015 04:18	WG828976	
1-Dichloroethene	ND		0.00100	1	11/14/2015 04:18	WG828976	
is-1,2-Dichloroethene	ND		0.00100	1	11/14/2015 04:18	WG828976	
rans-1,2-Dichloroethene	ND		0.00100	1	11/14/2015 04:18	<u>WG828976</u>	
,2-Dichloropropane	ND		0.00100	1	11/14/2015 04:18	<u>WG828976</u>	
,1-Dichloropropene	ND		0.00100	1	11/14/2015 04:18	WG828976	
,3-Dichloropropane	ND		0.00100	1	11/14/2015 04:18	WG828976	
is-1,3-Dichloropropene	ND		0.00100	1	11/14/2015 04:18	WG828976	
rans-1,3-Dichloropropene	ND		0.00100	1	11/14/2015 04:18	WG828976	
,2-Dichloropropane	ND		0.00100	1	11/14/2015 04:18	WG828976	
Di-isopropyl ether	ND		0.00100	1	11/14/2015 04:18	WG828976	
thylbenzene	ND		0.00100	1	11/14/2015 04:18	WG828976	
lexachloro-1,3-butadiene	ND		0.00100	1	11/14/2015 04:18	WG828976	
sopropylbenzene	ND		0.00100	1	11/14/2015 04:18	WG828976	
	ND		0.00100	1			
-Isopropyltoluene					11/14/2015 04:18	WG828976	
P-Butanone (MEK)	ND		0.0100	1	11/14/2015 04:18	WG828976	
Aethylene Chloride	ND		0.00500	1	11/14/2015 04:18	WG828976	
-Methyl-2-pentanone (MIBK)	ND		0.0100	1	11/14/2015 04:18	WG828976	
lethyl tert-butyl ether	ND		0.00100	1	11/14/2015 04:18	<u>WG828976</u>	
aphthalene	ND		0.00500	1	11/14/2015 04:18	WG828976	
-Propylbenzene	ND		0.00100	1	11/14/2015 04:18	WG828976	
tyrene	ND		0.00100	1	11/14/2015 04:18	WG828976	
1,1,2-Tetrachloroethane	ND		0.00100	1	11/14/2015 04:18	<u>WG828976</u>	
1,2,2-Tetrachloroethane	ND		0.00100	1	11/14/2015 04:18	WG828976	
1,2-Trichlorotrifluoroethane	ND		0.00100	1	11/14/2015 04:18	WG828976	
etrachloroethene	ND		0.00100	1	11/14/2015 04:18	WG828976	
oluene	ND		0.00500	1	11/14/2015 04:18	WG828976	
,2,3-Trichlorobenzene	ND		0.00100	1	11/14/2015 04:18	WG828976	
			0.00100			110020010	

4181-15-036A

11/19/15 15:58

L800673

35 of 73

SAMPLE RESULTS - 13 L800673

Â

Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
1,2,4-Trichlorobenzene	ND		0.00100	1	11/14/2015 04:18	WG828976	
1,1,1-Trichloroethane	ND		0.00100	1	11/14/2015 04:18	<u>WG828976</u>	
1,1,2-Trichloroethane	ND		0.00100	1	11/14/2015 04:18	<u>WG828976</u>	
Trichloroethene	ND		0.00100	1	11/14/2015 04:18	<u>WG828976</u>	
Trichlorofluoromethane	ND		0.00500	1	11/14/2015 04:18	<u>WG828976</u>	
1,2,3-Trichloropropane	ND		0.00250	1	11/14/2015 04:18	<u>WG828976</u>	
1,2,4-Trimethylbenzene	ND		0.00100	1	11/14/2015 04:18	<u>WG828976</u>	
1,2,3-Trimethylbenzene	ND		0.00100	1	11/14/2015 04:18	<u>WG828976</u>	
1,3,5-Trimethylbenzene	ND		0.00100	1	11/14/2015 04:18	<u>WG828976</u>	
Vinyl chloride	ND		0.00100	1	11/14/2015 04:18	<u>WG828976</u>	
Xylenes, Total	ND		0.00300	1	11/14/2015 04:18	<u>WG828976</u>	
(S) Toluene-d8	103		90.0-115		11/14/2015 04:18	<u>WG828976</u>	
(S) Dibromofluoromethane	101		79.0-121		11/14/2015 04:18	<u>WG828976</u>	
(S) 4-Bromofluorobenzene	102		80.1-120		11/14/2015 04:18	<u>WG828976</u>	

SDG: L800673

SAMPLE RESULTS - 14

*Q*c

Gl

ΆI

Sc

Mercury by Method 7470A

ND

ND

ND

ND

Chromium

Selenium

Lead

Silver

) -)							
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Mercury	ND		0.000200	1	11/13/2015 17:19	WG828703	
Metals (ICP) by M	ethod 6010B						
Metals (ICP) by M	ethod 6010B Result	Qualifier	RDL	Dilution	Analysis	Batch	
Metals (ICP) by M Analyte		Qualifier	RDL mg/l	Dilution	Analysis date / time	Batch	
	Result	Qualifier		Dilution 1		Batch WG829262	
Analyte	Result mg/l	<u>Qualifier</u>	mg/l	Dilution 1 1	date / time		

1

1

1

1

11/17/2015 22:37

11/17/2015 22:37

11/17/2015 22:37

11/17/2015 22:37

WG829262

WG829262

WG829262

WG829262

0.0100

0.00500

0.0100

0.00500

SAMPLE RESULTS - 15 L800673

Â

Sc

Mercury by Method 7470A

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l		date / time		
Mercury	0.000490		0.000200	1	11/13/2015 17:21	WG828703	
Metals (ICP) by N	lethod 6010B						
	Result	Qualifier	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l		date / time		
Arsenic	ND		0.0100	1	11/17/2015 22:40	WG829262	
Barium	0.134		0.00500	1	11/17/2015 22:40	<u>WG829262</u>	
Cadmium	ND		0.00200	1	11/17/2015 22:40	<u>WG829262</u>	
Chromium	ND		0.0100	1	11/17/2015 22:40	WG829262	
Lead	0.0135		0.00500	1	11/17/2015 22:40	WG829262	
Selenium	ND		0.0100	1	11/17/2015 22:40	WG829262	
Silver	ND		0.00500	1	11/17/2015 22:40	WG829262	

SDG: L800673

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L800673-09,10

ONE LAB. NATIONWIDE.

Ċn

Śr

ິQc

GI

Â

Sc

Method Blank (MB)

			1
(MB) 11/14/15 15:32			
	MB Result MB Qualit	MB RDL	2
Analyte	%	%	-
Total Solids	0.000600		
			3

L800553-03 Original Sample (OS) • Duplicate (DUP)

(OS) 11/14/15 15:32 • (DUP) 11/14/	15 15:33									
Original Result DUP Result Dilution DUP RPD DUP Qualifier DUP RPD Limits										
Analyte	%	%		%		%				
Total Solids	83.8	80.3	1	4.19		5				

Laboratory Control Sample (LCS)

(LCS) 11/14/15 15:32					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ACCOUNT:

DATE/TIME: 11/19/15 15:58

PAGE: 39 of 73

Mercury by Method 7470A

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) 11/13/15 16:26				
	MB Result	MB Qualifier	MB RDL	
Analyte	mg/l		mg/l	
Mercury	ND		0.000200	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/13/15 16:28 • (LCSD) 11/13/15	5 16:30									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Mercury	0.00300	0.00289	0.00300	96	100	80-120			4	20

L800507-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/13/15 16:32 • (MS) 11/13/15 (16:39 • (MSD)	11/13/15 16:41										
	Spike Amou	nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Mercury	0.00300	ND	0.00278	0.00278	93	93	1	75-125			0	20

DATE/TIME: 11/19/15 15:58

GI

Â

Mercury by Method 7471A

QUALITY CONTROL SUMMARY <u>1800673-02,04,05,06,07,08,09,10</u>

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) 11/14/15 09:04			
	MB Result	MB Qualifier	MB RDL
Analyte	mg/kg		mg/kg
Mercury	ND		0.0200

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/14/15 09:07 • (LCSD) 11/14/1	5 09:10									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Mercury	0.300	0.270	0.284	90	95	80-120			5	20

L800608-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/14/15 09:13 • (MS) 11/14/15	09:16 • (MSD) 11/14/15 09:19										
	Spike Amo	unt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Mercury	0.300	0.00689	0.291	0.318	95	104	1	75-125			9	20

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) 11/17/15 21:48				
	MB Result	MB Qualifier	MB RDL	
Analyte	mg/l		mg/l	
Arsenic	ND		0.0100	
Barium	ND		0.00500	
Cadmium	ND		0.00200	
Chromium	ND		0.0100	
Lead	ND		0.00500	
Selenium	ND		0.0100	
Silver	ND		0.00500	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/17/15 21:51 • (LCSD) 11/17/	15 21:54									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Arsenic	1.00	1.06	1.06	106	106	80-120			1	20
Barium	1.00	1.04	1.04	104	104	80-120			0	20
Cadmium	1.00	1.10	1.09	110	109	80-120			1	20
Chromium	1.00	1.05	1.04	105	104	80-120			1	20
Lead	1.00	1.03	1.02	103	102	80-120			1	20
Selenium	1.00	1.09	1.09	109	109	80-120			0	20
Silver	1.00	1.01	0.998	101	100	80-120			1	20

L800625-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/17/15 21:57 • (MS) 11/	OS) 11/17/15 21:57 • (MS) 11/17/15 22:03 • (MSD) 11/17/15 22:22													
	Spike Amo	unt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits MS Qualifier	MSD Qualifier	RPD	RPD Limits			
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%		%	%			
Arsenic	1.00	0.000417	1.09	1.09	109	109	1	75-125		0	20			
Barium	1.00	0.192	1.20	1.22	101	103	1	75-125		1	20			
Cadmium	1.00	0.000200	1.10	1.11	110	111	1	75-125		0	20			
Chromium	1.00	0.00134	1.04	1.04	104	104	1	75-125		0	20			
Lead	1.00	0.00251	1.03	1.03	102	103	1	75-125		0	20			
Selenium	1.00	0.00161	1.11	1.12	111	111	1	75-125		0	20			
Silver	1.00	ND	1.01	1.02	101	102	1	75-125		1	20			

PROJECT: 4181-15-036A SDG: L800673 DATE/TIME: 11/19/15 15:58 PAGE: 42 of 73

Metals (ICP) by Method 6010B

QUALITY CONTROL SUMMARY <u>1800673-02.04,05,06,07,08,09,10</u>

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) 11/19/15 08:11			
	MB Result	MB Qualifier	MB RDL
Analyte	mg/kg		mg/kg
Arsenic	ND		2.00
Barium	ND		0.500
Cadmium	ND		0.500
Chromium	ND		1.00
Lead	ND		0.500
Selenium	ND		2.00
Silver	ND		1.00

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

.CS) 11/19/15 08:22 • (LCSD)	11/19/15 08:25									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
nalyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
nic	100	99.2	102	99	102	80-120			3	20
ım	100	101	103	101	103	80-120			3	20
nium	100	98.2	101	98	101	80-120			3	20
ium	100	93.8	96.6	94	97	80-120			3	20
	100	99.1	102	99	102	80-120			3	20
ium	100	103	107	103	107	80-120			3	20
	100	96.0	99.4	96	99	80-120			3	20

L800673-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/19/15 08:28 • (MS) 11/19/15	08:43 • (MSD) 11/19/15 08:45									
	Spike Amou	nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits MS Qualifie	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%		%	%
Arsenic	100	2.04	97.6	93.9	96	92	1	75-125		4	20
Barium	100	44.1	139	135	95	91	1	75-125		3	20
Cadmium	100	0.0499	96.9	93.0	97	93	1	75-125		4	20
Chromium	100	13.4	103	98.2	89	85	1	75-125		4	20
Lead	100	14.7	115	112	101	97	1	75-125		3	20
Selenium	100	0.763	100	96.3	99	96	1	75-125		4	20
Silver	100	ND	95.0	91.7	95	92	1	75-125		4	20

PROJECT: 4181-15-036A SDG: L800673 DATE/TIME: 11/19/15 15:58 PAGE: 43 of 73

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY <u>L800673-01,02,03,04,05,06,07</u>

Τс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) 11/14/15 09:13				
	MB Result	MB Qualifier	MB RDL	
Analyte	mg/kg		mg/kg	
Acetone	ND		0.0500	
Acrylonitrile	ND		0.0100	
Benzene	ND		0.00100	
Bromobenzene	ND		0.00100	
Bromodichloromethane	ND		0.00100	
Bromoform	ND		0.00100	
Bromomethane	ND		0.00500	
n-Butylbenzene	ND		0.00100	
sec-Butylbenzene	ND		0.00100	
tert-Butylbenzene	ND		0.00100	
Carbon tetrachloride	ND		0.00100	
Chlorobenzene	ND		0.00100	
Chlorodibromomethane	ND		0.00100	
Chloroethane	ND		0.00500	
2-Chloroethyl vinyl ether	ND		0.0500	
Chloroform	ND		0.00500	
Chloromethane	ND		0.00250	
2-Chlorotoluene	ND		0.00100	
4-Chlorotoluene	ND		0.00100	
1,2-Dibromo-3-Chloropropane	ND		0.00500	
1,2-Dibromoethane	ND		0.00100	
Dibromomethane	ND		0.00100	
1,2-Dichlorobenzene	ND		0.00100	
1,3-Dichlorobenzene	ND		0.00100	
1,4-Dichlorobenzene	ND		0.00100	
Dichlorodifluoromethane	ND		0.00500	
1,1-Dichloroethane	ND		0.00100	
1,2-Dichloroethane	ND		0.00100	
1,1-Dichloroethene	ND		0.00100	
cis-1,2-Dichloroethene	ND		0.00100	
trans-1,2-Dichloroethene	ND		0.00100	
1,2-Dichloropropane	ND		0.00100	
1,1-Dichloropropene	ND		0.00100	
1,3-Dichloropropane	ND		0.00100	
	ND		0.00100	
cis-1,3-Dichloropropene	ND		0.00100	

SDG: L800673 DATE/TIME: 11/19/15 15:58

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY <u>L800673-01,02,03,04,05,06,07</u>

Τс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

			`
(MB)	11/14/15	09:13	

(MB) 11/14/15 09.15	MB Result	MB Qualifier	MB RDL
Analyte	mg/kg		mg/kg
2,2-Dichloropropane	ND		0.00100
Di-isopropyl ether	ND		0.00100
Ethylbenzene	ND		0.00100
Hexachloro-1,3-butadiene	ND		0.00100
Isopropylbenzene	ND		0.00100
p-lsopropyltoluene	ND		0.00100
2-Butanone (MEK)	ND		0.0100
Methylene Chloride	ND		0.00500
4-Methyl-2-pentanone (MIBK)	ND		0.0100
Methyl tert-butyl ether	ND		0.00100
Naphthalene	ND		0.00500
n-Propylbenzene	ND		0.00100
Styrene	ND		0.00100
1,1,1,2-Tetrachloroethane	ND		0.00100
1,1,2,2-Tetrachloroethane	ND		0.00100
Tetrachloroethene	ND		0.00100
Toluene	ND		0.00500
1,1,2-Trichlorotrifluoroethane	ND		0.00100
1,2,3-Trichlorobenzene	ND		0.00100
1,2,4-Trichlorobenzene	ND		0.00100
1,1,1-Trichloroethane	ND		0.00100
1,1,2-Trichloroethane	ND		0.00100
Trichloroethene	ND		0.00100
Trichlorofluoromethane	ND		0.00500
1,2,3-Trichloropropane	ND		0.00250
1,2,3-Trimethylbenzene	ND		0.00100
1,2,4-Trimethylbenzene	ND		0.00100
1,3,5-Trimethylbenzene	ND		0.00100
Vinyl chloride	ND		0.00100
Xylenes, Total	ND		0.00300
(S) Toluene-d8	101		88.7-115
(S) Dibromofluoromethane	96.3		76.3-123
(S) 4-Bromofluorobenzene	103		69.7-129

DATE/TIME: 11/19/15 15:58

QUALITY CONTROL SUMMARY <u>L800673-01,02,03,04,05,06,07</u>

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/14/15 06:45 • (LCSD) 11/14/15 07:10

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Acetone	0.125	0.101	0.106	80.4	84.7	25.3-178			5.19	22.9
Acrylonitrile	0.125	0.118	0.116	94.1	92.7	57.8-143			1.48	20
Benzene	0.0250	0.0234	0.0226	93.7	90.5	72.6-120			3.47	20
Bromobenzene	0.0250	0.0242	0.0249	96.7	99.7	80.3-115			3.13	20
Bromodichloromethane	0.0250	0.0227	0.0229	90.7	91.7	75.3-119			1.12	20
Bromoform	0.0250	0.0251	0.0252	101	101	69.1-135			0.330	20
Bromomethane	0.0250	0.0244	0.0259	97.7	104	23.0-191			6.01	20
n-Butylbenzene	0.0250	0.0246	0.0255	98.3	102	74.2-134			3.53	20
sec-Butylbenzene	0.0250	0.0250	0.0259	99.9	104	77.8-129			3.74	20
tert-Butylbenzene	0.0250	0.0243	0.0266	97.4	106	77.2-129			8.73	20
Carbon tetrachloride	0.0250	0.0236	0.0236	94.5	94.3	69.4-129			0.250	20
Chlorobenzene	0.0250	0.0251	0.0267	101	107	78.9-122			6.03	20
Chlorodibromomethane	0.0250	0.0249	0.0249	99.7	99.8	76.4-126			0.0700	20
Chloroethane	0.0250	0.0235	0.0230	94.1	92.1	47.2-147			2.13	20
2-Chloroethyl vinyl ether	0.125	0.0942	0.0900	75.3	72.0	16.7-162			4.48	23.7
Chloroform	0.0250	0.0231	0.0231	92.2	92.3	73.3-122			0.0600	20
Chloromethane	0.0250	0.0148	0.0150	59.4	60.1	53.1-135			1.23	20
2-Chlorotoluene	0.0250	0.0245	0.0258	98.0	103	74.6-127			5.13	20
4-Chlorotoluene	0.0250	0.0241	0.0254	96.3	101	79.5-123			5.15	20
1,2-Dibromo-3-Chloropropane	0.0250	0.0237	0.0230	94.6	92.1	64.9-131			2.64	20
1,2-Dibromoethane	0.0250	0.0254	0.0247	102	98.7	78.7-123			2.95	20
Dibromomethane	0.0250	0.0256	0.0234	102	93.7	78.5-117			8.76	20
1,2-Dichlorobenzene	0.0250	0.0240	0.0243	95.8	97.3	83.6-119			1.56	20
1,3-Dichlorobenzene	0.0250	0.0243	0.0259	97.3	104	75.9-129			6.31	20
1,4-Dichlorobenzene	0.0250	0.0233	0.0236	93.0	94.4	81.0-115			1.42	20
Dichlorodifluoromethane	0.0250	0.0232	0.0225	92.8	89.9	50.9-139			3.17	20
1,1-Dichloroethane	0.0250	0.0229	0.0226	91.5	90.4	71.7-125			1.18	20
1,2-Dichloroethane	0.0250	0.0211	0.0201	84.3	80.3	67.2-121			4.89	20
1,1-Dichloroethene	0.0250	0.0247	0.0238	99.0	95.2	60.6-133			3.92	20
cis-1,2-Dichloroethene	0.0250	0.0235	0.0232	93.9	92.9	76.1-121			1.10	20
trans-1,2-Dichloroethene	0.0250	0.0240	0.0229	95.8	91.7	70.7-124			4.43	20
1,2-Dichloropropane	0.0250	0.0234	0.0231	93.6	92.4	76.9-123			1.30	20
1,1-Dichloropropene	0.0250	0.0226	0.0218	90.3	87.1	71.2-126			3.61	20
1,3-Dichloropropane	0.0250	0.0231	0.0239	92.2	95.7	80.3-114			3.69	20
cis-1,3-Dichloropropene	0.0250	0.0250	0.0242	100	96.7	77.3-123			3.57	20
trans-1,3-Dichloropropene	0.0250	0.0248	0.0235	99.1	93.8	73.0-127			5.45	20

ACCOUNT:
S&ME Inc Hixson TN.

PROJECT: 4181-15-036A SDG: L800673 DATE/TIME: 11/19/15 15:58 PAGE: 46 of 73

QUALITY CONTROL SUMMARY <u>L800673-01,02,03,04,05,06,07</u>

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/14/15 06:45 • (LCSD) 11/14/15 07:10

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
2,2-Dichloropropane	0.0250	0.0223	0.0216	89.2	86.6	61.9-132			3.01	20
Di-isopropyl ether	0.0250	0.0216	0.0211	86.4	84.3	67.2-131			2.54	20
Ethylbenzene	0.0250	0.0247	0.0253	98.9	101	78.6-124			2.32	20
Hexachloro-1,3-butadiene	0.0250	0.0241	0.0252	96.4	101	69.2-136			4.27	20
lsopropylbenzene	0.0250	0.0240	0.0249	96.1	99.4	79.4-126			3.41	20
p-lsopropyltoluene	0.0250	0.0244	0.0265	97.7	106	75.4-132			8.12	20
2-Butanone (MEK)	0.125	0.106	0.104	84.8	82.8	44.5-154			2.32	21.3
Methylene Chloride	0.0250	0.0248	0.0240	99.4	96.0	68.2-119			3.46	20
4-Methyl-2-pentanone (MIBK)	0.125	0.115	0.113	91.7	90.3	61.1-138			1.44	20
Methyl tert-butyl ether	0.0250	0.0240	0.0219	96.0	87.6	70.2-122			9.15	20
Naphthalene	0.0250	0.0270	0.0265	108	106	69.9-132			1.95	20
n-Propylbenzene	0.0250	0.0247	0.0246	98.9	98.2	80.2-124			0.650	20
Styrene	0.0250	0.0255	0.0264	102	105	79.4-124			3.35	20
1,1,1,2-Tetrachloroethane	0.0250	0.0247	0.0253	98.9	101	76.7-127			2.47	20
1,1,2,2-Tetrachloroethane	0.0250	0.0263	0.0253	105	101	78.8-124			3.93	20
Tetrachloroethene	0.0250	0.0238	0.0250	95.2	100	71.1-133			4.87	20
Toluene	0.0250	0.0239	0.0228	95.4	91.1	76.7-116			4.62	20
1,1,2-Trichlorotrifluoroethane	0.0250	0.0232	0.0235	92.9	93.9	62.6-138			0.980	20
1,2,3-Trichlorobenzene	0.0250	0.0258	0.0258	103	103	72.5-137			0.000	20
1,2,4-Trichlorobenzene	0.0250	0.0260	0.0262	104	105	74.0-137			0.690	20
1,1,1-Trichloroethane	0.0250	0.0226	0.0220	90.3	88.1	69.9-127			2.51	20
1,1,2-Trichloroethane	0.0250	0.0254	0.0245	102	97.9	81.9-119			3.76	20
Trichloroethene	0.0250	0.0238	0.0240	95.2	96.1	77.2-122			0.940	20
Trichlorofluoromethane	0.0250	0.0242	0.0234	96.6	93.5	51.5-151			3.24	20
1,2,3-Trichloropropane	0.0250	0.0251	0.0244	100	97.6	74.0-124			2.85	20
1,2,3-Trimethylbenzene	0.0250	0.0241	0.0247	96.3	98.9	79.4-118			2.73	20
1,2,4-Trimethylbenzene	0.0250	0.0249	0.0264	99.7	106	77.1-124			5.87	20
1,3,5-Trimethylbenzene	0.0250	0.0242	0.0253	96.9	101	79.0-125			4.49	20
Vinyl chloride	0.0250	0.0216	0.0215	86.4	85.9	58.4-134			0.590	20
Xylenes, Total	0.0750	0.0731	0.0775	97.5	103	78.1-123			5.75	20
(S) Toluene-d8				105	102	88.7-115				
(S) Dibromofluoromethane				96.1	93.2	76.3-123				
(S) 4-Bromofluorobenzene				101	101	69.7-129				

Sc

ACCOUNT: S&ME Inc. - Hixson TN. PROJECT: 4181-15-036A SDG: L800673 DATE/TIME: 11/19/15 15:58

PAGE: 47 of 73

QUALITY CONTROL SUMMARY <u>L800673-01,02,03,04,05,06,07</u>

Тс

Ss

Cn

Sr

ິQc

GI

ΆI

Sc

L800673-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/14/15 10:51 • (MS) 11/14/15 09:38 • (MSD) 11/14/15 10:02

	Spike Amount Original Result		MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Acetone	0.125	ND	0.517	0.476	82.8	76.2	5	10.0-130			8.34	31.5
Acrylonitrile	0.125	ND	0.542	0.514	86.7	82.2	5	39.3-152			5.33	27.2
Benzene	0.0250	ND	0.105	0.104	84.3	83.0	5	47.8-131			1.49	22.8
Bromobenzene	0.0250	ND	0.103	0.0997	82.0	79.7	5	40.0-130			2.83	27.4
Bromodichloromethane	0.0250	ND	0.110	0.106	88.0	84.6	5	50.6-128			3.92	22.8
Bromoform	0.0250	ND	0.112	O.111	89.3	88.9	5	43.3-139			0.410	25.9
Bromomethane	0.0250	ND	0.129	0.125	103	100	5	5.00-189			2.91	26.7
n-Butylbenzene	0.0250	ND	0.0961	0.0809	76.9	64.7	5	23.6-146			17.2	39.2
sec-Butylbenzene	0.0250	ND	0.101	0.0920	80.6	73.6	5	31.0-142			9.03	34.7
tert-Butylbenzene	0.0250	ND	0.106	0.101	84.5	80.7	5	36.9-142			4.69	31.7
Carbon tetrachloride	0.0250	ND	0.103	0.100	82.6	80.3	5	46.0-140			2.86	27.2
Chlorobenzene	0.0250	ND	0.115	O.111	92.2	88.6	5	44.1-134			4.01	25.7
Chlorodibromomethane	0.0250	ND	O.111	O.111	89.2	88.8	5	49.7-134			0.400	24
Chloroethane	0.0250	ND	0.105	0.120	84.0	95.9	5	5.00-164			13.2	28.4
2-Chloroethyl vinyl ether	0.125	ND	0.439	0.428	70.2	68.4	5	5.00-159			2.61	40
Chloroform	0.0250	ND	0.108	0.106	86.1	85.0	5	51.2-133			1.24	22.8
Chloromethane	0.0250	ND	0.0704	0.0746	56.3	59.7	5	31.4-141			5.81	24.6
2-Chlorotoluene	0.0250	ND	0.104	0.102	83.0	81.5	5	36.1-137			1.79	28.9
4-Chlorotoluene	0.0250	ND	0.101	0.0966	80.7	77.2	5	35.4-137			4.37	29.8
1,2-Dibromo-3-Chloropropane	0.0250	ND	0.106	0.101	84.6	80.6	5	40.4-138			4.80	30.8
1,2-Dibromoethane	0.0250	ND	0.114	0.112	91.1	89.7	5	50.2-133			1.58	23.6
Dibromomethane	0.0250	ND	0.116	0.118	92.5	94.3	5	52.4-128			1.89	23
1,2-Dichlorobenzene	0.0250	ND	0.106	0.0959	85.0	76.7	5	34.6-139			10.2	29.9
1,3-Dichlorobenzene	0.0250	ND	0.105	0.0926	84.3	74.1	5	28.4-142			12.9	31.2
1,4-Dichlorobenzene	0.0250	ND	0.0990	0.0907	79.2	72.6	5	35.0-133			8.66	31.1
Dichlorodifluoromethane	0.0250	ND	0.106	0.103	85.2	82.6	5	31.2-144			3.11	30.2
1,1-Dichloroethane	0.0250	ND	0.104	0.104	83.1	83.2	5	49.1-136			0.0900	22.9
1,2-Dichloroethane	0.0250	ND	0.0967	0.0966	77.4	77.3	5	47.1-129			0.0800	22.7
1,1-Dichloroethene	0.0250	ND	0.109	0.108	87.2	86.8	5	36.1-142			0.520	25.6
cis-1,2-Dichloroethene	0.0250	ND	0.111	0.109	88.5	86.9	5	50.6-133			1.81	23
trans-1,2-Dichloroethene	0.0250	ND	0.108	0.106	86.4	84.5	5	43.8-135			2.24	24.8
1,2-Dichloropropane	0.0250	ND	0.108	0.106	86.6	84.6	5	50.3-134			2.31	22.7
1,1-Dichloropropene	0.0250	ND	0.103	0.102	82.5	81.2	5	43.0-137			1.56	26.4
1,3-Dichloropropane	0.0250	ND	O.111	0.107	88.7	85.6	5	51.4-127			3.59	23.1
cis-1,3-Dichloropropene	0.0250	ND	0.112	O.111	89.3	88.8	5	48.4-134			0.470	23.6
trans-1,3-Dichloropropene	0.0250	ND	0.111	0.108	88.9	86.5	5	46.6-135			2.74	25.3

ACCOUNT:	
S&ME Inc Hixson TN.	

PROJECT: 4181-15-036A SDG: L800673 DATE/TIME: 11/19/15 15:58 PAGE: 48 of 73

QUALITY CONTROL SUMMARY <u>L800673-01,02,03,04,05,06,07</u>

Τс

Ss

Cn

Śr

Qc

GI

A

Sc

L800673-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/14/15 10:51 • (MS) 11/14/15 09:38 • (MSD) 11/14/15 10:02

	Spike Amou	int Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
2,2-Dichloropropane	0.0250	ND	0.102	0.0985	81.5	78.8	5	45.2-141			3.37	26.6
Di-isopropyl ether	0.0250	ND	0.0984	0.0985	78.7	78.8	5	46.7-140			0.150	23.5
Ethylbenzene	0.0250	ND	0.112	0.103	89.5	82.4	5	44.8-135			8.28	26.9
Hexachloro-1,3-butadiene	0.0250	ND	0.0808	0.0657	64.6	52.5	5	10.0-149			20.7	40
lsopropylbenzene	0.0250	ND	0.105	0.0977	84.2	78.2	5	41.9-139			7.39	29.3
p-lsopropyltoluene	0.0250	ND	0.101	0.0893	80.8	71.4	5	27.3-146			12.4	35.1
2-Butanone (MEK)	0.125	ND	0.522	0.471	83.6	75.4	5	23.9-170			10.3	28.3
Methylene Chloride	0.0250	ND	O.111	0.110	89.1	88.2	5	46.7-125			1.00	22.2
4-Methyl-2-pentanone (MIBK)	0.125	ND	0.543	0.499	86.9	79.9	5	42.4-146			8.44	26.7
Methyl tert-butyl ether	0.0250	ND	0.108	0.105	86.4	84.3	5	50.4-131			2.45	24.8
Naphthalene	0.0250	ND	0.109	0.0986	87.1	78.9	5	18.4-145			9.85	34
n-Propylbenzene	0.0250	ND	0.106	0.0950	84.4	76.0	5	35.2-139			10.5	31.9
Styrene	0.0250	ND	0.111	0.107	88.8	85.5	5	39.7-137			3.77	28.2
1,1,1,2-Tetrachloroethane	0.0250	ND	0.114	0.111	90.9	89.0	5	48.8-136			2.06	25.5
1,1,2,2-Tetrachloroethane	0.0250	ND	0.119	0.116	95.5	92.9	5	45.7-140			2.71	26.4
Tetrachloroethene	0.0250	ND	0.107	0.0978	85.7	78.3	5	37.7-140			9.13	29.2
Toluene	0.0250	ND	0.107	0.108	85.8	86.4	5	47.8-127			0.650	24.3
1,1,2-Trichlorotrifluoroethane	0.0250	ND	0.106	0.102	85.0	81.2	5	35.7-146			4.55	28.8
1,2,3-Trichlorobenzene	0.0250	ND	0.0942	0.0848	75.4	67.9	5	10.0-150			10.5	38.5
1,2,4-Trichlorobenzene	0.0250	ND	0.0923	0.0797	73.9	63.8	5	10.0-153			14.7	39.3
1,1,1-Trichloroethane	0.0250	ND	0.104	0.101	83.0	80.8	5	49.0-138			2.69	25.3
1,1,2-Trichloroethane	0.0250	ND	0.114	0.113	91.3	90.8	5	52.3-132			0.550	23.4
Trichloroethene	0.0250	ND	0.107	0.106	85.8	84.5	5	48.0-132			1.62	24.8
Trichlorofluoromethane	0.0250	ND	0.113	0.114	90.7	91.6	5	12.8-169			0.960	29.7
1,2,3-Trichloropropane	0.0250	ND	0.115	0.110	91.8	88.2	5	44.4-138			4.00	26.3
1,2,3-Trimethylbenzene	0.0250	ND	0.112	0.102	89.6	81.5	5	41.0-133			9.51	27.6
1,2,4-Trimethylbenzene	0.0250	ND	0.108	0.101	86.1	80.7	5	32.9-139			6.46	30.6
1,3,5-Trimethylbenzene	0.0250	ND	0.104	0.0952	83.2	76.2	5	37.1-138			8.77	30.6
Vinyl chloride	0.0250	ND	0.102	0.102	81.2	82.0	5	32.0-146			0.980	26.3
Xylenes, Total	0.0750	ND	0.329	0.322	87.8	85.9	5	42.7-135			2.13	26.6
(S) Toluene-d8					103	106		88.7-115				
(S) Dibromofluoromethane					96.2	98.2		76.3-123				
(S) 4-Bromofluorobenzene					99.1	97.5		69.7-129				

SDG: L800673 DATE/TIME: 11/19/15 15:58

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB)	11/13/15	16:11

(MB) 11/13/15 16:11			
	MB Result	MB Qualifier	MB RDL
Analyte	mg/l		mg/l
Acetone	ND		0.0500
Acrolein	ND		0.0500
Acrylonitrile	ND		0.0100
Benzene	ND		0.00100
Bromobenzene	ND		0.00100
Bromodichloromethane	ND		0.00100
Bromoform	ND		0.00100
Bromomethane	ND		0.00500
n-Butylbenzene	ND		0.00100
sec-Butylbenzene	ND		0.00100
tert-Butylbenzene	ND		0.00100
Carbon tetrachloride	ND		0.00100
Chlorobenzene	ND		0.00100
Chlorodibromomethane	ND		0.00100
Chloroethane	ND		0.00500
2-Chloroethyl vinyl ether	ND		0.0500
Chloroform	ND		0.00500
Chloromethane	ND		0.00250
2-Chlorotoluene	ND		0.00100
4-Chlorotoluene	ND		0.00100
1,2-Dibromo-3-Chloropropane	ND		0.00500
1,2-Dibromoethane	ND		0.00100
Dibromomethane	ND		0.00100
1,2-Dichlorobenzene	ND		0.00100
1,3-Dichlorobenzene	ND		0.00100
1,4-Dichlorobenzene	ND		0.00100
Dichlorodifluoromethane	ND		0.00500
1,1-Dichloroethane	ND		0.00100
1,2-Dichloroethane	ND		0.00100
1,1-Dichloroethene	ND		0.00100
cis-1,2-Dichloroethene	ND		0.00100
trans-1,2-Dichloroethene	ND		0.00100
1,2-Dichloropropane	ND		0.00100
1,1-Dichloropropene	ND		0.00100
i,i Dicilioroproperie			
1,3-Dichloropropane	ND		0.00100 0.00100

SDG: L800673 DATE/TIME: 11/19/15 15:58 Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L800673-11,12,13

Method Blank (MB)

(MB)	11/13/15	16:11
------	----------	-------

(=)			
	MB Result	MB Qualifier	MB RDL
Analyte	mg/l		mg/l
trans-1,3-Dichloropropene	ND		0.00100
2,2-Dichloropropane	ND		0.00100
Di-isopropyl ether	ND		0.00100
Ethylbenzene	ND		0.00100
Hexachloro-1,3-butadiene	ND		0.00100
lsopropylbenzene	ND		0.00100
p-lsopropyltoluene	ND		0.00100
2-Butanone (MEK)	ND		0.0100
Methylene Chloride	ND		0.00500
4-Methyl-2-pentanone (MIBK)	ND		0.0100
Methyl tert-butyl ether	ND		0.00100
Naphthalene	ND		0.00500
n-Propylbenzene	ND		0.00100
Styrene	ND		0.00100
1,1,1,2-Tetrachloroethane	ND		0.00100
1,1,2,2-Tetrachloroethane	ND		0.00100
Tetrachloroethene	ND		0.00100
Toluene	ND		0.00500
1,1,2-Trichlorotrifluoroethane	ND		0.00100
1,2,3-Trichlorobenzene	ND		0.00100
1,2,4-Trichlorobenzene	ND		0.00100
1,1,1-Trichloroethane	ND		0.00100
1,1,2-Trichloroethane	ND		0.00100
Trichloroethene	ND		0.00100
Trichlorofluoromethane	ND		0.00500
1,2,3-Trichloropropane	ND		0.00250
1,2,3-Trimethylbenzene	ND		0.00100
1,2,4-Trimethylbenzene	ND		0.00100
1,3,5-Trimethylbenzene	ND		0.00100
Vinyl chloride	ND		0.00100
Xylenes, Total	ND		0.00300
(S) Toluene-d8	102		90.0-115
(S) Dibromofluoromethane	97.8		79.0-121
(S) 4-Bromofluorobenzene	102		80.1-120

_	Ср
	² Tc
	³ Ss
	⁴ Cn
	⁵ Sr
	51
	⁶ Qc
	⁶ Qc

٦

SDG: L800673

DATE/TIME: 11/19/15 15:58 PAGE: 51 of 73 QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/13/15 14:31 • (LCSD) 11/13/15 14:51

Bromobenzene0.0.Bromodichloromethane0.0.Bromoform0.0.Bromomethane0.0.Bromomethane0.0.n-Butylbenzene0.0.sec-Butylbenzene0.0.Carbon tetrachloride0.0.Chlorobenzene0.0.Chloroethane0.0.2-Chloroethyl vinyl ether0.12Chloroform0.0.	125 125 125 0250 0250 0250 0250 0250 025	mg/l 0.124 0.137 0.134 0.0251 0.0254 0.0267 0.0245 0.0224 0.0229 0.0269 0.0267	mg/l 0.119 0.134 0.0250 0.0251 0.0267 0.0241 0.0218	% 99.3 109 108 100 102 107 98.2	% 95.3 107 108 100 100	% 28.7-175 40.4-172 58.2-145 73.0-122 81.5-115			% 4.13 1.85 0.0600 0.290	
Acrolein0.12Acrylonitrile0.12Benzene0.0Bromobenzene0.0Bromodichloromethane0.0Bromoform0.0Bromomethane0.0Bromomethane0.0Bromotenzene0.0Bromotenzene0.0Bromotenzene0.0carbon tetrachloride0.0Chlorobenzene0.0Chlorodibromomethane0.0Chloroethane0.02-Chloroethyl vinyl ether0.12Chloroform0.0	125 125 0250 0250 0250 0250 0250 0250 02	0.137 0.134 0.0251 0.0254 0.0267 0.0245 0.0224 0.0269	0.134 0.134 0.0250 0.0251 0.0267 0.0241 0.0218	109 108 100 102 107	107 108 100 100	40.4-172 58.2-145 73.0-122			1.85 0.0600	20 20
Acrylonitrile0.12Benzene0.02Bromobenzene0.02Bromodichloromethane0.02Bromoform0.02Bromomethane0.02Bromomethane0.02Bromomethane0.02Bromomethane0.02carbon tetrachloride0.02Chlorodibromomethane0.02Chlorodibromomethane0.02Chloroethane0.02Chloroethane0.02Chloroethane0.02Chloroform0.02	125 0250 0250 0250 0250 0250 0250 0250 0	0.134 0.0251 0.0254 0.0267 0.0245 0.0224 0.0269	0.134 0.0250 0.0251 0.0267 0.0241 0.0218	108 100 102 107	108 100 100	58.2-145 73.0-122			0.0600	20
Benzene0.0Bromobenzene0.0Bromodichloromethane0.0Bromoform0.0Bromomethane0.0Bromomethane0.0n-Butylbenzene0.0sec-Butylbenzene0.0tert-Butylbenzene0.0Carbon tetrachloride0.0Chlorobenzene0.0Chloroethane0.02-Chloroethyl vinyl ether0.12Chloroform0.0	0250 0250 0250 0250 0250 0250 0250 0250	0.0251 0.0254 0.0267 0.0245 0.0224 0.0269	0.0250 0.0251 0.0267 0.0241 0.0218	100 102 107	100 100	73.0-122				
Bromobenzene0.0Bromodichloromethane0.0Bromoform0.0Bromomethane0.0Bromomethane0.0n-Butylbenzene0.0sec-Butylbenzene0.0tert-Butylbenzene0.0Carbon tetrachloride0.0Chlorobenzene0.0Chlorodibromomethane0.0Chloroethane0.02-Chloroethyl vinyl ether0.12Chloroform0.0	0250 0250 0250 0250 0250 0250 0250	0.0254 0.0267 0.0245 0.0224 0.0269	0.0251 0.0267 0.0241 0.0218	102 107	100				0.290	20
Bromodichloromethane0.0Bromoform0.0Bromomethane0.0n-Butylbenzene0.0sec-Butylbenzene0.0tert-Butylbenzene0.0Carbon tetrachloride0.0Chlorobenzene0.0Chloroethane0.02-Chloroethyl vinyl ether0.12Chloroform0.0	0250 0250 0250 0250 0250 0250	0.0267 0.0245 0.0224 0.0269	0.0267 0.0241 0.0218	107		81 5-115				20
Bromoform0.0Bromomethane0.0n-Butylbenzene0.0sec-Butylbenzene0.0tert-Butylbenzene0.0Carbon tetrachloride0.0Chlorobenzene0.0Chlorodibromomethane0.0Chloroethane0.02-Chloroethyl vinyl ether0.12Chloroform0.0	0250 0250 0250 0250 0250	0.0245 0.0224 0.0269	0.0241 0.0218		107	01.0-110			1.53	20
Bromomethane0.0n-Butylbenzene0.0sec-Butylbenzene0.0tert-Butylbenzene0.0Carbon tetrachloride0.0Chlorobenzene0.0Chlorodibromomethane0.0Chloroethane0.02-Chloroethyl vinyl ether0.12Chloroform0.0	0250 0250 0250 0250	0.0224 0.0269	0.0218	98.2	107	75.5-121			0.0800	20
n-Butylbenzene0.0sec-Butylbenzene0.0tert-Butylbenzene0.0Carbon tetrachloride0.0Chlorobenzene0.0Chlorodibromomethane0.0Chloroethane0.02-Chloroethyl vinyl ether0.12Chloroform0.0	0250 0250 0250	0.0269			96.2	71.5-131			2.00	20
sec-Butylbenzene0.0tert-Butylbenzene0.0Carbon tetrachloride0.0Chlorobenzene0.0Chlorodibromomethane0.0Chloroethane0.02-Chloroethyl vinyl ether0.12Chloroform0.0	0250 0250			89.5	87.1	22.4-187			2.66	20
tert-Butylbenzene0.0Carbon tetrachloride0.0Chlorobenzene0.0Chlorodibromomethane0.0Chloroethane0.02-Chloroethyl vinyl ether0.12Chloroform0.0	0250	0.0267	0.0272	108	109	75.9-134			1.33	20
Carbon tetrachloride0.0Chlorobenzene0.0Chlorodibromomethane0.0Chloroethane0.02-Chloroethyl vinyl ether0.12Chloroform0.0		0.0207	0.0265	107	106	80.6-126			0.710	20
Chlorobenzene0.0.Chlorodibromomethane0.0.Chloroethane0.0.2-Chloroethyl vinyl ether0.12Chloroform0.0.	0250	0.0267	0.0262	107	105	79.3-127			2.16	20
Chlorodibromomethane0.0Chloroethane0.02-Chloroethyl vinyl ether0.12Chloroform0.0		0.0251	0.0248	100	99.3	70.9-129			0.990	20
Chloroethane0.02-Chloroethyl vinyl ether0.12Chloroform0.0	0250	0.0256	0.0249	102	99.6	79.7-122			2.64	20
2-Chloroethyl vinyl ether0.12Chloroform0.0	0250	0.0261	0.0256	104	102	78.2-124			2.04	20
Chloroform 0.0	0250	0.0264	0.0262	105	105	41.2-153			0.750	20
	125	0.217	0.215	173	172	23.4-162	<u>J4</u>	<u>J4</u>	0.660	23.5
Chloromethane 0.0	0250	0.0257	0.0257	103	103	73.2-125			0.0800	20
	0250	0.0231	0.0228	92.2	91.1	55.8-134			1.21	20
2-Chlorotoluene 0.0	0250	0.0259	0.0256	104	103	76.4-125			1.22	20
4-Chlorotoluene 0.0	0250	0.0261	0.0255	105	102	81.5-121			2.27	20
1,2-Dibromo-3-Chloropropane 0.0	0250	0.0235	0.0234	93.9	93.5	64.8-131			0.490	20
1,2-Dibromoethane 0.0	0250	0.0255	0.0249	102	99.8	79.8-122			2.24	20
Dibromomethane 0.02	0250	0.0264	0.0263	106	105	79.5-118			0.440	20
1,2-Dichlorobenzene 0.0	0250	0.0251	0.0252	100	101	84.7-118			0.600	20
1,3-Dichlorobenzene 0.02	0250	0.0254	0.0248	102	99.2	77.6-127			2.27	20
1,4-Dichlorobenzene 0.0	0250	0.0247	0.0249	99.0	99.6	82.2-114			0.590	20
Dichlorodifluoromethane 0.02	0250	0.0261	0.0254	105	102	56.0-134			2.90	20
1,1-Dichloroethane 0.0	0250	0.0261	0.0260	104	104	71.7-127			0.120	20
1,2-Dichloroethane 0.0	0250	0.0258	0.0260	103	104	65.3-126			0.960	20
1,1-Dichloroethene 0.0	0250	0.0263	0.0265	105	106	59.9-137			0.660	20
cis-1,2-Dichloroethene 0.02	0250	0.0258	0.0257	103	103	77.3-122			0.190	20
trans-1,2-Dichloroethene 0.0	0250	0.0256	0.0257	102	103	72.6-125			0.410	20
1,2-Dichloropropane 0.0	0250	0.0269	0.0265	107	106	77.4-125			1.18	20
1,1-Dichloropropene 0.0	0250	0.0264	0.0265	106	106	72.5-127			0.0900	20
1,3-Dichloropropane 0.0	0250	0.0257	0.0250	103	100	80.6-115			2.91	20
cis-1,3-Dichloropropene 0.0	0250	0.0270	0.0269	108	108	77.7-124			0.460	20

ACCOUNT:	
S&ME Inc Hixson	TN.

DATE/TIME: 11/19/15 15:58 PAGE: 52 of 73 Cn

Sr

ິQc

GI

Â

QUALITY CONTROL SUMMARY

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/13/15 14:31 • (LCSD) 11/13/15 14:51

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
trans-1,3-Dichloropropene	0.0250	0.0245	0.0245	97.8	98.1	73.5-127			0.300	20
2,2-Dichloropropane	0.0250	0.0262	0.0261	105	105	61.3-134			0.410	20
Di-isopropyl ether	0.0250	0.0262	0.0263	105	105	65.1-135			0.200	20
Ethylbenzene	0.0250	0.0241	0.0236	96.4	94.3	80.9-121			2.24	20
Hexachloro-1,3-butadiene	0.0250	0.0248	0.0252	99.0	101	73.7-133			1.89	20
Isopropylbenzene	0.0250	0.0262	0.0257	105	103	81.6-124			1.84	20
p-lsopropyltoluene	0.0250	0.0274	0.0268	110	107	77.6-129			2.15	20
2-Butanone (MEK)	0.125	0.124	0.122	99.0	97.6	46.4-155			1.36	20
Methylene Chloride	0.0250	0.0227	0.0227	90.9	91.0	69.5-120			0.0400	20
4-Methyl-2-pentanone (MIBK)	0.125	0.132	0.132	106	106	63.3-138			0.0300	20
Methyl tert-butyl ether	0.0250	0.0257	0.0260	103	104	70.1-125			1.29	20
Naphthalene	0.0250	0.0238	0.0246	95.0	98.5	69.7-134			3.63	20
n-Propylbenzene	0.0250	0.0247	0.0243	98.9	97.2	81.9-122			1.72	20
Styrene	0.0250	0.0265	0.0260	106	104	79.9-124			1.93	20
1,1,1,2-Tetrachloroethane	0.0250	0.0255	0.0252	102	101	78.5-125			1.29	20
1,1,2,2-Tetrachloroethane	0.0250	0.0255	0.0249	102	99.5	79.3-123			2.44	20
Tetrachloroethene	0.0250	0.0258	0.0248	103	99.4	73.5-130			3.71	20
Toluene	0.0250	0.0250	0.0249	100	99.7	77.9-116			0.500	20
1,1,2-Trichlorotrifluoroethane	0.0250	0.0263	0.0238	105	95.1	62.0-141			10.2	20
1,2,3-Trichlorobenzene	0.0250	0.0242	0.0252	96.9	101	75.7-134			4.03	20
1,2,4-Trichlorobenzene	0.0250	0.0255	0.0260	102	104	76.1-136			2.06	20
1,1,1-Trichloroethane	0.0250	0.0262	0.0261	105	105	71.1-129			0.300	20
1,1,2-Trichloroethane	0.0250	0.0255	0.0252	102	101	81.6-120			0.990	20
Trichloroethene	0.0250	0.0260	0.0258	104	103	79.5-121			0.770	20
Trichlorofluoromethane	0.0250	0.0264	0.0259	106	104	49.1-157			1.87	20
1,2,3-Trichloropropane	0.0250	0.0250	0.0245	100	97.9	74.9-124			2.14	20
1,2,3-Trimethylbenzene	0.0250	0.0252	0.0255	101	102	79.9-118			1.24	20
1,2,4-Trimethylbenzene	0.0250	0.0236	0.0232	94.6	92.9	79.0-122			1.75	20
1,3,5-Trimethylbenzene	0.0250	0.0257	0.0257	103	103	81.0-123			0.0100	20
Vinyl chloride	0.0250	0.0264	0.0259	106	104	61.5-134			2.08	20
Xylenes, Total	0.0750	0.0781	0.0765	104	102	79.2-122			2.04	20
(S) Toluene-d8				101	101	90.0-115				
(S) Dibromofluoromethane				98.4	98.4	79.0-121				
(S) 4-Bromofluorobenzene				104	101	80.1-120				

DATE/TIME: 11/19/15 15:58 Cn

Sr

ິQc

GI

Â

QUALITY CONTROL SUMMARY

L799424-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/13/15 17:34 • (MS) 11/13/15 17:54 • (MSD) 11/13/15 18:13

	Spike Amou	nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	0.000976	0.0664	0.0659	52.3	52.0	1	25.0-156			0.680	21.5
Acrolein	0.125	ND	0.135	0.136	108	109	1	34.0-194			0.860	21.5
Acrylonitrile	0.125	ND	0.158	0.159	127	127	1	55.9-161			0.100	20
Benzene	0.0250	ND	0.0254	0.0253	102	101	1	58.6-133			0.390	20
Bromobenzene	0.0250	ND	0.0258	0.0263	103	105	1	70.6-125			1.59	20
Bromodichloromethane	0.0250	ND	0.0280	0.0278	112	111	1	69.2-127			0.680	20
Bromoform	0.0250	ND	0.0260	0.0263	104	105	1	66.3-140			1.02	20
Bromomethane	0.0250	ND	0.0203	0.0205	81.2	81.8	1	16.6-183			0.770	20.5
n-Butylbenzene	0.0250	ND	0.0275	0.0283	110	113	1	64.8-145			2.84	20
sec-Butylbenzene	0.0250	ND	0.0269	0.0278	108	111	1	66.8-139			3.04	20
tert-Butylbenzene	0.0250	ND	0.0268	0.0276	107	110	1	67.1-138			2.84	20
Carbon tetrachloride	0.0250	ND	0.0250	0.0254	100	102	1	60.6-139			1.70	20
Chlorobenzene	0.0250	ND	0.0253	0.0256	101	102	1	70.1-130			1.05	20
Chlorodibromomethane	0.0250	ND	0.0267	0.0271	107	108	1	71.6-132			1.24	20
Chloroethane	0.0250	ND	0.0250	0.0250	99.8	99.9	1	33.3-155			0.0400	20
2-Chloroethyl vinyl ether	0.125	ND	0.0116	0.00615	9.28	4.92	1	5.00-149		<u>J3 J6</u>	61.5	40
Chloroform	0.0250	ND	0.0267	0.0266	107	106	1	66.1-133			0.210	20
Chloromethane	0.0250	ND	0.0200	0.0201	80.0	80.2	1	40.7-139			0.350	20
2-Chlorotoluene	0.0250	ND	0.0260	0.0265	104	106	1	66.9-134			2.02	20
4-Chlorotoluene	0.0250	ND	0.0264	0.0266	106	107	1	66.8-134			0.800	20
1,2-Dibromo-3-Chloropropane	0.0250	ND	0.0267	0.0267	107	107	1	63.9-142			0.0400	20.2
1,2-Dibromoethane	0.0250	ND	0.0264	0.0266	106	107	1	73.8-131			1.01	20
Dibromomethane	0.0250	ND	0.0275	0.0276	110	110	1	72.8-127			0.560	20
1,2-Dichlorobenzene	0.0250	ND	0.0259	0.0263	103	105	1	77.4-127			1.65	20
1,3-Dichlorobenzene	0.0250	ND	0.0258	0.0263	103	105	1	67.9-136			2.05	20
1,4-Dichlorobenzene	0.0250	ND	0.0256	0.0258	102	103	1	74.4-123			0.990	20
Dichlorodifluoromethane	0.0250	ND	0.0222	0.0219	88.7	87.7	1	42.2-146			1.04	20
1,1-Dichloroethane	0.0250	ND	0.0268	0.0269	107	107	1	64.0-134			0.310	20
1,2-Dichloroethane	0.0250	ND	0.0273	0.0275	109	110	1	60.7-132			0.820	20
1,1-Dichloroethene	0.0250	ND	0.0260	0.0257	104	103	1	48.8-144			1.10	20
cis-1,2-Dichloroethene	0.0250	ND	0.0262	0.0262	105	105	1	60.6-136			0.140	20
rans-1,2-Dichloroethene	0.0250	ND	0.0249	0.0250	99.7	100	1	61.0-132			0.440	20
1,2-Dichloropropane	0.0250	ND	0.0277	0.0277	111	111	1	69.7-130			0.140	20
1,1-Dichloropropene	0.0250	ND	0.0261	0.0259	104	103	1	61.5-136			0.980	20
1,3-Dichloropropane	0.0250	ND	0.0265	0.0264	106	106	1	74.3-123			0.440	20
cis-1,3-Dichloropropene	0.0250	ND	0.0275	0.0272	110	109	1	71.1-129			0.810	20

ACCOUNT: S&ME Inc. - Hixson TN. PROJECT: 4181-15-036A SDG: L800673 DATE/TIME: 11/19/15 15:58 PAGE: 54 of 73

QUALITY CONTROL SUMMARY

L799424-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/13/15 17:34 • (MS) 11/13/15 17:54 • (MSD) 11/13/15 18:13

	Spike Amou	int Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
trans-1,3-Dichloropropene	0.0250	ND	0.0255	0.0255	102	102	1	66.3-136			0.000	20
2,2-Dichloropropane	0.0250	ND	0.0275	0.0289	110	116	1	54.9-142			4.87	20
Di-isopropyl ether	0.0250	ND	0.0272	0.0277	109	111	1	59.9-140			1.88	20
Ethylbenzene	0.0250	ND	0.0237	0.0242	94.7	97.0	1	62.7-136			2.40	20
Hexachloro-1,3-butadiene	0.0250	ND	0.0254	0.0264	101	106	1	61.1-144			4.05	20.1
lsopropylbenzene	0.0250	ND	0.0262	0.0269	105	108	1	67.4-136			2.48	20
p-lsopropyltoluene	0.0250	ND	0.0275	0.0283	110	113	1	62.8-143			2.90	20
2-Butanone (MEK)	0.125	ND	0.100	0.100	80.0	80.3	1	45.0-156			0.430	20.8
Methylene Chloride	0.0250	ND	0.0231	0.0230	92.3	91.9	1	61.5-125			0.370	20
4-Methyl-2-pentanone (MIBK)	0.125	ND	0.149	0.152	119	121	1	60.7-150			1.62	20
Methyl tert-butyl ether	0.0250	ND	0.0272	0.0282	109	113	1	61.4-136			3.56	20
Naphthalene	0.0250	ND	0.0263	0.0273	105	109	1	61.8-143			3.84	20
n-Propylbenzene	0.0250	ND	0.0248	0.0253	99.2	101	1	63.2-139			2.11	20
Styrene	0.0250	ND	0.0269	0.0269	107	108	1	68.2-133			0.140	20
l,1,1,2-Tetrachloroethane	0.0250	ND	0.0261	0.0266	105	106	1	70.5-132			1.68	20
1,1,2,2-Tetrachloroethane	0.0250	ND	0.0278	0.0284	111	114	1	64.9-145			2.26	20
Tetrachloroethene	0.0250	ND	0.0245	0.0243	98.0	97.1	1	57.4-141			0.930	20
Toluene	0.0250	ND	0.0254	0.0255	101	102	1	67.8-124			0.350	20
1,1,2-Trichlorotrifluoroethane	0.0250	ND	0.0260	0.0267	104	107	1	53.7-150			2.65	20
1,2,3-Trichlorobenzene	0.0250	ND	0.0259	0.0271	104	108	1	65.7-143			4.28	20
1,2,4-Trichlorobenzene	0.0250	ND	0.0267	0.0275	107	110	1	67.0-146			3.14	20
1,1,1-Trichloroethane	0.0250	ND	0.0268	0.0272	107	109	1	58.7-134			1.50	20
1,1,2-Trichloroethane	0.0250	ND	0.0269	0.0269	108	108	1	74.1-130			0.0100	20
Trichloroethene	0.0250	ND	0.0256	0.0256	102	102	1	48.9-148			0.000	20
Trichlorofluoromethane	0.0250	ND	0.0257	0.0258	103	103	1	39.9-165			0.480	20
1,2,3-Trichloropropane	0.0250	ND	0.0277	0.0278	111	111	1	71.5-134			0.440	20
1,2,3-Trimethylbenzene	0.0250	ND	0.0258	0.0265	103	106	1	62.7-133			2.91	20
1,2,4-Trimethylbenzene	0.0250	ND	0.0238	0.0243	95.2	97.3	1	60.5-137			2.13	20
1,3,5-Trimethylbenzene	0.0250	ND	0.0260	0.0268	104	107	1	67.9-134			3.15	20
Vinyl chloride	0.0250	ND	0.0238	0.0238	95.3	95.1	1	44.3-143			0.220	20
Xylenes, Total	0.0750	ND	0.0772	0.0786	103	105	1	65.6-133			1.74	20
(S) Toluene-d8					102	102		90.0-115				
(S) Dibromofluoromethane					99.9	99.9		79.0-121				
(S) 4-Bromofluorobenzene					101	101		80.1-120				

SDG: L800673 DATE/TIME: 11/19/15 15:58

Â

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

GI

ΆI

Sc

Method Blank (MB)

(MB) 11/19/15 01:02			
	MB Result	MB Qualifier	MB RDL
Analyte	mg/kg		mg/kg
Acetone	ND		0.0500
Acrylonitrile	ND		0.0100
Benzene	ND		0.00100
Bromobenzene	ND		0.00100
Bromodichloromethane	ND		0.00100
Bromoform	ND		0.00100
Bromomethane	ND		0.00500
n-Butylbenzene	ND		0.00100
sec-Butylbenzene	ND		0.00100
tert-Butylbenzene	ND		0.00100
Carbon tetrachloride	ND		0.00100
Chlorobenzene	ND		0.00100
Chlorodibromomethane	ND		0.00100
Chloroethane	ND		0.00500
2-Chloroethyl vinyl ether	ND		0.0500
Chloroform	ND		0.00500
Chloromethane	ND		0.00250
2-Chlorotoluene	ND		0.00100
4-Chlorotoluene	ND		0.00100
1,2-Dibromo-3-Chloropropane	ND		0.00500
1,2-Dibromoethane	ND		0.00100
Dibromomethane	ND		0.00100
1,2-Dichlorobenzene	ND		0.00100
1,3-Dichlorobenzene	ND		0.00100
1,4-Dichlorobenzene	ND		0.00100
Dichlorodifluoromethane	ND		0.00500
1,1-Dichloroethane	ND		0.00100
1,2-Dichloroethane	ND		0.00100
1,1-Dichloroethene	ND		0.00100
cis-1,2-Dichloroethene	ND		0.00100
trans-1,2-Dichloroethene	ND		0.00100
1,2-Dichloropropane	ND		0.00100
1,1-Dichloropropene	ND		0.00100
1,3-Dichloropropane	ND		0.00100
cis-1,3-Dichloropropene	ND		0.00100
trans-1,3-Dichloropropene	ND		0.00100

SDG: L800673 DATE/TIME: 11/19/15 15:58

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

	1.0	
(MB) 11/19/15 01:02		

(MB) 11/19/13 01.02		MD Our life	
Analista	MB Result	MB Qualifier	MB RDL
Analyte	mg/kg		mg/kg
2,2-Dichloropropane	ND		0.00100
Di-isopropyl ether	ND		0.00100
Ethylbenzene	ND		0.00100
Hexachloro-1,3-butadiene	ND		0.00100
lsopropylbenzene	ND		0.00100
p-lsopropyltoluene	ND		0.00100
2-Butanone (MEK)	ND		0.0100
Methylene Chloride	ND		0.00500
4-Methyl-2-pentanone (MIBK)	ND		0.0100
Methyl tert-butyl ether	ND		0.00100
Naphthalene	ND		0.00500
n-Propylbenzene	ND		0.00100
Styrene	ND		0.00100
1,1,1,2-Tetrachloroethane	ND		0.00100
1,1,2,2-Tetrachloroethane	ND		0.00100
Tetrachloroethene	ND		0.00100
Toluene	ND		0.00500
1,1,2-Trichlorotrifluoroethane	ND		0.00100
1,2,3-Trichlorobenzene	ND		0.00100
1,2,4-Trichlorobenzene	ND		0.00100
1,1,1-Trichloroethane	ND		0.00100
1,1,2-Trichloroethane	ND		0.00100
Trichloroethene	ND		0.00100
Trichlorofluoromethane	ND		0.00500
1,2,3-Trichloropropane	ND		0.00250
1,2,3-Trimethylbenzene	ND		0.00100
1,2,4-Trimethylbenzene	ND		0.00100
1,3,5-Trimethylbenzene	ND		0.00100
Vinyl chloride	ND		0.00100
Xylenes, Total	ND		0.00300
(S) Toluene-d8	102		88.7-115
(S) Dibromofluoromethane	102		76.3-123
(S) 4-Bromofluorobenzene	101		69.7-129

DATE/TIME: 11/19/15 15:58

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/18/15 23:24 • (LCSD) 11/18/15 23:43

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Acetone	0.125	0.122	0.112	97.7	89.3	25.3-178			8.97	22.9
Acrylonitrile	0.125	0.143	0.138	114	111	57.8-143			3.07	20
Benzene	0.0250	0.0255	0.0257	102	103	72.6-120			0.730	20
Bromobenzene	0.0250	0.0255	0.0259	102	104	80.3-115			1.67	20
Bromodichloromethane	0.0250	0.0272	0.0276	109	110	75.3-119			1.26	20
Bromoform	0.0250	0.0258	0.0255	103	102	69.1-135			1.49	20
Bromomethane	0.0250	0.0228	0.0228	91.2	91.3	23.0-191			0.120	20
n-Butylbenzene	0.0250	0.0275	0.0281	110	112	74.2-134			2.14	20
sec-Butylbenzene	0.0250	0.0266	0.0270	106	108	77.8-129			1.68	20
tert-Butylbenzene	0.0250	0.0263	0.0269	105	107	77.2-129			1.98	20
Carbon tetrachloride	0.0250	0.0257	0.0260	103	104	69.4-129			1.16	20
Chlorobenzene	0.0250	0.0256	0.0255	102	102	78.9-122			0.400	20
Chlorodibromomethane	0.0250	0.0266	0.0265	106	106	76.4-126			0.290	20
Chloroethane	0.0250	0.0272	0.0270	109	108	47.2-147			0.680	20
2-Chloroethyl vinyl ether	0.125	0.215	0.214	172	171	16.7-162	<u>J4</u>	<u>J4</u>	0.390	23.7
Chloroform	0.0250	0.0260	0.0262	104	105	73.3-122			1.07	20
Chloromethane	0.0250	0.0232	0.0234	92.8	93.4	53.1-135			0.670	20
2-Chlorotoluene	0.0250	0.0259	0.0262	104	105	74.6-127			1.25	20
4-Chlorotoluene	0.0250	0.0255	0.0263	102	105	79.5-123			3.17	20
1,2-Dibromo-3-Chloropropane	0.0250	0.0243	0.0244	97.3	97.7	64.9-131			0.430	20
1,2-Dibromoethane	0.0250	0.0261	0.0258	104	103	78.7-123			0.930	20
Dibromomethane	0.0250	0.0271	0.0274	108	110	78.5-117			1.03	20
1,2-Dichlorobenzene	0.0250	0.0258	0.0262	103	105	83.6-119			1.63	20
1,3-Dichlorobenzene	0.0250	0.0250	0.0255	99.9	102	75.9-129			1.91	20
1,4-Dichlorobenzene	0.0250	0.0255	0.0258	102	103	81.0-115			1.27	20
Dichlorodifluoromethane	0.0250	0.0247	0.0245	98.6	98.1	50.9-139			0.570	20
1,1-Dichloroethane	0.0250	0.0264	0.0265	106	106	71.7-125			0.610	20
1,2-Dichloroethane	0.0250	0.0269	0.0270	108	108	67.2-121			0.540	20
1,1-Dichloroethene	0.0250	0.0261	0.0263	104	105	60.6-133			0.960	20
cis-1,2-Dichloroethene	0.0250	0.0261	0.0261	104	104	76.1-121			0.170	20
trans-1,2-Dichloroethene	0.0250	0.0261	0.0262	105	105	70.7-124			0.380	20
1,2-Dichloropropane	0.0250	0.0272	0.0273	109	109	76.9-123			0.360	20
1,1-Dichloropropene	0.0250	0.0267	0.0268	107	107	71.2-126			0.450	20
1,3-Dichloropropane	0.0250	0.0261	0.0259	104	104	80.3-114			0.870	20
cis-1,3-Dichloropropene	0.0250	0.0277	0.0280	111	112	77.3-123			1.01	20
	0.0250	0.0256	0.0257	102	103	73.0-127			0.570	20

ACCOUNT:	
S&ME Inc Hixson	TN.

DATE/TIME: 11/19/15 15:58 PAGE: 58 of 73

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/18/15 23:24 • (LCSD) 11/18/15 23:43

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
2,2-Dichloropropane	0.0250	0.0274	0.0282	110	113	61.9-132			2.60	20
Di-isopropyl ether	0.0250	0.0268	0.0270	107	108	67.2-131			0.800	20
Ethylbenzene	0.0250	0.0245	0.0244	97.8	97.5	78.6-124			0.300	20
Hexachloro-1,3-butadiene	0.0250	0.0245	0.0248	98.2	99.3	69.2-136			1.11	20
lsopropylbenzene	0.0250	0.0262	0.0264	105	106	79.4-126			0.770	20
p-lsopropyltoluene	0.0250	0.0271	0.0278	108	111	75.4-132			2.48	20
2-Butanone (MEK)	0.125	0.133	0.126	106	101	44.5-154			5.27	21.3
Methylene Chloride	0.0250	0.0235	0.0237	93.8	95.0	68.2-119			1.21	20
4-Methyl-2-pentanone (MIBK)	0.125	0.141	0.139	113	111	61.1-138			1.63	20
Methyl tert-butyl ether	0.0250	0.0271	0.0270	108	108	70.2-122			0.320	20
Naphthalene	0.0250	0.0239	0.0237	95.7	94.7	69.9-132			1.00	20
n-Propylbenzene	0.0250	0.0248	0.0251	99.1	100	80.2-124			1.32	20
Styrene	0.0250	0.0264	0.0268	105	107	79.4-124			1.78	20
1,1,1,2-Tetrachloroethane	0.0250	0.0263	0.0262	105	105	76.7-127			0.160	20
1,1,2,2-Tetrachloroethane	0.0250	0.0263	0.0261	105	104	78.8-124			0.920	20
Tetrachloroethene	0.0250	0.0253	0.0251	101	101	71.1-133			0.710	20
Toluene	0.0250	0.0257	0.0259	103	103	76.7-116			0.600	20
1,1,2-Trichlorotrifluoroethane	0.0250	0.0263	0.0252	105	101	62.6-138			4.40	20
1,2,3-Trichlorobenzene	0.0250	0.0229	0.0221	91.6	88.5	72.5-137			3.48	20
1,2,4-Trichlorobenzene	0.0250	0.0243	0.0246	97.4	98.4	74.0-137			1.00	20
1,1,1-Trichloroethane	0.0250	0.0270	0.0270	108	108	69.9-127			0.0100	20
1,1,2-Trichloroethane	0.0250	0.0260	0.0260	104	104	81.9-119			0.210	20
Trichloroethene	0.0250	0.0259	0.0261	104	104	77.2-122			0.920	20
Trichlorofluoromethane	0.0250	0.0264	0.0267	105	107	51.5-151			1.42	20
1,2,3-Trichloropropane	0.0250	0.0257	0.0258	103	103	74.0-124			0.300	20
1,2,3-Trimethylbenzene	0.0250	0.0265	0.0267	106	107	79.4-118			1.01	20
1,2,4-Trimethylbenzene	0.0250	0.0249	0.0249	99.8	99.6	77.1-124			0.140	20
1,3,5-Trimethylbenzene	0.0250	0.0263	0.0266	105	106	79.0-125			1.10	20
Vinyl chloride	0.0250	0.0267	0.0265	107	106	58.4-134			0.610	20
Xylenes, Total	0.0750	0.0810	0.0801	108	107	78.1-123			1.04	20
(S) Toluene-d8				102	102	88.7-115				
(S) Dibromofluoromethane				99.0	99.8	76.3-123				
(S) 4-Bromofluorobenzene				100	101	69.7-129				

Sc

DATE/TIME: 11/19/15 15:58

Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

L801450-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/19/15 02:40 • (MS) 11/19/15 01:41 • (MSD) 11/19/15 02:01

	Spike Amou	Int Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Acetone	0.125	0.0281	0.520	0.547	78.7	83.0	5	10.0-130			4.99	31.5
Acrylonitrile	0.125	ND	0.596	0.639	95.4	102	5	39.3-152			6.87	27.2
Benzene	0.0250	ND	0.103	0.109	82.7	87.1	5	47.8-131			5.19	22.8
Bromobenzene	0.0250	ND	0.0938	0.0963	75.0	77.1	5	40.0-130			2.66	27.4
Bromodichloromethane	0.0250	ND	0.109	0.116	87.4	92.8	5	50.6-128			6.03	22.8
Bromoform	0.0250	ND	0.101	0.103	80.5	82.5	5	43.3-139			2.54	25.9
Bromomethane	0.0250	ND	0.0910	0.0957	72.8	76.6	5	5.00-189			5.05	26.7
n-Butylbenzene	0.0250	0.000903	0.0850	0.0870	67.3	68.9	5	23.6-146			2.39	39.2
sec-Butylbenzene	0.0250	0.000560	0.0910	0.0911	72.3	72.4	5	31.0-142			0.140	34.7
tert-Butylbenzene	0.0250	0.000724	0.0972	0.0977	77.2	77.5	5	36.9-142			0.490	31.7
Carbon tetrachloride	0.0250	ND	0.0986	0.105	78.9	84.2	5	46.0-140			6.57	27.2
Chlorobenzene	0.0250	ND	0.0990	0.0991	79.2	79.3	5	44.1-134			0.110	25.7
Chlorodibromomethane	0.0250	ND	0.107	0.110	85.6	88.1	5	49.7-134			2.89	24
Chloroethane	0.0250	ND	O.111	0.116	88.6	92.5	5	5.00-164			4.32	28.4
2-Chloroethyl vinyl ether	0.125	ND	0.876	0.922	140	148	5	5.00-159			5.10	40
Chloroform	0.0250	ND	0.107	0.113	85.7	90.7	5	51.2-133			5.63	22.8
Chloromethane	0.0250	ND	0.0937	0.0958	75.0	76.7	5	31.4-141			2.23	24.6
2-Chlorotoluene	0.0250	ND	0.0940	0.0940	75.2	75.2	5	36.1-137			0.0400	28.9
4-Chlorotoluene	0.0250	ND	0.0927	0.0935	74.1	74.8	5	35.4-137			0.890	29.8
1,2-Dibromo-3-Chloropropane	0.0250	ND	0.0957	0.0984	76.5	78.7	5	40.4-138			2.82	30.8
1,2-Dibromoethane	0.0250	ND	0.106	0.108	84.9	86.3	5	50.2-133			1.64	23.6
Dibromomethane	0.0250	ND	0.110	0.115	87.9	92.0	5	52.4-128			4.53	23
1,2-Dichlorobenzene	0.0250	ND	0.0896	0.0917	71.7	73.4	5	34.6-139			2.37	29.9
1,3-Dichlorobenzene	0.0250	ND	0.0887	0.0876	71.0	70.1	5	28.4-142			1.25	31.2
1,4-Dichlorobenzene	0.0250	ND	0.0877	0.0889	70.1	71.1	5	35.0-133			1.40	31.1
Dichlorodifluoromethane	0.0250	ND	0.0939	0.0950	75.2	76.0	5	31.2-144			1.16	30.2
1,1-Dichloroethane	0.0250	ND	0.110	0.117	87.7	93.7	5	49.1-136			6.56	22.9
1,2-Dichloroethane	0.0250	ND	0.107	0.114	85.2	91.3	5	47.1-129			6.92	22.7
1,1-Dichloroethene	0.0250	ND	0.103	0.108	82.7	86.6	5	36.1-142			4.62	25.6
cis-1,2-Dichloroethene	0.0250	ND	0.106	0.113	85.0	90.0	5	50.6-133			5.80	23
trans-1,2-Dichloroethene	0.0250	ND	0.103	0.107	82.4	85.8	5	43.8-135			4.14	24.8
1,2-Dichloropropane	0.0250	ND	0.114	0.119	91.0	95.2	5	50.3-134			4.49	22.7
1,1-Dichloropropene	0.0250	ND	0.0989	0.104	79.1	83.0	5	43.0-137			4.77	26.4
1,3-Dichloropropane	0.0250	ND	0.107	0.110	85.7	88.1	5	51.4-127			2.80	23.1
cis-1,3-Dichloropropene	0.0250	ND	0.111	0.116	88.9	92.9	5	48.4-134			4.44	23.6
trans-1,3-Dichloropropene	0.0250	ND	0.101	0.107	80.8	85.6	5	46.6-135			5.80	25.3

ACCOUNT:	
S&ME Inc Hixson TN.	

PROJECT: 4181-15-036A SDG: L800673 DATE/TIME: 11/19/15 15:58 PAGE: 60 of 73

Τс

Ss

Cn

Śr

Qc

GI

ΆI

Sc

L801450-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/19/15 02:40 • (MS) 11/19/15 01:41 • (MSD) 11/19/15 02:01

	Spike Amou	unt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
2,2-Dichloropropane	0.0250	ND	0.116	0.124	93.1	99.0	5	45.2-141			6.15	26.6
Di-isopropyl ether	0.0250	ND	0.111	0.121	88.8	96.8	5	46.7-140			8.57	23.5
Ethylbenzene	0.0250	0.000442	0.0921	0.0933	73.4	74.3	5	44.8-135			1.21	26.9
Hexachloro-1,3-butadiene	0.0250	ND	0.0677	0.0585	54.2	46.8	5	10.0-149			14.5	40
lsopropylbenzene	0.0250	ND	0.0967	0.0985	77.4	78.8	5	41.9-139			1.81	29.3
o-Isopropyltoluene	0.0250	0.000472	0.0922	0.0910	73.4	72.4	5	27.3-146			1.27	35.1
2-Butanone (MEK)	0.125	0.00394	0.523	0.555	83.0	88.2	5	23.9-170			5.94	28.3
Methylene Chloride	0.0250	0.000381	0.0964	0.103	76.8	82.0	5	46.7-125			6.43	22.2
4-Methyl-2-pentanone (MIBK)	0.125	ND	0.567	0.610	90.7	97.6	5	42.4-146			7.29	26.7
Methyl tert-butyl ether	0.0250	ND	0.110	0.119	87.7	95.0	5	50.4-131			7.99	24.8
Naphthalene	0.0250	0.00225	0.0811	0.0779	63.1	60.5	5	18.4-145			4.11	34
n-Propylbenzene	0.0250	0.000566	0.0865	0.0876	68.7	69.6	5	35.2-139			1.30	31.9
Styrene	0.0250	ND	0.100	0.101	80.1	80.4	5	39.7-137			0.380	28.2
,1,1,2-Tetrachloroethane	0.0250	ND	0.103	0.107	82.5	85.5	5	48.8-136			3.57	25.5
,1,2,2-Tetrachloroethane	0.0250	ND	0.111	0.114	89.1	91.4	5	45.7-140			2.53	26.4
Tetrachloroethene	0.0250	ND	0.0910	0.0895	72.8	71.6	5	37.7-140			1.56	29.2
Toluene	0.0250	0.000596	0.0990	0.104	78.7	82.4	5	47.8-127			4.53	24.3
,1,2-Trichlorotrifluoroethane	0.0250	ND	0.0944	0.0989	75.5	79.1	5	35.7-146			4.64	28.8
,2,3-Trichlorobenzene	0.0250	0.000592	0.0692	0.0618	54.8	48.9	5	10.0-150			11.3	38.5
,2,4-Trichlorobenzene	0.0250	0.000623	0.0761	0.0695	60.4	55.1	5	10.0-153			9.08	39.3
,1,1-Trichloroethane	0.0250	ND	0.108	0.114	86.7	91.3	5	49.0-138			5.22	25.3
,1,2-Trichloroethane	0.0250	ND	0.109	O.111	87.1	88.8	5	52.3-132			1.92	23.4
Trichloroethene	0.0250	ND	0.102	0.104	81.2	82.9	5	48.0-132			2.04	24.8
Trichlorofluoromethane	0.0250	ND	0.104	0.108	83.4	86.6	5	12.8-169			3.71	29.7
I,2,3-Trichloropropane	0.0250	ND	0.103	0.105	82.4	84.4	5	44.4-138			2.43	26.3
1,2,3-Trimethylbenzene	0.0250	0.00114	0.0931	0.0965	73.6	76.3	5	41.0-133			3.56	27.6
l,2,4-Trimethylbenzene	0.0250	0.00244	0.0865	0.0866	67.3	67.3	5	32.9-139			0.0800	30.6
,3,5-Trimethylbenzene	0.0250	0.000871	0.0924	0.0934	73.2	74.0	5	37.1-138			1.07	30.6
√inyl chloride	0.0250	ND	0.105	0.110	84.3	87.9	5	32.0-146			4.20	26.3
Kylenes, Total	0.0750	0.00294	0.301	0.303	79.4	79.9	5	42.7-135			0.650	26.6
(S) Toluene-d8					101	102		88.7-115				
(S) Dibromofluoromethane					97.4	99.6		76.3-123				
(S) 4-Bromofluorobenzene					103	102		69.7-129				

DATE/TIME: 11/19/15 15:58

Semi-Volatile Organic Compounds (GC) by Method EPH

QUALITY CONTROL SUMMARY <u>L800673-01,02,03,04,05,06,07,08</u>

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) 11/16/15 23:18							
	MB Result	MB Qualifier	MB RDL				
Analyte	mg/kg		mg/kg				
Extractable Petroleum Hydrocarbon	ND		4.00				
(S) o-Terphenyl	93.9		50.0-150				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/16/15 23:31 • (LCSD) 11/16/	/15 23:45									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Extractable Petroleum Hydrocarbon	60.0	44.1	46.9	73.5	78.2	50.0-100			6.18	20
(S) o-Terphenyl				93.2	96.7	50.0-150				

L800673-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/16/15 23:59 • (MS) 11/17/15	00:13 • (MSE	0) 11/17/15 00:27											I
	Spike Amo	unt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Extractable Petroleum Hydrocarbon	60.0	2.39	49.3	52.7	78.2	83.8	1	50.0-100			6.69	20	
(S) o-Terphenyl					89.5	93.6		50.0-150					

SDG: L800673 Pesticides (GC) by Method 8081

QUALITY CONTROL SUMMARY

(MB) 11/16/15 13:48			
· ·	MB Result	MB Qualifier	MB RDL
Analyte	mg/kg		mg/kg
Aldrin	ND		0.0200
Alpha BHC	ND		0.0200
Beta BHC	ND		0.0200
Delta BHC	ND		0.0200
Gamma BHC	ND		0.0200
4,4-DDD	ND		0.0200
4,4-DDE	ND		0.0200
4,4-DDT	ND		0.0200
Dieldrin	ND		0.0200
Endosulfan I	ND		0.0200
Endosulfan II	ND		0.0200
Endosulfan sulfate	ND		0.0200
Endrin	ND		0.0200
Endrin aldehyde	ND		0.0200
Endrin ketone	ND		0.0200
Heptachlor	ND		0.0200
Heptachlor epoxide	ND		0.0200
Hexachlorobenzene	ND		0.0200
Methoxychlor	ND		0.0200
Chlordane	ND		0.200
Toxaphene	ND		0.400
(S) Decachlorobiphenyl	122		10.0-143
(S) Tetrachloro-m-xylene	115		29.2-144

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) 11/16/15 14:01 • (LCSD) 11/16/15 14:13											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Aldrin	0.0667	0.0659	0.0696	98.8	104	65.8-124			5.43	20	
Alpha BHC	0.0667	0.0754	0.0794	113	119	65.7-126			5.20	20	
Beta BHC	0.0667	0.0711	0.0752	107	113	57.6-137			5.67	20	
Delta BHC	0.0667	0.0752	0.0794	113	119	65.7-124			5.44	20	
Gamma BHC	0.0667	0.0669	0.0707	100	106	64.5-121			5.51	20	
4,4-DDD	0.0667	0.0565	0.0599	84.7	89.8	65.6-122			5.87	20	
4,4-DDE	0.0667	0.0908	0.0948	136	142	61.9-132	<u>J4</u>	<u>J4</u>	4.37	20	

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
S&ME Inc Hixson TN.	4181-15-036A	L800673	11/19/15 15:58	63 of 73

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/16/15 14:01 • (LCSD) 11/16/15 14:13

Pesticides (GC) by Method 8081

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
4,4-DDT	0.0667	0.0595	0.0628	89.1	94.1	57.6-125			5.41	20
Dieldrin	0.0667	0.0623	0.0658	93.5	98.6	64.1-122			5.38	20
Endosulfan I	0.0667	0.0673	0.0711	101	107	62.0-121			5.53	20
Endosulfan II	0.0667	0.0608	0.0642	91.1	96.2	64.2-117			5.45	20
Endosulfan sulfate	0.0667	0.0600	0.0633	90.0	94.9	58.3-128			5.30	20
Endrin	0.0667	0.0609	0.0641	91.3	96.1	53.6-127			5.17	20
Endrin aldehyde	0.0667	0.0476	0.0510	71.3	76.5	37.4-130			6.98	20
Endrin ketone	0.0667	0.0533	0.0566	79.9	84.9	63.0-121			6.09	20
Heptachlor	0.0667	0.0596	0.0637	89.3	95.5	66.4-118			6.72	20
Heptachlor epoxide	0.0667	0.0618	0.0656	92.6	98.4	60.6-132			6.01	20
Hexachlorobenzene	0.0667	0.0738	0.0771	111	116	57.6-131			4.43	20
Methoxychlor	0.0667	0.0545	0.0567	81.7	85.0	54.8-131			3.90	20
(S) Decachlorobiphenyl				120	125	10.0-143				
(S) Tetrachloro-m-xylene				114	119	29.2-144				

L801196-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/16/15 22:08 • (MS) 11/16/15 22:21 • (MSD) 11/16/15 22:33 Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD **RPD** Limits % % % % % Analyte mg/kg mg/kg mg/kg mg/kg 20 Aldrin 0.0667 ND 0.0716 0.0754 107 113 1 20.2-150 5.18 20 Alpha BHC 0.0667 ND 0.0766 0.0831 115 125 35.3-155 8.16 Beta BHC 0.0667 ND 0.0756 0.0804 113 30.4-160 6.09 20 121 1 Delta BHC 0.0667 ND 0.0768 0.0820 115 123 1 27.8-160 6.53 20 Gamma BHC 0.0667 ND 0.0707 0.0755 113 32.6-149 6.56 20 106 1 4,4-DDD 0.0667 ND 0.0719 0.0746 108 112 1 33.0-145 3.59 20 4,4-DDE 0.0667 0.0174 0.0982 0.103 121 128 1 26.3-151 4.53 20 4,4-DDT 0.0667 ND 0.0690 0.0705 103 106 1 11.8-145 2.10 23.8 Dieldrin 0.0667 ND 0.0703 0.0737 24.8-149 20 105 110 1 4.66 Endosulfan I 0.0667 ND 0.0736 0.0768 110 115 1 20.7-152 4.27 20 Endosulfan II 0.0667 ND 0.0746 0.0777 112 22.1-150 4.07 20 116 1 Endosulfan sulfate 0.0667 ND 0.0707 0.0730 106 109 1 24.6-151 3.24 21.5 Endrin 0.0667 ND 0.0725 0.0776 116 27.3-149 6.77 21.2 109 1 Endrin aldehyde 0.0667 ND 0.0725 0.0758 109 114 11.0-157 4.50 20 1 Endrin ketone 0.0667 ND 0.0651 0.0674 97.6 101 28.5-148 3.47 20 1 Heptachlor 0.0667 ND 0.0693 0.0738 104 111 26.7-144 6.34 20 1

ACCOUNT:	
S&ME Inc Hixson TN.	

PROJECT: 4181-15-036A SDG: L800673 DATE/TIME: 11/19/15 15:58 PAGE: 64 of 73 ²Tc ³Ss ⁴Cn ⁵Sr

[°]Qc

Pesticides (GC) by Method 8081

QUALITY CONTROL SUMMARY

L801196-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/16/15 22:08 • (MS) 11/16/15 22:21 • (MSD) 11/16/15 22:33

	Spike Amount	Original Posult										
	•	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Heptachlor epoxide	0.0667	ND	0.0695	0.0734	104	110	1	25.2-155			5.40	20
Hexachlorobenzene	0.0667	ND	0.0690	0.0733	104	110	1	19.0-156			6.03	20
Methoxychlor	0.0667	ND	0.0764	0.0790	115	119	1	10.0-165			3.42	25.4
(S) Decachlorobiphenyl					119	124		10.0-143				
(S) Tetrachloro-m-xylene					105	119		29.2-144				

SDG: L800673 DATE/TIME: 11/19/15 15:58

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

QUALITY CONTROL SUMMARY 1800673-01,02,03,04,05,06,07,08

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) 11/16/15 01:27				
	MB Result	MB Qualifier	MB RDL	
Analyte	mg/kg		mg/kg	
Anthracene	ND		0.0330	
Acenaphthene	ND		0.0330	
Acenaphthylene	ND		0.0330	
Benzo(a)anthracene	ND		0.0330	
Benzo(a)pyrene	ND		0.0330	
Benzo(b)fluoranthene	ND		0.0330	
Benzo(g,h,i)perylene	ND		0.0330	
Benzo(k)fluoranthene	ND		0.0330	
Chrysene	ND		0.0330	
Dibenz(a,h)anthracene	ND		0.0330	
Fluoranthene	ND		0.0330	
Fluorene	ND		0.0330	
Indeno(1,2,3-cd)pyrene	ND		0.0330	
Naphthalene	ND		0.0330	
Phenanthrene	ND		0.0330	
Pyrene	ND		0.0330	
(S) Nitrobenzene-d5	88.4		28.3-148	
(S) 2-Fluorobiphenyl	93.7		41.4-134	
(S) p-Terphenyl-d14	92.4		35.8-140	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/16/15 00:44 • (LCSD) 11/16/	/15 01:06									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppm	ppm	ppm	%	%	%			%	%
Acenaphthene	0.400	0.386	0.394	96.4	98.6	50.7-125			2.29	20
Acenaphthylene	0.400	0.387	0.392	96.6	97.9	51.3-126			1.29	20
Anthracene	0.400	0.388	0.402	96.9	100	50.5-130			3.55	20
Benzo(a)anthracene	0.400	0.384	0.387	96.0	96.8	54.1-127			0.820	20
Benzo(b)fluoranthene	0.400	0.361	0.407	90.2	102	56.1-125			12.1	20
Benzo(k)fluoranthene	0.400	0.357	0.398	89.3	99.5	50.9-129			10.8	20
Benzo(g,h,i)perylene	0.400	0.375	0.421	93.7	105	53.3-132			11.6	20
Benzo(a)pyrene	0.400	0.362	0.406	90.6	101	54.8-127			11.3	20
Chrysene	0.400	0.407	0.404	102	101	55.3-126			0.760	20
Dibenz(a,h)anthracene	0.400	0.394	0.429	98.6	107	52.3-133			8.43	20
Fluoranthene	0.400	0.382	0.392	95.6	97.9	50.1-135			2.43	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
S&ME Inc Hixson TN.	4181-15-036A	L800673	11/19/15 15:58	66 of 73

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

QUALITY CONTROL SUMMARY 1800673-01,02,03,04,05,06,07,08

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/16/15 00:44 • (LCSD) 11/16/15 01:06

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	ppm	ppm	ppm	%	%	%			%	%
Fluorene	0.400	0.390	0.393	97.5	98.4	52.3-125			0.910	20
Naphthalene	0.400	0.367	0.382	91.7	95.5	47.8-121			4.07	20
Phenanthrene	0.400	0.375	0.387	93.9	96.9	56.0-122			3.16	20
Pyrene	0.400	0.386	0.385	96.5	96.3	55.6-129			0.200	20
Indeno(1,2,3-cd)pyrene	0.400	0.395	0.433	98.6	108	50.1-135			9.38	20
(S) Nitrobenzene-d5				87.2	91.2	28.3-148				
(S) 2-Fluorobiphenyl				94.9	97.1	41.4-134				
(S) p-Terphenyl-d14				91.1	92.9	35.8-140				

L800673-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/16/15 03:35 • (MS) 11/16/	/15 03:56 • (MS	D) 11/16/15 04:18										
	Spike Amo	unt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	ppm	mg/kg	ppm	ppm	%	%		%			%	%
Acenaphthene	0.400	ND	0.370	0.391	92.6	97.8	1	48.3-126			5.56	20
Acenaphthylene	0.400	ND	0.372	0.387	92.9	96.9	1	48.7-128			4.20	20
Anthracene	0.400	ND	0.368	0.394	92.1	98.4	1	41.0-133			6.67	20
Benzo(a)anthracene	0.400	ND	0.358	0.379	89.5	94.7	1	31.6-136			5.61	20
Benzo(b)fluoranthene	0.400	ND	0.394	0.393	98.4	98.3	1	24.0-134			0.100	24.3
Benzo(k)fluoranthene	0.400	ND	0.349	0.371	87.3	92.9	1	30.4-134			6.15	24.7
Benzo(g,h,i)perylene	0.400	ND	0.386	0.396	96.4	99.0	1	19.1-139			2.62	23.4
Benzo(a)pyrene	0.400	ND	0.381	0.391	95.3	97.8	1	28.0-137			2.56	20.5
Chrysene	0.400	ND	0.380	0.403	95.1	101	1	32.4-137			5.74	20
Dibenz(a,h)anthracene	0.400	ND	0.395	0.410	98.8	103	1	30.3-135			3.79	22.5
Fluoranthene	0.400	ND	0.379	0.391	94.7	97.8	1	32.8-139			3.19	20
Fluorene	0.400	ND	0.374	0.397	93.5	99.2	1	43.0-129			5.92	20
Naphthalene	0.400	ND	0.368	0.380	92.1	95.1	1	38.1-135			3.22	20
Phenanthrene	0.400	ND	0.367	0.382	91.9	95.4	1	36.2-134			3.76	20
Pyrene	0.400	0.00508	0.369	0.386	90.9	95.3	1	30.3-144			4.61	21.7
Indeno(1,2,3-cd)pyrene	0.400	ND	0.395	0.409	98.7	102	1	22.3-139			3.52	23.6
(S) Nitrobenzene-d5					85.4	90.0		28.3-148				
(S) 2-Fluorobiphenyl					88.6	95.5		41.4-134				
(S) p-Terphenyl-d14					79.6	86.1		35.8-140				

Τс

Ss

ACCOUNT: S&ME Inc. - Hixson TN. PROJECT: 4181-15-036A SDG: L800673 DATE/TIME: 11/19/15 15:58

PAGE: 67 of 73

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

QUALITY CONTROL SUMMARY L800673-11,12

Τс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) 11/13/15 03:13				
	MB Result	MB Qualifier	MB RDL	
Analyte	mg/l		mg/l	
Anthracene	ND		0.0000500	
Acenaphthene	ND		0.0000500	
Acenaphthylene	ND		0.0000500	
Benzo(a)anthracene	ND		0.0000500	
Benzo(a)pyrene	ND		0.0000500	
Benzo(b)fluoranthene	ND		0.0000500	
Benzo(g,h,i)perylene	ND		0.0000500	
Benzo(k)fluoranthene	ND		0.0000500	
Chrysene	ND		0.0000500	
Dibenz(a,h)anthracene	ND		0.0000500	
Fluoranthene	ND		0.0000500	
Fluorene	ND		0.0000500	
Indeno(1,2,3-cd)pyrene	ND		0.0000500	
Naphthalene	ND		0.000250	
Phenanthrene	ND		0.0000500	
Pyrene	ND		0.0000500	
(S) Nitrobenzene-d5	129		33.8-179	
(S) 2-Fluorobiphenyl	110		55.5-150	
(S) p-Terphenyl-d14	90.7		46.2-163	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/13/15 02:30 • (LCSD) 11/13/15 02:51											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Anthracene	0.00200	0.00203	0.00202	102	101	68.9-153			0.760	20	
Acenaphthene	0.00200	0.00181	0.00179	90.3	89.4	67.7-153			1.07	20	
Acenaphthylene	0.00200	0.00192	0.00192	96.2	96.2	66.9-141			0.0100	20	
Benzo(a)anthracene	0.00200	0.00169	0.00167	84.5	83.6	63.1-147			1.13	20	
Benzo(a)pyrene	0.00200	0.00188	0.00178	94.2	89.1	62.2-150			5.50	20	
Benzo(b)fluoranthene	0.00200	0.00176	0.00166	87.9	83.1	58.4-148			5.58	20	
Benzo(g,h,i)perylene	0.00200	0.00172	0.00164	85.8	82.1	57.4-152			4.31	20	
Benzo(k)fluoranthene	0.00200	0.00195	0.00172	97.5	86.0	60.5-154			12.6	20	
Chrysene	0.00200	0.00175	0.00177	87.3	88.4	64.8-155			1.23	20	
Dibenz(a,h)anthracene	0.00200	0.00183	0.00173	91.5	86.5	53.5-153			5.60	20	
Fluoranthene	0.00200	0.00213	0.00211	107	106	68.6-153			0.980	20	

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
S&ME Inc Hixson TN.	4181-15-036A	L800673	11/19/15 15:58	68 of 73

Semi Volatile Organic Compounds (GC/MS) by Method 8270C-SIM

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/13/15 02:30 • (LCSD) 11/13/15 02:51

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Fluorene	0.00200	0.00200	0.00199	100	99.3	67.3-141			0.750	20
Indeno(1,2,3-cd)pyrene	0.00200	0.00181	0.00171	90.7	85.5	57.0-155			5.95	20
Naphthalene	0.00200	0.00195	0.00191	97.3	95.6	66.7-135			1.79	20
Phenanthrene	0.00200	0.00174	0.00168	86.8	83.9	64.3-143			3.40	20
Pyrene	0.00200	0.00139	0.00155	69.6	77.5	60.2-154			10.8	20
(S) Nitrobenzene-d5				130	134	33.8-179				
(S) 2-Fluorobiphenyl				105	105	55.5-150				
(S) p-Terphenyl-d14				78.2	86.1	46.2-163				

ONE LAB. NATIONWIDE.

Sc

DATE/TIME: 11/19/15 15:58

GLOSSARY OF TERMS

*

¹ Cp
² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

Abbreviations and Definitions

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.

Qualifier	Description
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE**.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA	100789	
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01	
Canada	1461.01	USDA	S-67674	
EPA-Crypto	TN00003			

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:
S&ME Inc Hixson TN.	4181-15-036A	L800673	11/19/15 15:58

PAGE: 71 of 73

	Cold Sector		Billing Inform	ation:	Contraction of the second	L			Ana	lysis / C	Containe	r / Prese	ervative		Chain of Custody	
&ME Inc Hixson TN. 291 HWY 58 Suite 101 hattanooga, TN 37416		Accounts A 4291 HWY	Accounts Payable 4291 HWY 58 Suite 101 Chattanooga, TN 37416								1			L-A-B S-C-I VOUR LAB 12065 Lebanon Rd Mourit Juliet, TN 37122		
ort to: • Pat Gribben	and the second of the second o		Email To: pg	ribben@smeinc.com	1			5							Phone: 615-758-5858 Phone: 800-767-5859 Fax: 615-758-5859	
ect cription: Miller Park Limit	ed Phase II	1.00 (A		City/State Collected:	enorga TA	1		loPre		LM-sa	NO3				L# 1900	673
ne: 423-499-0957	Client Project # 4181-15-036	nt Project # Lab Project # 036A						ozClr-N	S	b-NoPr	500miHDPE-HNO3	es .	SS	0	L162	ITN
at Gr. bben	Site/Facility ID	Site/Facility ID #		P.O, #				PAH 4	NoPre	mIAm	Sooml	r-NoFi	-NoPre	H-dm	Template:T1070 Prelogin: P5302	078
ected by (signature): hediately ked on Ice N Y	Next Da	аў IV			************************************	No. of	31 100ml Amb-NoPres	EPHTN, SV8270PAH 4ozClr-NoPres	Metals 2ozClr-NoPres	PAHSIMLVI 40mlamb-NoPres-WT	RCRA Metals 5	SV8081 4ozClr-NoFres	V8260 2ozClr-NoPres	V8260 40mlAmb-HCI	TSR: 690 - Tom M PB: //-370 Shipped Via: Fee	dEX Ground
Sample ID	Comp/Grab	Matrix *		Date	Time	Cntrs	8081	EP	Me		COLUMN ST	SV	88	×	Rem./Contaminant	Sample # (lab on
-At	tonto.	GW		11-	1 1 M 10 1 1 1	6				X X	X	it i		x		
83	-	GW				6	1.00	14.		x	X	1.00		x	Same 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
87		GW			1	2	x					小孩		1.1.1		
	A H	SS	-	- Illiolis	1620	3		X	1	al and			X		No metals	-6
BIC	Grab	SS	5-8.2	11	0715	3		x	X				X		Star Special Set	
B2		SS	5-7.5	111	1625	3		X	墨				X		No metal	-9
<u>B3</u>	1	SS	17.5-18	111-	1615	2	2	X	X				X			- (
B4 B5		SS		6 11/10/15	1640	3		X	X				X		and the second sec	-
The same a second second second		SS	0.5-5	3 uholis	0740	3		X	X	Ŀ	1		^			A CONTRACTOR OF A CONTRACTOR A CONTRACT
D 6 Matrix: SS - Soil GW - Ground marks:	water WW - Wastev	Vater DW	Drinking Wa	ter OT - Other						pН		5-95-9	emp		Hold #	
linguished by : (Signature	10	Date:		Time: R	eceived by: (Sigr	nature)	4				nples ret	urned v	ia: 🗆		Condition: (lab	o use only)
telinquished by : (Signature)	2	11/ Date:	1/15		teceived by: (Sign		K		130	Ten	COLUMN ST	6°C	Bottles	Received:	COC Seal Intact: Y	NN
telinquished by : (Signature)	-	Date:	and the second	Time:	6529 19 Receivers for lab	105 by: (Sign	hature	666	<u>365</u>	Dat	1-12-1		Time:	gu	pH Checked: NC	1F: X

N. E. S. AND		B	Billing Informa	ation:		TE	-	400	Ana	lysis / C	Containe	er / Prese	ervative	-	Chain of Custo	tody Page _of _
&ME Inc Hixson TN. 291 HWY 58 Suite 101 hattanooga, TN 37416		4	Accounts P 4291 HWY	명령 등 이번 등 성격적 기						27				YOUR L. 12065 Lebanon		
port to: r. Pat Gribben				gribben@smeir.c.com	m			5		1					Mount Juliet, TI Phone: 615-750 Phone: 800-767 Fax: 615-758-50	TN 37122 50-5858 50-5858 50-5859 50-585050000000000000000000000000000000
oject escription: Miller Park Limite	ed Phase II			City/State Collected:Chart	(anorga	TN		VoPre		es-W	EON!				L# L	800673
anone: 423-499-0957	Client Project # 4181-15-036		12223	Lab Project #	Lab Project # SMETHN-4181-15-036A		Pres	ozClr-N	S	b-NoPr	S00mIHDPE-HN03	sa	S	D	Table #	SMEHTN
Dellected by (print):	Site/Facility ID			P.O. #			oN-dm	OPAH 4	-NoPre	JmlAml		r-NoPr	-NoPre	Chh-HC	Template:	SMEHTN 107078 P530230
ollected by (signature):	Rush? (La Same Da Next Da Two Day Three D	ay	Notified) 		and the second	No. of	81 100ml Amb-NoPres	EPHTN,SV8270PAH 4ozClr-NoPres	Metals 2ozClr-NoPres	PAHSIMLVI 40mlAmb-NoPres-WT	RCRA Metals 5	SV8081 4ozClr-NoPres	V8260 2ozClr-NoPres	V8260 40mlAmb-HCI	TSR: 690 - PB: // Shipped V	- Tom Mellette 3
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time		8081		Contraction of the	PA	RC		× V8	Ň	Rem./Contar	aminant Sample # (lab on
B7-1-	Grab	SS	10-12.5	5 11/10/15	1650 4	49	2	X	X	4		X	X	100 M	a distant	
B8 har shree to	Grab	SS	0.8-2.5	5 Ilidis	1700	3		X	×	1					Metals	o only - 1
BI (600)	Grato	SS	8.5-10	1 1	1625	-		-	X						Metals	Construction of the local division of the lo
B3 (Geo)	Grab	SS	6-7.5	5 11/11/15	1630	+			1	1						
BIC	Grab	GW	NIA	inholis		5		-		X		E		XX		
8-3		1	1. 1.	++	1525					P	-	1300				All I
B-7		X	14	11/11/15	the second second second second second	12		-			Y					-
B-IC			+ -	ululis	THE R. LEWIS CO., NAMES AND ADDRESS OF	11		1		1	F	1				1
B-3		1 V	Vicking	er OT-Other	1010			10	1000		-14			11	-	
Matrix: SS - Soil GW - Groundy	e des la destruction	and the second second							The second	pН	<u></u>	1.20		Red Contract	Hold #	44
		na na A Starf ann				· 37	1.0		Sec.	Flow	3. 1. 2. 1. 2.	Oth urned via	ther		Condition: 7	(lab use only)
Relinquished by : (Signature)	2	Date:	15	1645	Received by: (Sign		1				FedEx	Cou	urier		7.	/
Relinquished by : (Signature)		Date:		Time: R	Received by: (Sig	gnature;	1			Tem	5.1	8	40		COC Seal Intact:	
kelinquisned by : (Signature)	State of the second second	Date:	Transfer of the	Time: R	Received for lab	by: (Signa	ature)		1	Date	e:		Time:	Jaw	PH Checked:	NCF: