

Addendum #4 Doug Shaw Stadium Improvements December 22, 2016

Proposer shall be responsible for acknowledging receipt of this amendment in the Proposal Form. Failure to do so will result in the proposal being rejected by the City of Myrtle Beach. This amendment is also posted on the City's official website: www.cityofmyrtlebeach.com.

- 1. Clarification: Addendum #3 included structural repair plans (S1.0 and S2.0) and a coating schedule that contained overlapping specifications for surface preparation and coating, which could lead to confusion by bidders of the design intent. To address this issue we have included an allowance in the revised bid form for structural repairs and recoating of the existing concrete grandstand (see #2 below).
- 2. Please see attached revised bid form (0300 pages 9 and 10) for use in providing final bid. The bid form has been revised to include allowances for structural repairs and recoating of the existing concrete grandstand (\$260,000) and door hardware sets (\$60,500). Please note that the allowance for door hardware does <u>not</u> include press box door hardware, which is covered in the press box specification.
- 3. Clarification of Alternate No. 3: This add alternate shall include the visitor's side support building and all other work (including utilities) shown in the bid documents on the visitor's side of the stadium. The only exception is the expansion of the visitor's side bleachers, which is already covered under Alternate No. 2.
- 4. Clarification of revised structural design drawings and *Report of Geotechnical Investigation* included in Addendum #2: Allowable (unfactored) load of 45k (vertical compression) and 15k (uplift) shall be used for pile verification.
- 5. Please see attached revised structural specifications for sections 03 30 00 Cast-In-Place Concrete, 05 50 00 Metal Fabrications, and 05 51 13 Metal Pan Stairs. These revised sections are provided to coordinate the technical specifications with the supplemental project drawings provided previously in Addendum #2.

End of Addendum #4

SECTION 0300

PROPOSAL

Proposal of		(hereinafter	called
"BIDDER"), organized and existing under the laws of the State of			
doing business as	*.		

To the City of Myrtle Beach, South Carolina, (hereinafter called "OWNER").

In compliance with your Advertisement for Bids, BIDDER hereby proposes to perform all WORK for the construction of DOUG SHAW STADIUM IMPROVEMENTS in strict accordance with the CONTRACT DOCUMENTS, within the time set forth therein, and at the prices stated below.

By submission of this BID, each BIDDER certifies, and in the case of a joint BID each party thereto certifies as to his own organization, that this BID has been arrived at independently, without consultation, communication, or agreement as to any matter relating to this BID with any other BIDDER or with any competitor.

BIDDER hereby agrees to commence WORK under this contract on or before a date to be specified in the NOTICE TO PROCEED and to fully complete the PROJECT within the time constraints as set forth in Section 0200, Paragraph 2.03 - Contract Time and Liquidated Damages; Section 0650, Paragraph 1.20 - Project Schedule, and; as further stated herein. BIDDER further agrees to pay as liquidated damages, the sum of \$1,000 for each consecutive calendar day thereafter as provided in Section 0200, Paragraph 2.03 and Section 0650, Paragraph 1.20.

BIDDER acknowledges receipt of the following ADDENDUM:

Addendum No. ,	Dated:
Addendum No.	Dated:
Addendum No.	Dated:
Addendum No. ,	Dated:

*Insert "a corporation", "a partnership", or "an individual" as applicable.

BIDDER agrees to perform the work described in the CONTRACT DOCUMENTS for the following not to exceed price inclusive of the allowances below.

TOTAL BASE BID: \$	
--------------------	--

(In Words)

ALLOWANCES:

Scoreboard Replacement Synthetic Turf Replacement Track Resurfacing Concrete Grandstand Structural Repairs & Recoating Door Hardware Sets (excluding press box door hardware)	\$ <u>375,000.00</u> \$ <u>280,000.00</u> \$ <u>296,000.00</u> \$ <u>260,000.00</u> \$ <u>60,500.00</u>
ADD ALTERNATES:	
No. 1 – New Concrete Under Existing Home Grandstand	\$
No. 2 – Expansion of Visitor Bleachers	\$
No. 3 – New Visitor's Side Support Building & Infrastructure	\$

NOTE: Bids shall include sales tax and all other applicable taxes and fees. Bid shall include allowances listed above.

Respectfully submitted:

Signature

Address

Title

Date

License Number (if applicable)

SEAL (if BID is by a corporation)

Attest:_____

TABLE OF CONTENTS

TECHNICAL SPECIFICATIONS

Division 3 - Concrete

033000 Cast-In-Place Concrete

Division 5 - Metals

055000 Metal Fabrications 055113 Metal Pan Stairs

SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 SUMMARY

- A. Section includes cast-in-place concrete including formwork, reinforcement, concrete materials, mixture design, placement procedures, and finishes for the following:
 - 1. Pile Caps
 - 2. Grade Beams.
 - 3. Foundation walls.
 - 4. Slabs-on-grade.

1.2 **DEFINITIONS**

A. Cementitious Materials: Portland cement alone or in combination with one or more of the following: blended hydraulic cement, fly ash and other pozzolans, ground granulated blast-furnace slag, and silica fume; subject to compliance with requirements.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated.
- B. LEED Submittals:
 - 1. Product Data for Credit MR 4: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content. Include statement indicating cost for each product having recycled content.
 - 2. Product Data for Credit IEQ 4.3: For liquid floor treatments and curing and sealing compounds, documentation including printed statement of VOC content.
 - 3. Design Mixtures for Credit ID 1.1: For each concrete mixture containing fly ash as a replacement for Portland cement or other Portland cement replacements, and for equivalent concrete mixtures that do not contain Portland cement replacements.
- C. Design Mixtures: For each concrete mixture. Submit alternate design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
 - 1. Indicate amounts of mixing water to be withheld for later addition at Project site.
- D. Steel Reinforcement Shop Drawings: Placing drawings that detail fabrication, bending, and placement. Include bar sizes, lengths, material, grade, bar schedules, stirrup spacing, bent bar diagrams, bar arrangement, splices and laps, mechanical connections, tie spacing, hoop spacing, and supports for concrete reinforcement.
- E. Formwork Shop Drawings: Prepared by or under the supervision of a qualified professional engineer detailing fabrication, assembly, and support of formwork.
 - 1. Shoring and Reshoring: Indicate proposed schedule and sequence of stripping formwork, shoring removal, and reshoring installation and removal.
- F. Construction Joint Layout: Indicate proposed construction joints required to construct the structure.
 - 1. Location of construction joints is subject to approval of the Architect.
- G. Samples: For waterstops & vapor retarder

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer, manufacturer & testing agency.
- B. Welding certificates.
- C. Material Certificates: For each of the following, signed by manufacturers:
 - 1. Cementitious materials.
 - 2. Admixtures.
 - 3. Form materials and form-release agents.
 - 4. Steel reinforcement and accessories.
 - 5. Polypropylene Fiber Reinforcement.
 - 6. Waterstops.
 - 7. Curing compounds.
 - 8. Floor and slab treatments.
 - 9. Bonding agents.
 - 10. Adhesives.
 - 11. Vapor retarders.
 - 12. Semirigid joint filler.
 - 13. Joint-filler strips.
 - 14. Repair materials.
- D. Material Test Reports: For the following, from a qualified testing agency, indicating compliance with requirements:
 - 1. Aggregates. Include service record data indicating absence of deleterious expansion of concrete due to alkali aggregate reactivity.
- E. Field quality-control reports.
- F. Minutes of preinstallation conference.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: A qualified installer who employs on Project personnel qualified as ACI-certified Flatwork Technician and Finisher and a supervisor who is an ACI-certified Concrete Flatwork Technician.
- B. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products and that complies with ASTM C94/C94M requirements for production facilities and equipment.
 - 1. Manufacturer certified according to NRMCA's "Certification of Ready Mixed Concrete Production Facilities."
- C. Testing Agency Qualifications: An independent agency, acceptable to authorities having jurisdiction, and qualified according to ASTM C1077 and ASTM E329 for testing indicated.
 - 1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.
 - 2. Personnel performing laboratory tests shall be ACI-certified Concrete Strength Testing Technician and Concrete Laboratory Testing Technician - Grade I. Testing Agency laboratory supervisor shall be an ACI-certified Concrete Laboratory Testing Technician - Grade II.

- D. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, obtain aggregate from single source, and obtain admixtures from single source from single manufacturer.
- E. Welding Qualifications: Qualify procedures and personnel according to AWS D1.4/D 1.4M, "Structural Welding Code Reinforcing Steel."
- F. ACI Publications: Comply with the following unless modified by requirements in the Contract Documents:
 - 1. ACI 301, "Specifications for Structural Concrete," Sections 1 through 5.
 - 2. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."
- G. Concrete Testing Service: Engage a qualified independent testing agency to perform material evaluation tests and to design concrete mixtures.
- H. Preinstallation Conference: Conduct conference at Project site.
 - 1. Before submitting design mixtures, review concrete design mixture and examine procedures for ensuring quality of concrete materials. Require representatives of each entity directly concerned with cast-in-place concrete to attend, including the following:
 - a. Contractor's superintendent.
 - b. Independent testing agency responsible for concrete design mixtures.
 - c. Ready-mix concrete manufacturer.
 - d. Concrete subcontractor.
 - e. Special concrete finish subcontractor.
 - 2. Review special inspection and testing and inspecting agency procedures for field quality control, concrete finishes and finishing [cold- and hot-weather concreting procedures, curing procedures, construction contraction and isolation joints, and joint-filler strips, semirigid joint fillers forms and form removal limitations, shoring and reshoring procedures, vapor-retarder installation, anchor rod and anchorage device installation tolerances steel reinforcement installation, concrete repair procedures, and concrete protection.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Steel Reinforcement: Deliver, store, and handle steel reinforcement to prevent bending and damage.
- B. Waterstops: Store waterstops under cover to protect from moisture, sunlight, dirt, oil, and other contaminants.

PART 2 – PRODUCTS

2.1 FORM-FACING MATERIALS

- 1. Exterior-grade plywood panels, suitable for concrete forms, complying with DOC PS 1, and as follows:
 - a. High-density overlay, Class 1 or better.
 - b. Medium-density overlay, Class 1 or better; mill-release agent treated and edge sealed.
 - c. Structural 1, B-B or better; mill oiled and edge sealed.
 - d. B-B (Concrete Form), Class 1 or better; mill oiled and edge sealed.
- B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.

- C. Chamfer Strips: Wood, metal, PVC, or rubber strips, 3/4 by 3/4 inch minimum.
- D. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.
 - 1. Formulate form-release agent with rust inhibitor for steel form-facing materials.
- E. Form Ties: Factory-fabricated, removable or snap-off metal or glass-fiber-reinforced plastic form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.
 - 1. Furnish units that will leave no corrodible metal closer than 1 inch to the plane of exposed concrete surface.
 - 2. Furnish ties that, when removed, will leave holes no larger than 1 inch in diameter in concrete surface.
 - 3. Furnish ties with integral water-barrier plates to walls indicated to receive dampproofing or waterproofing.

2.2 STEEL REINFORCEMENT

- A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
- B. Reinforcing Bars: ASTM A615/A615M, Grade 60 deformed.

2.3 REINFORCEMENT ACCESSORIES

- A. Joint Dowel Bars: ASTM A615/A615M, Grade 60 plain-steel bars, cut true to length with ends square and free of burrs.
- B. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire reinforcement in place. Manufacture bar supports from steel wire, plastic, or precast concrete according to CRSI's "Manual of Standard Practice," of greater compressive strength than concrete and as follows:
 - 1. For concrete surfaces exposed to view where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected steel wire or CRSI Class 2 stainless-steel bar supports.

2.4 CONCRETE MATERIALS

- A. Cementitious Material: Use the following cementitious materials, of the same type, brand, and source, throughout Project:
 - 1. Portland Cement: ASTM C150, Type II, gray. Supplement with the following:
 - a. Fly Ash: ASTM C618, Class F or C.
 - b. Ground Granulated Blast-Furnace Slag: ASTM C989, Grade 100 or 120.
- B. Silica Fume: ASTM C1240, amorphous silica.
- C. Normal-Weight Aggregates: ASTM C33, Class 3S coarse aggregate or better, graded. Provide aggregates from a single source with documented service record data of at least 10 years' satisfactory service in similar applications and service conditions using similar aggregates and cementitious materials.
 - 1. Maximum Coarse-Aggregate Size: 3/4 inch nominal.
 - 2. Fine Aggregate: Free of materials with deleterious reactivity to alkali in cement.

D. Water: ASTM C94/C 94M and potable.

2.5 ADMIXTURES

- A. Air-Entraining Admixture: ASTM C260.
- B. Chemical Admixtures: Provide admixtures certified by manufacturer to be compatible with other admixtures and that will not contribute water-soluble chloride ions exceeding those permitted in hardened concrete. Do not use calcium chloride or admixtures containing calcium chloride.
 - 1. Water-Reducing Admixture: ASTM C494/C494M, Type A.
 - 2. Retarding Admixture: ASTM C494/C494M, Type B.
 - 3. Water-Reducing and Retarding Admixture: ASTM C494/C494M, Type D.
 - 4. High-Range, Water-Reducing Admixture: ASTM C494/C494M, Type F.
 - 5. High-Range, Water-Reducing and Retarding Admixture: ASTM C494/C494M, Type G.
 - 6. Plasticizing and Retarding Admixture: ASTM C1017/C1017M, Type II.
- C. Set-Accelerating Corrosion-Inhibiting Admixture: Commercially formulated, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete and complying with ASTM C494/C494M, Type C.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Axim Italcementi Group, Inc.; CATEXOL CN-CI.
 - b. BASF Construction Chemicals Building Systems; Rheocrete CNI.
 - c. Euclid Chemical Company (The), an RPM company; ARRMATECT, EUCON BCN, EUCON CIA.
 - d. Grace Construction Products, W. R. Grace & Co.; DCI.
 - e. Sika Corporation; Sika CNI.
- D. Non-Set-Accelerating Corrosion-Inhibiting Admixture: Commercially formulated, non-setaccelerating, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete.
 - 1. Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. BASF Construction Chemicals Building Systems; Rheocrete 222+.
 - b. Cortec Corporation; MCI-2000.
 - c. Grace Construction Products, W. R. Grace & Co.; DCI-S.
 - d. Sika Corporation; FerroGard 901.
 - 2.

2.6 FIBER REINFORCEMENT

- A. Synthetic Micro-Fiber: Fibrillated polypropylene micro-fibers engineered and designed for use in concrete, complying with ASTM C1116/C1116M, Type III, 1/2 to 1-1/2 inches long.
 - Products: Subject to compliance with requirements, provide one of the following available products that may be incorporated into the Work include, but are not limited to, the following:
 a. Fibrillated Micro-Fibers:
 - 1) Axim Italcementi Group, Inc.; Fibrasol F.
 - 2) Euclid Chemical Company (The), an RPM company; Fiberstrand F.
 - 3) FORTA Corporation; FORTA Econo-Net.

- 4) Grace Construction Products, W. R. Grace & Co.; Grace Fibers.
- 5) Nycon, Inc.; ProConF.
- 6) Propex Concrete Systems Corp.; Fibermesh 300.
- 7) Sika Corporation; Sika Fiber PPF.

2.7 WATERSTOPS

- A. Self-Expanding Butyl Strip Waterstops: Manufactured rectangular or trapezoidal strip, butyl rubber with sodium bentonite or other hydrophilic polymers, for adhesive bonding to concrete, 3/4 by 1 inch.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Carlisle Coatings & Waterproofing, Inc.; MiraSTOP.
 - b. CETCO; Volclay Waterstop-RX.
 - c. Concrete Sealants Inc.; Conseal CS-231.
 - d. Greenstreak; Swellstop.
 - e. Henry Company, Sealants Division; Hydro-Flex.
 - f. JP Specialties, Inc.; Earth Shield Type 20.

2.8 VAPOR RETARDERS

- A. Sheet Vapor Retarder: Polyethylene sheet, ASTM D4397, not less than 10 mils (0.25 mm) thick.
- B. Granular Fill: Clean mixture of crushed stone or crushed or uncrushed gravel; ASTM D448, Size 57, with 100 percent passing a 1-1/2-inch sieve and 0 to 5 percent passing a No. 8 sieve.
- C. Fine-Graded Granular Material: Clean mixture of crushed stone, crushed gravel, and manufactured or natural sand; ASTM D448, Size 10, with 100 percent passing a 3/8-inch sieve, 10 to 30 percent passing a No. 100 sieve, and at least 5 percent passing No. 200 sieve; complying with deleterious substance limits of ASTM C33 for fine aggregates.

2.9 LIQUID FLOOR TREATMENTS

- A. VOC Content: Liquid floor treatments shall have a VOC content of 200 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
- B. Penetrating Liquid Floor Treatment: Clear, chemically reactive, waterborne solution of inorganic silicate or siliconate materials and proprietary components; odorless; that penetrates, hardens, and densifies concrete surfaces.
 - 1. Products: Subject to compliance with requirements available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ChemMasters; Chemisil Plus.
 - b. ChemTec Int'l; ChemTec One.
 - c. Conspec by Dayton Superior; Intraseal.
 - d. Curecrete Distribution Inc.; Ashford Formula.
 - e. Dayton Superior Corporation; Day-Chem Sure Hard (J-17).
 - f. Edoco by Dayton Superior; Titan Hard.
 - g. Euclid Chemical Company (The), an RPM company; Euco Diamond Hard.
 - h. Kaufman Products, Inc.; SureHard.
 - i. L&M Construction Chemicals, Inc.; Seal Hard.

- j. Meadows, W. R., Inc.; LIQUI-HARD.
- k. Metalcrete Industries; Floorsaver.
- 1. Nox-Crete Products Group; Duro-Nox.
- m. Symons by Dayton Superior; Buff Hard.
- n. US SPEC, Division of US Mix Products Company; US SPEC Industraseal.
- o. Vexcon Chemicals, Inc.; Vexcon StarSeal PS Clear.

2.10 CURING MATERIALS

- A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Axim Italcementi Group, Inc.; CATEXOL CimFilm.
 - b. BASF Construction Chemicals Building Systems; Confilm.
 - c. ChemMasters; SprayFilm.
 - d. Conspec by Dayton Superior; Aquafilm.
 - e. Dayton Superior Corporation; Sure Film (J-74).
 - f. Edoco by Dayton Superior; BurkeFilm.
 - g. Euclid Chemical Company (The), an RPM company; Eucobar.
 - h. Kaufman Products, Inc.; Vapor-Aid.
 - i. Lambert Corporation; LAMBCO Skin.
 - j. L&M Construction Chemicals, Inc.; E-CON.
 - k. Meadows, W. R., Inc.; EVAPRE.
 - 1. Metalcrete Industries; Waterhold.
 - m. Nox-Crete Products Group; MONOFILM.
 - n. Sika Corporation; SikaFilm.
 - o. SpecChem, LLC; Spec Film.
 - p. Symons by Dayton Superior; Finishing Aid.
 - q. TK Products, Division of Sierra Corporation; TK-2120 TRI-FILM.
 - r. Unitex; PRO-FILM.
 - s. Vexcon Chemicals, Inc.; Certi-Vex Envio Set.
- B. Absorptive Cover: AASHTO M182, Class 2, burlap cloth made from jute or kenaf, weighing approximately 9 oz./sq. yd. when dry.
- C. Moisture-Retaining Cover: ASTM C171, polyethylene film or white burlap-polyethylene sheet.
- D. Water: Potable.
- E. Clear, Solvent-Borne, Membrane-Forming Curing and Sealing Compound: ASTM C1315, Type 1, Class A.
 - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following:
 - a. BASF Construction Chemicals Building Systems; Kure-N-Seal 25 LV.
 - b. ChemMasters; Spray-Cure & Seal Plus.
 - c. Conspec by Dayton Superior; Sealcure 1315.
 - d. Dayton Superior Corporation; Day-Chem Cure and Seal (J-22UV).

- e. Edoco by Dayton Superior; Cureseal 1315.
- f. Euclid Chemical Company (The), an RPM company; Super Diamond Clear; LusterSeal 300.
- g. Kaufman Products, Inc.; Sure Cure 25.
- h. Lambert Corporation; UV Super Seal.
- i. L&M Construction Chemicals, Inc.; Lumiseal Plus.
- j. Meadows, W. R., Inc.; CS-309/30.
- k. Metalcrete Industries; Seal N Kure 30.
- 1. Right Pointe; Right Sheen 30.
- m. Vexcon Chemicals, Inc.; Certi-Vex AC 1315.
- 2. VOC Content: Curing and sealing compounds shall have a VOC content of 200 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).

2.11 RELATED MATERIALS

- A. Expansion- and Isolation-Joint-Filler Strips: ASTM D1751, asphalt-saturated cellulosic fiber.
- B. Semirigid Joint Filler: Two-component, semirigid, 100 percent solids, epoxy resin with a Type A shore durometer hardness of 80 per ASTM D2240.
- C. Bonding Agent: ASTM C1059/C1059M, Type II, non-redispersible, acrylic emulsion or styrene butadiene.
- D. Epoxy Bonding Adhesive: ASTM C881, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class suitable for application temperature and of grade to suit requirements, and as follows:
 - 1. Types IV and V, load bearing, for bonding hardened or freshly mixed concrete to hardened concrete.
- E. Reglets: Fabricate reglets of not less than 0.022-inch- thick, galvanized-steel sheet. Temporarily fill or cover face opening of reglet to prevent intrusion of concrete or debris.
- F. Dovetail Anchor Slots: Hot-dip galvanized-steel sheet, not less than 0.034 inch thick, with bent tab anchors. Temporarily fill or cover face opening of slots to prevent intrusion of concrete or debris.

2.12 REPAIR MATERIALS

- A. Repair Underlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch and that can be feathered at edges to match adjacent floor elevations.
 - 1. Cement Binder: ASTM C150, Portland cement or hydraulic or blended hydraulic cement as defined in ASTM C219.
 - 2. Primer: Product of underlayment manufacturer recommended for substrate, conditions, and application.
 - 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by underlayment manufacturer.
 - 4. Compressive Strength: Not less than 5000 psi at 28 days when tested according to ASTM C109/C109M.
- B. Repair Overlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/4 inch and that can be filled in over a scarified surface to match adjacent floor elevations.

- 1. Cement Binder: ASTM C150, Portland cement or hydraulic or blended hydraulic cement as defined in ASTM C219.
- 2. Primer: Product of topping manufacturer recommended for substrate, conditions, and application.
- 3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by topping manufacturer.
- 4. Compressive Strength: Not less than 5000 psi (34.5 MPa) at 28 days when tested according to ASTM C109/C109M.

2.13 CONCRETE MIXTURES, GENERAL

- A. Prepare design mixtures for each type and strength of concrete, proportioned on the basis of laboratory trial mixture or field test data, or both, according to ACI 301.
 - 1. Use a qualified independent testing agency for preparing and reporting proposed mixture designs based on laboratory trial mixtures.
- B. Cementitious Materials: Use fly ash, pozzolan, ground granulated blast-furnace slag, and silica fume as needed to reduce the total amount of Portland cement, which would otherwise be used, by not less than 40 percent. Limit percentage, by weight, of cementitious materials other than Portland cement in concrete as follows:
 - 1. Fly Ash: 25 percent.
 - 2. Combined Fly Ash and Pozzolan: 25 percent.
 - 3. Ground Granulated Blast-Furnace Slag: 50 percent.
 - 4. Combined Fly Ash or Pozzolan and Ground Granulated Blast-Furnace Slag: 50 percent Portland cement minimum, with fly ash or pozzolan not exceeding 25 percent.
 - 5. Silica Fume: 10 percent.
 - 6. Combined Fly Ash, Pozzolans, and Silica Fume: 35 percent with fly ash or pozzolans not exceeding 25 percent and silica fume not exceeding 10 percent.
 - 7. Combined Fly Ash or Pozzolans, Ground Granulated Blast-Furnace Slag, and Silica Fume: 50 percent with fly ash or pozzolans not exceeding 25 percent and silica fume not exceeding 10 percent.
- C. Limit water-soluble, chloride-ion content in hardened concrete to 0.06 percent by weight of cement.
- D. Admixtures: Use admixtures according to manufacturer's written instructions.
 - 1. Use high-range water-reducing or plasticizing admixture in concrete, as required, for placement and workability.
 - 2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
 - 3. Use water-reducing admixture in pumped concrete, concrete for heavy-use industrial slabs and parking structure slabs, concrete required to be watertight, and concrete with a water-cementitious materials ratio below 0.50.
 - 4. Use corrosion-inhibiting admixture in concrete mixtures where indicated.

2.14 CONCRETE MIXTURES FOR BUILDING ELEMENTS

- A. Strip Footings, Foundation Walls, Pile Caps and Grade Beams: Proportion normal-weight concrete mixture as follows:
 - 1. Minimum Compressive Strength: 5000 psi 4000 psi at 28 days.
 - 2. Maximum Water-Cementitious Materials Ratio: 0.40.

- 3. Slump Limit: 5 inches for concrete with verified slump of 2 to 4 inches before adding high-range water-reducing admixture or plasticizing admixture, plus or minus 1 inch (25 mm).
- 4. Air Content: 6 percent, plus or minus 1.5 percent at point of delivery for 3/4-inch nominal maximum aggregate size.
- B. Slabs-on-Grade: Proportion normal-weight concrete mixture as follows:
 - 1. Minimum Compressive Strength: 3000 psi at 28 days.
 - 2. Minimum Cementitious Materials Content: 470 lb/cu. yd. (279 kg/cu. m.
 - 3. Slump Limit: 5 inches, plus or minus 1 inch (25 mm).
 - 4. Air Content: 6 percent, plus or minus 1.5 percent at point of delivery for 3/4-inch nominal maximum aggregate size.
 - 5. Air Content: Do not allow air content of trowel-finished floors to exceed 3 percent.
 - 6. Synthetic Micro-Fiber: Uniformly disperse in concrete mixture at manufacturer's recommended rate, but not less than 1.0 lb/cu. yd.

2.15 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.16 CONCRETE MIXING

- A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C94/C94M and ASTM C1116/C1116M, and furnish batch ticket information.
 - 1. When air temperature is between 85 and 90 DegF, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 DegF, reduce mixing and delivery time to 60 minutes.
- B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C94/C 94M. Mix concrete materials in appropriate drum-type batch machine mixer.
 - 1. For mixer capacity of 1 cu. yd. or smaller, continue mixing at least 1-1/2 minutes, but not more than 5 minutes after ingredients are in mixer, before any part of batch is released.
 - 2. For mixer capacity larger than 1 cu. yd., increase mixing time by 15 seconds for each additional 1 cu. yd..
 - 3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mixture type, mixture time, quantity, and amount of water added. Record approximate location of final deposit in structure.

PART 3 – EXECUTION

3.1 FORMWORK

- A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until structure can support such loads.
- B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.
- C. Limit concrete surface irregularities, designated by ACI 347 as abrupt or gradual, as follows:
 - 1. Class C, 1/2 inch for rough-formed finished surfaces.

- D. Construct forms tight enough to prevent loss of concrete mortar.
- E. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical.
 - 1. Install keyways, reglets, recesses, and the like, for easy removal.
 - 2. Do not use rust-stained steel form-facing material.
- F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.
- G. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.
- H. Chamfer exterior corners and edges of permanently exposed concrete.
- I. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.
- J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.
- K. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.
- L. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

3.2 EMBEDDED ITEMS

- A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 1. Install anchor rods, accurately located, to elevations required and complying with tolerances in Section 7.5 of AISC's "Code of Standard Practice for Steel Buildings and Bridges."
 - 2. Install reglets to receive waterproofing and to receive through-wall flashings in outer face of concrete frame at exterior walls, where flashing is shown at lintels, shelf angles, and other conditions.
 - 3. Install dovetail anchor slots in concrete structures as indicated.

3.3 REMOVING AND REUSING FORMS

- A. General: Formwork that does not support weight of concrete may be removed after cumulatively curing at not less than 50 DegF for 24 hours after placing concrete. Concrete has to be hard enough to not be damaged by form-removal operations and curing and protection operations need to be maintained.
 - 1. Leave formwork for beam soffits, joists, slabs, and other structural elements that supports weight of concrete in place until concrete has achieved at least 70 percent of its 28-day design compressive strength.

- 2. Remove forms only if shores have been arranged to permit removal of forms without loosening or disturbing shores.
- B. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-release agent.
- C. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Architect.

3.4 SHORES AND RESHORES

- A. Comply with ACI 318 (ACI 318M) and ACI 301 for design, installation, and removal of shoring and reshoring.
 - 1. Do not remove shoring or reshoring until measurement of slab tolerances is complete.
- B. In multistory construction, extend shoring or reshoring over a sufficient number of stories to distribute loads in such a manner that no floor or member will be excessively loaded or will induce tensile stress in concrete members without sufficient steel reinforcement.
- C. Plan sequence of removal of shores and reshore to avoid damage to concrete. Locate and provide adequate reshoring to support construction without excessive stress or deflection.

3.5 VAPOR RETARDERS

- A. Sheet Vapor Retarders: Place, protect, and repair sheet vapor retarder according to ASTM E1643 and manufacturer's written instructions.
 - 1. Lap joints 6 inches (150 mm) and seal with manufacturer's recommended tape.
- B. Bituminous Vapor Retarders: Place, protect, and repair bituminous vapor retarder according to manufacturer's written instructions.
- C. Granular Course: Cover vapor retarder with granular fill, moisten, and compact with mechanical equipment to elevation tolerances of plus 0 inch or minus 3/4 inch.
 - 1. Place and compact a 1/2-inch thick layer of fine-graded granular material over granular fill.

3.6 STEEL REINFORCEMENT

- A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.
 - 1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.
- B. Clean reinforcement of loose rust and mill scale, earth, ice, and other foreign materials that would reduce bond to concrete.
- C. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.
 - 1. Weld reinforcing bars according to AWS D1.4/D1.4M, where indicated.
- D. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.

CAST-IN-PLACE CONCRETE

- E. Install welded wire reinforcement in longest practicable lengths on bar supports spaced to minimize sagging. Lap edges and ends of adjoining sheets at least one mesh spacing. Offset laps of adjoining sheet widths to prevent continuous laps in either direction. Lace overlaps with wire.
- F. Epoxy-Coated Reinforcement: Repair cut and damaged epoxy coatings with epoxy repair coating according to ASTM D 3963/D3963M. Use epoxy-coated steel wire ties to fasten epoxy-coated steel reinforcement.
- G. Zinc-Coated Reinforcement: Repair cut and damaged zinc coatings with zinc repair material according to ASTM A780. Use galvanized steel wire ties to fasten zinc-coated steel reinforcement.

3.7 JOINTS

- A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.
- B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.
 - 1. Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints unless otherwise indicated. Do not continue reinforcement through sides of strip placements of floors and slabs.
 - 2. Form keyed joints as indicated. Embed keys at least 1-1/2 inches into concrete.
 - 3. Locate joints for beams, slabs, joists, and girders in the middle third of spans. Offset joints in girders a minimum distance of twice the beam width from a beam-girder intersection.
 - 4. Locate horizontal joints in walls and columns at underside of floors, slabs, beams, and girders and at the top of footings or floor slabs.
 - 5. Space vertical joints in walls **as** indicated. Locate joints beside piers integral with walls, near corners, and in concealed locations where possible.
 - 6. Use a bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
 - 7. Use epoxy-bonding adhesive at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.
- C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness as follows:
 - 1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch. Repeat grooving of contraction joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.
 - 2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch- wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks.
- D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.
 - 1. Extend joint-filler strips full width and depth of joint, terminating flush with finished concrete surface unless otherwise indicated.
 - 2. Terminate full-width joint-filler strips not less than 1/2 inch or more than 1 inch below finished concrete surface where joint sealants, specified in Section 079200 "Joint Sealants," are indicated.

- 3. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.
- E. Doweled Joints: Install dowel bars and support assemblies at joints where indicated. Lubricate or asphalt coat one-half of dowel length to prevent concrete bonding to one side of joint.

3.8 WATERSTOPS

A. Self-Expanding Strip Waterstops: Install in construction joints and at other locations indicated, according to manufacturer's written instructions, adhesive bonding, mechanically fastening, and firmly pressing into place. Install in longest lengths practicable.

3.9 CONCRETE PLACEMENT

- A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.
- B. Do not add water to concrete during delivery, at Project site, or during placement unless approved by Architect.
- C. Before test sampling and placing concrete, water may be added at Project site, subject to limitations of ACI 301.
 - 1. Do not add water to concrete after adding high-range water-reducing admixtures to mixture.
- D. Deposit concrete continuously in one layer or in horizontal layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as indicated. Deposit concrete to avoid segregation.
 - 1. Deposit concrete in horizontal layers of depth to not exceed formwork design pressures and in a manner to avoid inclined construction joints.
 - 2. Consolidate placed concrete with mechanical vibrating equipment according to ACI 301.
 - 3. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations to rapidly penetrate placed layer and at least 6 inches into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mixture constituents to segregate.
- E. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.
 - 1. Consolidate concrete during placement operations so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
 - 2. Maintain reinforcement in position on chairs during concrete placement.
 - 3. Screed slab surfaces with a straightedge and strike off to correct elevations.
 - 4. Slope surfaces uniformly to drains where required.
 - 5. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, before excess bleedwater appears on the surface. Do not further disturb slab surfaces before starting finishing operations.

- F. Cold-Weather Placement: Comply with ACI 306.1 and as follows. Protect concrete work from physical damage or reduced strength that could be caused by frost, freezing actions, or low temperatures.
 - 1. When average high and low temperature is expected to fall below 40 DegF for three successive days, maintain delivered concrete mixture temperature within the temperature range required by ACI 301.
 - 2. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
 - 3. Do not use calcium chloride, salt, or other materials containing antifreeze agents or chemical accelerators unless otherwise specified and approved in mixture designs.
- G. Hot-Weather Placement: Comply with ACI 301 and as follows:
 - 1. Maintain concrete temperature below 90 DegF at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
 - 2. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade uniformly moist without standing water, soft spots, or dry areas.

3.10 FINISHING FORMED SURFACES

- A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defects repaired and patched. Remove fins and other projections that exceed specified limits on formed-surface irregularities.
 - 1. Apply to concrete surfaces not exposed to public view.
- B. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces unless otherwise indicated.

3.11 FINISHING FLOORS AND SLABS

- A. General: Comply with ACI 302.1R recommendations for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.
- B. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.
 - 1. Apply float finish to surfaces indicated to receive trowel finish and to be covered with fluidapplied or sheet waterproofing, built-up or membrane roofing, or sand-bed terrazzo.

3.12 MISCELLANEOUS CONCRETE ITEMS

- A. Filling In: Fill in holes and openings left in concrete structures after work of other trades is in place unless otherwise indicated. Mix, place, and cure concrete, as specified, to blend with in-place construction. Provide other miscellaneous concrete filling indicated or required to complete the Work.
- B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.

- C. Equipment Bases and Foundations:
 - 1. Coordinate sizes and locations of concrete bases with actual equipment provided.
 - 2. Construct concrete bases 4 inches (100 mm) high unless otherwise indicated; and extend base not less than 6 inches (150 mm) in each direction beyond the maximum dimensions of supported equipment unless otherwise indicated or unless required for seismic anchor support.
 - 3. Minimum Compressive Strength3000 psi at 28 days.
 - 4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch (450-mm) centers around the full perimeter of concrete base.
 - 5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base, and anchor into structural concrete substrate.
 - 6. Prior to pouring concrete, place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 7. Cast anchor-bolt insert into bases. Install anchor bolts to elevations required for proper attachment to supported equipment.
- D. Steel Pan Stairs: Provide concrete fill for steel pan stair treads, landings, and associated items. Castin inserts and accessories as shown on Drawings. Screed, tamp, and trowel finish concrete surfaces.

3.13 CONCRETE PROTECTING AND CURING

- A. General: Protect freshly placed concrete from premature drying and excessive cold or hot temperatures. Comply with ACI 306.1 for cold-weather protection and ACI 301 for hot-weather protection during curing.
- B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer's written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.
- C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing for the remainder of the curing period.
- D. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces.
- E. Cure concrete according to ACI 308.1, by one or a combination of the following methods:
 - 1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 - a. Water.
 - b. Continuous water-fog spray.
 - c. Absorptive cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorptive covers.
 - 2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.
 - a. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive floor coverings.

- b. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive penetrating liquid floor treatments.
- c. Cure concrete surfaces to receive floor coverings with either a moisture-retaining cover or a curing compound that the manufacturer certifies will not interfere with bonding of floor covering used on Project.
- 3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.
 - a. Removal: After curing period has elapsed, remove curing compound without damaging concrete surfaces by method recommended by curing compound manufacturer unless manufacturer certifies curing compound will not interfere with bonding of floor covering used on Project.
- 4. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer's written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.

3.14 LIQUID FLOOR TREATMENTS

- A. Penetrating Liquid Floor Treatment: Prepare, apply, and finish penetrating liquid floor treatment according to manufacturer's written instructions.
 - 1. Remove curing compounds, sealers, oil, dirt, laitance, and other contaminants and complete surface repairs.
 - 2. Do not apply to concrete that is less than 14 days' old.
 - 3. Apply liquid until surface is saturated, scrubbing into surface until a gel forms; rewet; and repeat brooming or scrubbing. Rinse with water; remove excess material until surface is dry. Apply a second coat in a similar manner if surface is rough or porous.
- B. Sealing Coat: Uniformly apply a continuous sealing coat of curing and sealing compound to hardened concrete by power spray or roller according to manufacturer's written instructions.

3.15 JOINT FILLING

- A. Prepare, clean, and install joint filler according to manufacturer's written instructions.
 - 1. Defer joint filling until concrete has aged at least 6 months. Do not fill joints until construction traffic has permanently ceased.
- B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joint clean and dry.
- C. Install semirigid joint filler full depth in saw-cut joints and at least 2 inches (50 mm) deep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.

3.16 CONCRETE SURFACE REPAIRS

A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval.

- B. Patching Mortar: Mix dry-pack patching mortar, consisting of one part Portland cement to two and one-half parts fine aggregate passing a No. 16 sieve, using only enough water for handling and placing.
- C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.
 - 1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch in any dimension to solid concrete. Limit cut depth to 3/4 inch. Make edges of cuts perpendicular to concrete surface. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.
 - 2. Repair defects on surfaces exposed to view by blending white Portland cement and standard Portland cement so that, when dry, patching mortar will match surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.
 - 3. Repair defects on concealed formed surfaces that affect concrete's durability and structural performance as determined by Architect.
- D. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.
 - 1. Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch wide or that penetrate to reinforcement or completely through unreinforced sections regardless of width, and other objectionable conditions.
 - 2. After concrete has cured at least 14 days, correct high areas by grinding.
 - 3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.
 - 4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.
 - 5. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch to match adjacent floor elevations. Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.
 - 6. Repair defective areas, except random cracks and single holes 1 inch or less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least a 3/4-inch clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mixture as original concrete except without coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.
 - 7. Repair random cracks and single holes 1 inch or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.

- E. Perform structural repairs of concrete, subject to Architect's approval, using epoxy adhesive and patching mortar.
- F. Repair materials and installation not specified above may be used, subject to Architect's approval.

3.17 FIELD QUALITY CONTROL

- A. Testing and Inspecting: Owner will engage a special inspector and qualified testing and inspecting agency to perform field tests and inspections and prepare test reports.
- B. Testing and Inspecting: Engage a qualified testing and inspecting agency to perform tests and inspections and to submit reports.
- C. Inspections:
 - 1. Steel reinforcement placement.
 - 2. Steel reinforcement welding.
 - 3. Headed bolts and studs.
 - 4. Verification of use of required design mixture.
 - 5. Concrete placement, including conveying and depositing.
 - 6. Curing procedures and maintenance of curing temperature.
 - 7. Verification of concrete strength before removal of shores and forms from beams and slabs.
- D. Concrete Tests: Testing of composite samples of fresh concrete obtained according to ASTM C172 shall be performed according to the following requirements:
 - 1. Testing Frequency: Obtain one composite sample for each day's pour of each concrete mixture exceeding 5 cu. yd., but less than 25 cu. yd., plus one set for each additional 50 cu. yd. or fraction thereof.
 - 2. Testing Frequency: Obtain at least one composite sample for each 100 cu. yd. or fraction thereof of each concrete mixture placed each day.
 - a. When frequency of testing will provide fewer than five compressive-strength tests for each concrete mixture, testing shall be conducted from at least five randomly selected batches or from each batch if fewer than five are used.
 - 3. Slump: ASTM C143/C143M; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mixture. Perform additional tests when concrete consistency appears to change.
 - 4. Air Content: ASTM C231, pressure method, for normal-weight concrete; ASTM C173/C173M, volumetric method, for structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 - 5. Concrete Temperature: ASTM C1064/C1064M; one test hourly when air temperature is 40 DegF and below and when 80 DegF and above, and one test for each composite sample.
 - 6. Unit Weight: ASTM C567, fresh unit weight of structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mixture.
 - 7. Compression Test Specimens: ASTM C31/C31M.
 - a. Cast and laboratory cure two sets of two standard cylinder specimens for each composite sample.
 - b. Cast and field cure two sets of two standard cylinder specimens for each composite sample.
 - 8. Compressive-Strength Tests: ASTM C39/C39M; test one set of two laboratory-cured specimens at 7 days and one set of three specimens at 28 days.

- a. Test one set of two field-cured specimens at 7 days and one set of three specimens at 28 days.
- b. A compressive-strength test shall be the average compressive strength from a set of three specimens obtained from same composite sample and tested at age indicated.
- 9. When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.
- 10. Strength of each concrete mixture will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.
- 11. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests.
- 12. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.
- 13. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C42/C42M or by other methods as directed by Architect.
- 14. Additional testing and inspecting, at Contractor's expense, will be performed to determine compliance of replaced or additional work with specified requirements.
- 15. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.

3.18 PROTECTION OF LIQUID FLOOR TREATMENTS

A. Protect liquid floor treatment from damage and wear during the remainder of construction period. Use protective methods and materials, including temporary covering, recommended in writing by liquid floor treatments installer.

END OF SECTION

SECTION 051200 - STRUCTURAL STEEL FRAMING

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Structural steel.
 - 2. Field-installed shear connectors.
 - 3. Grout.

1.3 **DEFINITIONS**

- A. Structural Steel: Elements of the structural frame indicated on Drawings and as described in AISC 303, "Code of Standard Practice for Steel Buildings and Bridges."
- B. Demand Critical Welds: Those welds, the failure of which would result in significant degradation of the strength and stiffness of the Seismic-Load-Resisting System and which are indicated as "Demand Critical" or "Seismic Critical" on Drawings.

1.4 COORDINATION

- A. Coordinate selection of shop primers with topcoats to be applied over them. Comply with paint and coating manufacturers' written recommendations to ensure that shop primers and topcoats are compatible with one another.
- B. Coordinate installation of anchorage items to be embedded in or attached to other construction without delaying the Work. Provide setting diagrams, sheet metal templates, instructions, and directions for installation.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: Show fabrication of structural-steel components:
 - 1. Include details of cuts, connections, splices, camber, holes, and other pertinent data.
 - 2. Include embedment Drawings.
 - 3. Indicate welds by standard AWS symbols, distinguishing between shop and field welds, and show size, length, and type of each weld. Show backing bars that are to be removed and supplemental fillet welds where backing bars are to remain.
 - 4. Indicate type, size, and length of bolts, distinguishing between shop and field bolts. Identify pretensioned and slip-critical, high-strength bolted connections.
 - 5. Identify members and connections of the Seismic-Load-Resisting System.
 - 6. Indicate locations and dimensions of protected zones.
 - 7. Identify demand critical welds.

- C. Welding Procedure Specifications (WPSs) and Procedure Qualification Records (PQRs): Provide according to AWS D1.1/D1.1M, "Structural Welding Code Steel," for each welded joint whether prequalified or qualified by testing, including the following:
 - 1. Power source (constant current or constant voltage).
 - 2. Electrode manufacturer and trade name, for demand critical welds.
- D. Delegated-Design Submittal: For structural-steel connections indicated to comply with design loads, include analysis data signed and sealed by the qualified professional engineer registered in the State of South Carolina whom is responsible for their preparation.

1.6 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For fabricator.
- B. Welding certificates.
- C. Paint Compatibility Certificates: From manufacturers of topcoats applied over shop primers, certifying that shop primers are compatible with topcoats.
- D. Mill test reports for structural steel, including chemical and physical properties.
- E. Product Test Reports: For the following:
 - 1. Bolts, nuts, and washers including mechanical properties and chemical analysis.
 - 2. Direct-tension indicators.
 - 3. Tension-control, high-strength, bolt-nut-washer assemblies.
 - 4. Shear stud connectors.
 - 5. Shop primers.
 - 6. Nonshrink grout.
- F. Survey of existing conditions.
- G. Source quality-control reports.
- H. Field quality-control reports.

1.7 QUALITY ASSURANCE

- A. Fabricator Qualifications: A qualified fabricator that participates in the AISC Quality Certification Program and is designated an AISC-Certified Plant, Category STD.
- B. Installer Qualifications: A qualified installer who participates in the AISC Quality Certification Program and is designated an AISC-Certified Erector.
- C. Shop-Painting Applicators: Qualified according to AISC's Sophisticated Paint Endorsement P1 or to SSPC-QP 3, "Standard Procedure for Evaluating Qualifications of Shop Painting Applicators."
- D. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
 - 1. Welders and welding operators performing work on bottom-flange, demand-critical welds shall pass the supplemental welder qualification testing, as required by AWS D1.8/D1.8M. FCAW-S and FCAW-G shall be considered separate processes for welding personnel qualification.

- E. Comply with applicable provisions of the following specifications and documents:
 - 1. AISC 303.
 - 2. AISC 341 and AISC 341s1.
 - 3. AISC 360.
 - 4. RCSC's "Specification for Structural Joints Using ASTM A325 or A490 Bolts."

1.8 DELIVERY, STORAGE, AND HANDLING

- A. Store materials to permit easy access for inspection and identification. Keep steel members off ground and spaced by using pallets, dunnage, or other supports and spacers. Protect steel members and packaged materials from corrosion and deterioration.
 - 1. Do not store materials on structure in a manner that might cause distortion, damage, or overload to members or supporting structures. Repair or replace damaged materials or structures as directed.
- B. Store fasteners in a protected place in sealed containers with manufacturer's labels intact.
 - 1. Fasteners may be repackaged provided Owner's testing and inspecting agency observes repackaging and seals containers.
 - 2. Clean and relubricate bolts and nuts that become dry or rusty before use.
 - 3. Comply with manufacturers' written recommendations for cleaning and lubricating ASTM F1852 fasteners and for retesting fasteners after lubrication.

PART 2 – PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Connections: Provide details of connections required by the Contract Documents to be selected or completed by structural-steel fabricator, including comprehensive engineering analysis by a qualified professional engineer, to withstand loads indicated and comply with other information and restrictions indicated.
 - 1. Select and complete connections using schematic details indicated and AISC 360.
 - 2. Use Allowable Stress Design; data are given at service-load level.

2.2 STRUCTURAL-STEEL MATERIALS

- A. W-Shapes: ASTM A992/A992M
- B. Channels, Angles, S-Shapes: ASTM A36/A36M
- C. Plate and Bar: ASTM A36/A36M.
- D. Cold-Formed Hollow Structural Sections: ASTM A500/A500M, Grade B, structural tubing.
- E. Welding Electrodes: Comply with AWS requirements.

2.3 BOLTS, CONNECTORS, AND ANCHORS

A. High-Strength Bolts, Nuts, and Washers: ASTM A325, Type 1, heavy-hex steel structural bolts; ASTM A563, Grade C, heavy-hex carbon-steel nuts; and ASTM F436, Type 1, hardened carbon-steel washers; all with plain finish.

- 1. Direct-Tension Indicators: ASTM F959, Type 325, compressible-washer type with plain finish.
- B. High-Strength Bolts, Nuts, and Washers: ASTM A490, Type 1, heavy-hex steel structural bolts or tension-control, bolt-nut-washer assemblies with splined ends; ASTM A563, Grade DH, heavy-hex carbon-steel nuts; and ASTM F436, Type 1, hardened carbon-steel washers with plain finish.
 - 1. Direct-Tension Indicators: ASTM F959, Type 490, compressible-washer type with plain finish.
- C. Zinc-Coated High-Strength Bolts, Nuts, and Washers: ASTM A325, Type 1, heavy-hex steel structural bolts; ASTM A563, Grade DH heavy-hex carbon-steel nuts; and ASTM F436, Type 1, hardened carbon-steel washers.
 - 1. Finish: Hot-dip or mechanically deposited zinc coating.
 - 2. Direct-Tension Indicators: ASTM F959, Type 325 compressible-washer type with mechanically deposited zinc coating finish.
- D. Tension-Control, High-Strength Bolt-Nut-Washer Assemblies: ASTM F1852, Type 1, round head assemblies consisting of steel structural bolts with splined ends, heavy-hex carbon-steel nuts, and hardened carbon-steel washers.
- E. Shear Connectors: ASTM A108, Grades 1015 through 1020, headed-stud type, cold-finished carbon steel; AWS D1.1/D1.1M, Type B.
- F. Unheaded Anchor Rods: ASTM F1554, Grade 55, weldable:
 - 1. Configuration: Straight.
 - 2. Nuts: ASTM A563 heavy-hex carbon steel.
 - 3. Plate Washers: ASTM A36/A36M carbon steel.
 - 4. Washers: ASTM F436 Type 1, hardened carbon steel.
- G. Headed Anchor Rods: ASTM F1554, Grade 55, weldable straight.
 - 1. Nuts: ASTM A563 heavy-hex carbon steel.
 - 2. Plate Washers: ASTM A36/A36M carbon steel.
 - 3. Washers: ASTM F436 Type 1, hardened carbon steel.
- H. Threaded Rods: ASTM A36/A36M.
 - 1. Nuts: ASTM A563 heavy-hex carbon steel.
 - 2. Washers: ASTM A36/A36M carbon steel.

2.4 PRIMER

- A. Low-Emitting Materials: Paints and coatings shall comply with the testing and product requirements of the California Department of Public Health's (formerly, the California Department of Health Services') "Standard Method for the Testing and Evaluation of Volatile Organic Chemical Emissions from Indoor Sources Using Environmental Chambers."
- B. Primer: SSPC-Paint 25, Type I and Type II, zinc oxide, alkyd, linseed oil primer.
- C. Primer: SSPC-Paint 25 BCS, Type I and Type II, zinc oxide, alkyd, linseed oil primer.
- D. Primer: SSPC-Paint 23, latex primer.

- E. Primer: Fabricator's standard lead- and chromate-free, nonasphaltic, rust-inhibiting primer complying with MPI#79 and compatible with topcoat.
- F. Galvanizing Repair Paint: MPI#18, MPI#19, or SSPC-Paint 20.

2.5 GROUT

- A. Metallic, Shrinkage-Resistant Grout: ASTM C1107/C1107M, factory-packaged, metallic aggregate grout, mixed with water to consistency suitable for application and a 30-minute working time.
- B. Nonmetallic, Shrinkage-Resistant Grout: ASTM C1107/C1107M, factory-packaged, nonmetallic aggregate grout, noncorrosive and nonstaining, mixed with water to consistency suitable for application and a 30-minute working time.

2.6 FABRICATION

- A. Structural Steel: Fabricate and assemble in shop to greatest extent possible. Fabricate according to AISC 303, "Code of Standard Practice for Steel Buildings and Bridges," and to AISC 360:
 - 1. Mark and match-mark materials for field assembly.
 - 2. Complete structural-steel assemblies, including welding of units, before starting shop-priming operations.
- B. Thermal Cutting: Perform thermal cutting by machine to greatest extent possible.
 - 1. Plane thermally cut edges to be welded to comply with requirements in AWS D1.1/D1.1M.
- C. Bolt Holes: Cut, drill, mechanically thermal cut, or punch standard bolt holes perpendicular to metal surfaces.
- D. Finishing: Accurately finish ends of columns and other members transmitting bearing loads.
- E. Cleaning: Clean and prepare steel surfaces that are to remain unpainted according to SSPC-SP 2, "Hand Tool Cleaning or SSPC-SP 3, "Power Tool Cleaning.
- F. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1/D1.1M and manufacturer's written instructions.
- G. Steel Wall-Opening Framing: Select true and straight members for fabricating steel wall-opening framing to be attached to structural-steel frame. Straighten as required to provide uniform, square, and true members in completed wall framing. Build up welded framing, weld exposed joints continuously, and grind smooth.
- H. Welded Door Frames: Build up welded door frames attached to structural-steel frame. Weld exposed joints continuously and grind smooth. Plug-weld fixed steel bar stops to frames. Secure removable stops to frames with countersunk machine screws, uniformly spaced not more than 10 inches O.C. unless otherwise indicated.
- I. Holes: Provide holes required for securing other work to structural steel and for other work to pass through steel members.
 - 1. Cut, drill, or punch holes perpendicular to steel surfaces. Do not thermally cut bolt holes or enlarge holes by burning.
 - 2. Baseplate Holes: Cut, drill, mechanically thermal cut, or punch holes perpendicular to steel surfaces.

3. Weld threaded nuts to framing and other specialty items indicated to receive other work.

2.7 SHOP CONNECTIONS

- A. High-Strength Bolts: Shop install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A325 or A490 Bolts" for type of bolt and type of joint specified.
 - 1. Joint Type: Snug tightened.
- B. Weld Connections: Comply with AWS D1.1/D1.1M for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work.
 - 1. Assemble and weld built-up sections by methods that maintain true alignment of axes without exceeding tolerances in AISC 303 for mill material.

2.8 SHOP PRIMING

- A. Shop prime steel surfaces except the following:
 - 1. Surfaces embedded in concrete or mortar. Extend priming of partially embedded members to a depth of 2 inches.
 - 2. Surfaces to be field welded.
 - 3. Surfaces of high-strength bolted, slip-critical connections.
 - 4. Surfaces to receive sprayed fire-resistive materials (applied fireproofing).
 - 5. Galvanized surfaces.
 - 6. Surfaces enclosed in interior construction.
- B. Surface Preparation: Clean surfaces to be painted. Remove loose rust and mill scale and spatter, slag, or flux deposits. Prepare surfaces according to the following specifications and standards:
 - 1. SSPC-SP 2, "Hand Tool Cleaning."
 - 2. SSPC-SP 3, "Power Tool Cleaning."
 - 3. SSPC-SP 7/NACE No. 4, "Brush-off Blast Cleaning."
 - 4. SSPC-SP 11, "Power Tool Cleaning to Bare Metal."
 - 5. SSPC-SP 14/NACE No. 8, "Industrial Blast Cleaning."
 - 6. SSPC-SP 6/NACE No. 3, "Commercial Blast Cleaning."
 - 7. SSPC-SP 10/NACE No. 2, "Near-White Blast Cleaning."
 - 8. SSPC-SP 5/NACE No. 1, "White Metal Blast Cleaning."
 - 9. SSPC-SP 8, "Pickling."
- C. Priming: Immediately after surface preparation, apply primer according to manufacturer's written instructions and at rate recommended by SSPC to provide a minimum dry film thickness of 1.5 mils. Use priming methods that result in full coverage of joints, corners, edges, and exposed surfaces.
 - 1. Stripe paint corners, crevices, bolts, welds, and sharp edges.
 - 2. Apply two coats of shop paint to surfaces that are inaccessible after assembly or erection. Change color of second coat to distinguish it from first.
- D. Painting: Prepare steel and apply a one-coat, nonasphaltic primer complying with SSPC-PS Guide 7.00, "Painting System Guide 7.00: Guide for Selecting One-Coat Shop Painting Systems," to provide a dry film thickness of not less than 1.5 mils.

2.9 GALVANIZING

- A. Hot-Dip Galvanized Finish: Apply zinc coating by the hot-dip process to structural steel according to ASTM A123/A123M.
 - 1. Fill vent and drain holes that are exposed in the finished Work unless they function as weep holes, by plugging with zinc solder and filing off smooth.
 - 2. Galvanize lintels, shelf angles, and welded door frames attached to structural-steel frame and located in exterior walls.

2.10 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform shop tests and inspections.
 - 1. Provide testing agency with access to places where structural-steel work is being fabricated or produced to perform tests and inspections.
- B. Bolted Connections: Inspect shop-bolted connections according to RCSC's "Specification for Structural Joints Using ASTM A325 or A490 Bolts."
- C. Welded Connections: Visually inspect shop-welded connections according to AWS D1.1/D1.1M and the following inspection procedures, at testing agency's option:
 - 1. Liquid Penetrant Inspection: ASTM E165.
 - 2. Magnetic Particle Inspection: ASTM E709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration are not accepted.
 - 3. Ultrasonic Inspection: ASTM E164.
 - 4. Radiographic Inspection: ASTM E94.
- D. In addition to visual inspection, test and inspect shop-welded shear connectors according to requirements in AWS D1.1/D1.1M for stud welding and as follows:
 - 1. Perform bend tests if visual inspections reveal either a less-than-continuous 360-degree flash or welding repairs to any shear connector.
 - 2. Conduct tests according to requirements in AWS D1.1/D1.1M on additional shear connectors if weld fracture occurs on shear connectors already tested.
- E. Prepare test and inspection reports.

PART 3 – EXECUTION

3.1 EXAMINATION

- A. Verify, with certified steel erector present, elevations of concrete- and masonry-bearing surfaces and locations of anchor rods, bearing plates, and other embedments for compliance with requirements.
 - 1. Prepare a certified survey of existing conditions. Include bearing surfaces, anchor rods, bearing plates, and other embedments showing dimensions, locations, angles, and elevations.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Provide temporary shores, guys, braces, and other supports during erection to keep structural steel secure, plumb, and in alignment against temporary construction loads and loads equal in intensity to design loads. Remove temporary supports when permanent structural steel, connections, and bracing are in place unless otherwise indicated.

3.3 ERECTION

- A. Set structural steel accurately in locations and to elevations indicated and according to AISC 303 and AISC 360.
- B. Baseplates, Bearing Plates and Leveling Plates: Clean concrete- and masonry-bearing surfaces of bond-reducing materials, and roughen surfaces prior to setting plates. Clean bottom surface of plates.
 - 1. Set plates for structural members on wedges, shims, or setting nuts as required.
 - 2. Weld plate washers to top of baseplate.
 - 3. Snug-tighten anchor rods after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of plate before packing with grout.
 - 4. Promptly pack grout solidly between bearing surfaces and plates so no voids remain. Neatly finish exposed surfaces; protect grout and allow to cure. Comply with manufacturer's written installation instructions for shrinkage-resistant grouts.
- C. Maintain erection tolerances of structural steel within AISC 303 "Code of Standard Practice for Steel Buildings and Bridges."
- D. Align and adjust various members that form part of complete frame or structure before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that are in permanent contact with members. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.
 - 1. Level and plumb individual members of structure.
 - 2. Make allowances for difference between temperature at time of erection and mean temperature when structure is completed and in service.
- E. Splice members only where indicated.
- F. Do not use thermal cutting during erection unless approved by the Engineer. Finish thermally cut sections within smoothness limits in AWS D1.1/D1.1M.
- G. Do not enlarge unfair holes in members by burning or using drift pins. Ream holes that must be enlarged to admit bolts.
- H. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1/D1.1M and manufacturer's written instructions.

3.4 FIELD CONNECTIONS

A. High-Strength Bolts: Install high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A325 or A490 Bolts" for type of bolt and type of joint specified.

- B. Weld Connections: Comply with AWS D1.1/D1.1M for tolerances, appearances, welding procedure specifications, weld quality, and methods used in correcting welding work:
 - 1. Comply with AISC 303 and AISC 360 for bearing, alignment, adequacy of temporary connections, and removal of paint on surfaces adjacent to field welds.
 - 2. Remove backing bars or runoff tabs, back gouge, and grind steel smooth.
 - 3. Assemble and weld built-up sections by methods that maintain true alignment of axes without exceeding tolerances in AISC 303 "Code of Standard Practice for Steel Buildings and Bridges," for mill material.

3.5 FIELD QUALITY CONTROL

- A. Special Inspections: Engage a qualified special inspector to perform the following special inspections:
 - 1. Verify structural-steel materials and inspect steel frame joint details.
 - 2. Verify weld materials and inspect welds.
 - 3. Verify connection materials and inspect high-strength bolted connections.
- B. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- C. Bolted Connections: Inspect bolted connections according to RCSC's "Specification for Structural Joints Using ASTM A325 or A490 Bolts."
- D. Welded Connections: Visually inspect field welds according to AWS D1.1/D1.1M.
 - 1. In addition to visual inspection, test and inspect field welds according to AWS D1.1/D1.1M and the following inspection procedures, at testing agency's option:
 - a. Liquid Penetrant Inspection: ASTM E165.
 - b. Magnetic Particle Inspection: ASTM E709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration are not accepted.
 - c. Ultrasonic Inspection: ASTM E164.
 - d. Radiographic Inspection: ASTM E94.
- E. In addition to visual inspection, test and inspect field-welded shear connectors according to requirements in AWS D1.1/D1.1M for stud welding and as follows:
 - 1. Perform bend tests if visual inspections reveal either a less-than-continuous 360-degree flash or welding repairs to any shear connector.
 - 2. Conduct tests according to requirements in AWS D1.1/D1.1M on additional shear connectors if weld fracture occurs on shear connectors already tested.

3.6 REPAIRS AND PROTECTION

- A. Galvanized Surfaces: Clean areas where galvanizing is damaged or missing and repair galvanizing to comply with ASTM A780/A780M.
- B. Touchup Painting: Immediately after erection, clean exposed areas where primer is damaged or missing and paint with the same material as used for shop painting to comply with SSPC-PA 1 for touching up shop-painted surfaces.
 - 1. Clean and prepare surfaces by SSPC-SP 2 hand-tool cleaning or SSPC-SP 3 power-tool cleaning.

END OF SECTION

STRUCTURAL STEEL FRAMING

SECTION 054400 - COLD-FORMED METAL TRUSSES

PART 1 – GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract including General and Supplementary Conditions and Division 1 Specification Sections apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cold-formed steel trusses for roofs.
- B. Related Requirements:
 - 1. Section "Cold-Formed Metal Framing" for cold-formed steel studs, joists, and rafters.

1.3 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site or as previously agreed upon at least two weeks prior to preinstallation conference.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. LEED Submittals:
 - 1. Product Data for Credit MR 4: For products having recycled content, documentation indicating percentages by weight of postconsumer and preconsumer recycled content. Include statement indicating cost for each product having recycled content.
- C. Shop Drawings: Roof truss fabrication drawings shall be prepared under the supervision of a licensed Professional Engineer registered in the State of South Carolina. All drawings and calculations shall be signed/sealed and submitted to the engineer of record. Submittals shall include the following:
 - 1. Include layout, spacings, sizes, thicknesses, and types of cold-formed steel trusses; fabrication; and fastening and anchorage details, including mechanical fasteners.
 - 2. Indicate reinforcing channels, opening framing, supplemental framing, strapping, bracing, bridging, splices, accessories, connection details, and attachment to adjoining work.
- D. Delegated-Design Submittal: For cold-formed steel trusses.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Welding certificates.
- C. Product Test Reports: For each listed product, for tests performed by a qualified testing agency:
 - 1. Steel sheet.
 - 2. Expansion anchors.
 - 3. Power-actuated anchors.

COLD-FORMED METAL TRUSSES

- 4. Mechanical fasteners.
- 5. Miscellaneous structural clips and accessories.
- D. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Qualified according to ASTM E329 for testing indicated.
- B. Product Tests: Mill certificates or data from a qualified testing agency, or in-house testing with calibrated test equipment, indicating steel sheet complies with requirements, including base-metal thickness, yield strength, tensile strength, total elongation, chemical requirements, and metallic-coating thickness.
- C. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel."
 - 2. AWS D1.3/D1.3M, "Structural Welding Code Sheet Steel."

1.7 DELIVERY, STORAGE, AND HANDLING

A. Protect cold-formed steel trusses from corrosion, deformation, and other damage during delivery, storage, and handling.

PART 2 – PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers</u>: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. <u>Aegis Metal Framing</u>.
 - 2. <u>Genesis Worldwide Inc</u>.
 - 3. <u>Marino/WARE</u>.
 - 4. <u>Nuconsteel, A Nucor Company</u>.
 - 5. <u>Steel Construction Systems</u>.
 - 6. <u>TrusSteel; an ITW company</u>.
 - 7. <u>USA Frametek</u>.

2.2 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section "Quality Requirements," to design cold-formed steel framing.
- B. Structural Performance: Provide cold-formed steel trusses capable of withstanding design loads within limits and under conditions indicated.
 - 1. Design Loads: As indicated.
 - 2. Deflection Limits: Design trusses to withstand design loads without deflections greater than the following:
 - a. Roof Trusses: Vertical deflection of 1/360 of the span.

- 3. Design framing systems to provide for movement of framing members located outside the insulated building envelope without damage or overstressing, sheathing failure, connection failure, undue strain on fasteners and anchors, or other detrimental effects when subject to a maximum ambient temperature change of 120 DegF (67 DegC).
- C. Cold-Formed Steel Framing Design Standards:
 - 1. Floor and Roof Systems: Design according to AISI S210.
 - 2. Lateral Design: Design according to AISI S213.
 - 3. Roof Trusses: Design according to AISI S214.
- D. Fire-Resistance Ratings: Comply with ASTM E119; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.
 - 1. Indicate design designations from UL's "Fire Resistance Directory" or from the listings of another qualified testing agency.

2.3 COLD-FORMED STEEL TRUSS MATERIALS

- A. Recycled Content of Steel Products: Postconsumer recycled content plus one-half of preconsumer recycled content not less than 25 percent.
- B. Steel Sheet: ASTM A1003/A1003M, structural grade, Type H, metallic coated, of grade and coating weight as follows:
 - 1. Grade: ST50H (ST340H) As required by structural performance.
 - 2. Coating: G90 (Z275) or equivalent.

2.4 ROOF TRUSSES

- A. Roof Truss Members: Manufacturer's standard C-shaped steel sections.
 - 1. Connecting Flange Width: 1-5/8 inches (41 mm), minimum at top and bottom chords connecting to sheathing or other directly fastened construction.
 - 2. Minimum Base-Metal Thickness: 0.0428 inch (1.09 mm).
 - 3. Section Properties: As required by structural performance.

2.5 ACCESSORIES

- A. Fabricate steel-framing accessories from steel sheet, ASTM A1003/A1003M, structural grade, Type H, metallic coated, of same grade and coating weight used for truss members.
- B. Provide accessories of manufacturer's standard thickness and configuration unless otherwise indicated.

2.6 ANCHORS, CLIPS, AND FASTENERS

- A. Steel Shapes and Clips: ASTM A36/A36M, zinc coated by hot-dip process according to ASTM A123/A123M.
- B. Anchor Bolts: ASTM F 1554, Grade 55, threaded carbon-steel hex-headed bolts and carbon-steel nuts; and flat, hardened-steel washers; zinc coated by hot-dip process according to ASTM A153/A153M, Class C.
- C. Mechanical Fasteners: ASTM C1513, corrosion-resistant-coated, self-drilling, self-tapping steel drill screws.

- 1. Head Type: Low-profile head beneath sheathing; manufacturer's standard elsewhere.
- D. Welding Electrodes: Comply with AWS standards.

2.7 MISCELLANEOUS MATERIALS

- A. Galvanizing Repair Paint: SSPC-Paint 20 or MIL-P-21035B.
- B. Shims: Load bearing, of high-density multimonomer plastic, nonleaching; or of cold-formed steel of same grade and coating as framing members supported by shims.

2.8 FABRICATION

- A. Fabricate cold-formed steel trusses and accessories plumb, square, and true to line, and with connections securely fastened, according to referenced AISI's specifications and standards, manufacturer's written instructions, and requirements in this Section.
 - 1. Fabricate trusses using jigs or templates.
 - 2. Cut truss members by sawing or shearing; do not torch cut.
 - 3. Fasten cold-formed steel truss members by welding, screw fastening, clinch fastening, pneumatic pin fastening, or riveting as standard with fabricator.
 - a. Comply with AWS D1.3/D1.3M requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
 - 4. Fasten other materials to cold-formed steel trusses by welding, bolting, pneumatic pin fastening, or screw fastening, according to Shop Drawings.
- B. Reinforce, stiffen, and brace trusses to withstand handling, delivery, and erection stresses. Lift fabricated trusses to prevent damage or permanent distortion.
- C. Fabrication Tolerances: Fabricate assemblies level, plumb, and true to line to a maximum allowable tolerance variation of 1/8 inch in 10 feet (1:960) and as follows:
 - 1. Spacing: Space individual framing members no more than plus or minus 1/8 inch (3 mm) from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.
 - 2. Squareness: Fabricate each cold-formed metal framing assembly to a maximum out-of-square tolerance of 1/8 inch (3 mm).

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine supporting substrates and abutting cold-formed steel trusses for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Before sprayed fire-resistive materials are applied, attach continuous angles, supplementary framing, or tracks to structural members indicated to receive sprayed fire-resistive materials.

B. After applying sprayed fire-resistive materials, remove only as much of these materials as needed to complete installation of cold-formed steel trusses without reducing thickness of fire-resistive materials below that is required to obtain fire-resistance rating indicated. Protect remaining fire-resistive materials from damage.

3.3 INSTALLATION

- A. Install, bridge, and brace cold-formed steel trusses according to AISI S200, AISI S214, AISI's "Code of Standard Practice for Cold-Formed Steel Structural Framing," and manufacturer's written instructions unless more stringent requirements are indicated.
- B. Install cold-formed steel trusses and accessories plumb, square, and true to line, and with connections securely fastened.
 - 1. Fasten cold-formed steel trusses by welding or mechanical fasteners.
 - a. Comply with AWS D1.3/D1.3M requirements and procedures for welding, appearance and quality of welds, and methods used in correcting welding work.
 - b. Locate mechanical fasteners and install according to Shop Drawings; comply with requirements for spacing, edge distances, and screw penetration.
- C. Install temporary bracing and supports. Maintain braces and supports in place, undisturbed, until entire integrated supporting structure has been completed and permanent connections to framing are secured.
- D. Truss Spacing: As indicated.
- E. Do not alter, cut, or remove framing members or connections of trusses.
- F. Erect trusses with plane of truss webs plumb and parallel to each other, align, and accurately position at spacings indicated.
- G. Erect trusses without damaging framing members or connections.
- H. Coordinate with wall framing to align webs of bottom chords and load-bearing studs or continuously reinforce track to transfer loads to structure. Anchor trusses securely at all bearing points.
- I. Install continuous bridging and permanently brace trusses as indicated on Shop Drawings and designed according to CFSEI's TechNote 551e, "Design Guide: Permanent Bracing of Cold-Formed Steel Trusses."
- J. Erection Tolerances: Install cold-formed steel framing level, plumb, and true to line to a maximum allowable tolerance variation of 1/8 inch in 10 feet (1:960) and as follows:
 - 1. Space individual trusses no more than plus or minus 1/8 inch (3 mm) from plan location. Cumulative error shall not exceed minimum fastening requirements of sheathing or other finishing materials.

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Field and shop welds will be subject to testing and inspecting.
- C. Prepare test and inspection reports.

COLD-FORMED METAL TRUSSES

3.5 REPAIRS AND PROTECTION

- A. Galvanizing Repairs: Prepare and repair damaged galvanized coatings on fabricated and installed cold-formed metal framing with galvanized repair paint according to ASTM A780 and manufacturer's written instructions.
- B. Provide final protection and maintain conditions, in a manner acceptable to manufacturer and Installer that ensure that cold-formed metal trusses are without damage or deterioration at time of Substantial Completion.

END OF SECTION