

ROWLAND ELEMENTARY SCHOOL 1355 E. ROWLAND AVE. WEST COVINA, CA 91790 COVID 19- COVINA VALLEY DISTRICT WIDE HVAC REPLACEMENT **100% CONSTRUCTION DOCUMENTS** 11/08/2022 DLR GROUP PROJECT NUMBER: 75-22605-00 **DSA APPLICATION #**

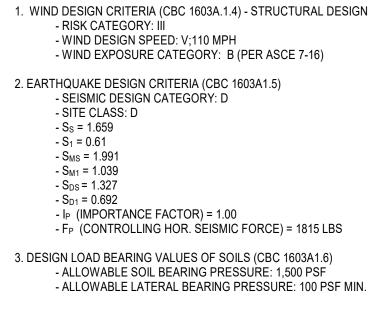
PROJECT DIRECTORY

OVINA VALLEY UNIFIED SCHOOL DISTRICT 519 E. BADILLO ST. COVINA. CA 91723 CONTACT: BRIAN JOHNSON PH: 626.974.7000 BJOHNSON@C-VUSD.ORG

DLR GROUF 700 S. FLOWER ST. LOS ANGELES, CA 90017 CONTACT: JESSE MILLER PH: 213.800.9400 JMILLER@DLRGROUP.COM

(Application No. 03-122233 STATE. IT HAS BEEN EXAMINED BY ME FOR:

SPECIFICATIONS PREPARED BY ME, AND


FOR INCORPORATION INTO THE CONSTRUCTION OF THIS PROJECT. THE STATEMENT OF GENERAL CONFORMANCE "SHALL NOT BE CONSTRUED AS RELIEVING ME OF MY RIGHTS, DUTIES, AND RESPONSIBILITIES UNDER SECTIONS 17302 AND 81138 OF THE EDUCATION CODE AND SECTIONS 4-336, 4-341 AND 4-344" OF TITLE 24, PART 1, (TITLE 24, PART 1, SECTION 4-317(b))

ALL DRAWINGS OR SHEETS LISTED ON THE COVER OR INDEX SHEET I FIND THAT: → FOR EACH DISCIPLINE (SEE SHEET INDEX FOR LIST OF DISCIPLINES) THIS DRAWING OR PAGE

ARE IN GENERAL CONFORMANCE WITH ARE IN GENERAL CONFORMANCE WITH THE PROJECT DESIGN INTENT, THE PROJECT DESIGN, A HAVE BEEN COORDINATED WITH THE HAVE BEEN COORDINATED WITH THE PROJECT PLANS AND SPECIFICATIONS. \supseteq **PROJECT PLANS AND SPECIFICATIONS.** 05/05/202 SIGNATURE DATE ARCHITECT OR ENGINEER DESIGNATED TO BE IN ARCHITECT OR ENGINEER DELEGATED GENERAL RESPONSIBLE CHARGE RESPONSIBILITY FOR THIS PORTION OF THE JESSE MILLER PRINT NAME PRINT NAME

C-32306 10/31/2023 LICENSE NUMBER EXPIRATION DATE LICENSE NUMBER

DESIGN ANALYSIS DATA

STRUCTURAL ENGINEER ORION STRUCTURAL ENGINEERING, INC 11305 RANCHO BERNARDO ROAD, SUITE 121 SAN DIEGO, CA 92127 CONTACT: RYAN OMER PH: 858.679.1974 RYAN@ORIONSE.COM

ELECTRICAL ENGINEER dlr group 700 FLOWER ST 22ND FLOOR LOS ANGELES, CA 90017 CONTACT: NORMAN PATENA PH: 213.800.9400 NPATENA@DLRGROUP.COM

A# 03-122233

LICENSED DESIGN PROFESSIONALS AND/OR CONSULTANTS

_____ File No. <u>19-25</u> HAVE BEEN PREPARED BY OTHER DESIGN PROFESSIONALS OR CONSULTANTS WHO ARE LICENSED AND/OR AUTHORIZED TO PREPARE SUCH DRAWINGS IN THIS

1) DESIGN INTENT AND APPEARS TO MEET THE APPROPRIATE REQUIREMENTS OF TITLE 24. CALIFORNIA CODE OF REGULATIONS, AND THE PROJECT

2) COORDINATION WITH MY PLANS AND SPECIFICATIONS, AND IS ACCEPTABLE

1. WIND DESIGN CRITERIA (CBC 1603A.1.4) - STRUCTURAL DESIGN PARAMETERS

EXPIRATION DATE

SCOPE OF WORK

OPE OF WORK SHALL BE AS FOLLOW EXISTING HVAC SYSTEM REPLACEMENT AT CLASSROOM BUILDINGS AND MF

APPLI	CA	BLE CODES
2019 CALIFO	RNIA	ADMINISTRATIVE CODE (CAC), PART 1, TITLE 24 CCR
		BUILDING CODE (CBC), PART 2, TITLE 24 CCR
		DNAL BUILDING CODE, VOL. 1 & 2, AND 2019 CALIFORNIA AMENDMENTS)
		ELECTRICAL CODE (CEC), PART 3, TITLE 24 CCR
		ELECTRICAL CODE AND 2019 CALIFORNIA AMENDMENTS)
		MECHANICAL CODE (CMC), PART 4, TITLE 24 CCR
		ORM MECHANICAL CODE AND 2019 CALIFORNIA AMENDMENTS)
		PLUMBING CODE (CPC), PART 5, TITLE 24 TITLE CCR
		ORM PLUMBING CODE AND 2019 CALIFORNIA AMENDMENTS)
		ENERGY CODE (CEC), PART 6, TITLE 24 CCR FIRE CODE (CFC), PART 9, TITLE 24 CCR
		DNAL FIRE CODE AND 2019 CALIFORNIA AMENDMENTS)
		EXISTING BUILDING CODE (CEBC), PART 10, TITLE 24 CCR
		DNAL EXISTING BUILDING CODE AND 2019 CALIFORNIA AMENDMENTS)
		GREEN BUILDING STANDARDS CODE (CAL GREEN), PART 11, TITLE 24 CCR
		REFERENCED STANDARDS CODE (CEBC), PART 12, TITLE 24 CCR
		BLIC SAFETY, STATE FIR MARSHAL REGULATIONS
		CSA B44-13 SAFETY CODE FOR ELEVATORS AND ESCALATORS
(PER 2019 CE	BC PA	ART 2 CH 35)
NOTE: CAL/C	DSHA	ELEVATOR UNIT ENFORCES CCR TITLE 8 AND USES THE 2004 ASME A17.1 BY
ADOPTION		
2010 ADA ST	AND	ARDS FOR ACCESSIBLE DESIGN
NFPA 13	-	STANDARD FOR INSTALLATION OF SPRINKLERS SYSTEMS (CA AMENDED)
NFPA 14	-	
NFPA 17	-	STANDARD FOR DRY CHEMICAL EXTINGUISHING SYSTEMS
NFPA 17A	-	STANDARD FOR WET CHEMICAL EXTINGUISHING SYSTEMS
NFPA 20	-	STANDARD FOR INSTALLATION OF STATIONARY PUMPS FOR FIRE PROTECTION
NFPA 22	-	STANDARD FOR WATER TANKS FOR PRIVATE FIRE PROTECTION
NFPA 24	-	STANDARD FOR THE INSTALLATION OF PRIVATE FIRE SERVICE MAINS AND THEIR APPURTENANCES
NFPA 72	-	NATIONAL FIRE ALARM AND SIGNALING CODE (CA AMENDED)
NFPA 80	-	STANDARD FOR FIRE DOORS AND OTHER OPENINGS PROTECTIVE
NFPA 2001	-	STANDARD ON CLEAN AGENT FIRE EXTINGUISHING SYSTEMS (CA AMENDED)
UL 300	-	STANDARD FOR FIRE TESTING OF FIRE EXTINGUISHING SYSTEMS FOR PROTECTION OF
		COMMERCIAL COOKING EQUIPMENT
UL 464	-	AUDIBLE SIGNALING DEVICES FOR FIRE ALARM AND SIGNALING SYSTEMS, INCLUDING ACCESSORIES

AUDIBLE SIGNALING DEVICES FOR FIRE ALARM AND SIGNALING SYSTEMS, INCLUDING ACCESSORIES UL 464 UL 521 STANDARD FOR HEAT DETECTORS FOR FIRE PROTECTIVE SIGNALING SYSTEMS STANDARD FOR SIGNALING DEVICES FOR THE HEARING IMPAIRED UI 1971 STANDARD FOR BLEACHERS, FOLDING AND TELESCOPIC SEATING, AND GRANDSTANDS

DSA GENERAL NOTES

- 1. CHANGES TO THE APPROVED DRAWINGS AND SPECIFICATIONS SHALL BE MADE BY AN ADDENDUM OR A CONSTRUCTION CHANGE DOCUMENT APPROVED BY THE DIVISION OF THE STATE ARCHITECT (DSA), AS REQUIRED BY SECTION 4-338(b), PART 1, TITLE 24, CALIFORNIA CODE OF REGULATIONS (CCR). NOT WITH STANDING OTHER PROVISIONS OF THE PROJECT SPECIFICATIONS, COMPLY WITH ALL PROVISIONS OF THE CALIFORNIA BUILDING STANDARDS ADMINISTRATIVE CODE (PART 1, TITLE 24, CCR), SECTION 4-338, FOR ALL ADDENDUM AND CONSTRUCTION CHANGE DOCUMENTS.
- CONSTRUCTION CHANGE DOCUMENTS MUST BE SIGNED BY ALL THE FOLLOWING: ARCHITECT OR ENGINEER HAVING GENERAL RESPONSIBLE CHARGE OF THE PROJECT, AND STRUCTURAL ENGINEER OF RECORD OR DELEGATED PROFESSIONAL ENGINEER (WHEN APPLICABLE). 3. SUBSTITUTIONS AFFECTING DSA REGULATED ITEMS (ACCESSIBILITY, STRUCTURAL ENGINEER, AND FIRE/LIFE/SAFETY) SHALL BE CONSIDERED AS A
- CONSTRUCTION CHANGE DOCUMENT, AND SHALL BE APPROVED BY DSA PRIOR TO FABRICATION AND INSTALLATION IN ACCORDANCE WITH DSA IR A-6 AND SECTION 4-338(b), PART 1, TITLE 24, CCR. SUBSTITUTIONS SHALL BE FOR ANY MATERIALS, SYSTEMS OR PRODUCT THAT WOULD OTHERWISE BE REGULATED 4. A DSA-CERTIFIED PROJECT INSPECTOR WITH CLASS 3 CERTIFICATION, EMPLOYED BY THE DISTRICT (OWNER) AND APPROVED BY THE ARCHITECT AND BY
- THE DIVISION OF THE STATE ARCHITECT, SHALL PROVIDE CONTINIOUS INSPECTION OF THE WORK. THE DUTIES OF THE PROJECT INSPECTOR ARE DEFINED IN SECTION 4-342, CALIFORNIA BUILDING ADMINISTRATIVE CODE (PART 1, TITLE 24, CCR). . A DSA-ACCEPTED TESTING LAB, EMPLOYED BY THE DISTRICT (OWNER), SHALL CONDUCT ALL REQUIRED TESTS AND INSPECTIONS OF THE WORK. . THE DSA-CERTIFIED PROJECT INSPECTOR AND DSA-ACCEPTED TESTING LAB SHALL BE EMPLOYED AND PAID BYTHE OWNER (DISTRICT) AND APPROVED BY
- ALL OF THE FOLLOWING: ARCHITEC OR ENGINEER HAVING GENERAL RESPONSIBLE CHARGE OF THE PROJECT; STRUCTURAL ENGINEER OF RECORD; AND DIVISION OF THE STATE ARCHITECT (DSA). THE INSPECTOR OF RECORD FOR THIS PROJECT SHALL BE CLASS 3 OR BETTER 7. ALL WORK SHALL CONFORM TO 2019 TITLE 24, CALIFORNIA CODE OF REGULATIONS (CCR). 8. A DSA ACCEPTED TESTING LABORATORY DIRECTLY EMPLOYED BY THE DISTRICT (OWNER) SHALL CONDUCT ALL THE REQUIRED TESTS AND INSPECTIONS
- FOR THE PROJECT 9. THE INTENT OF THESE DRAWINGS AND SPECIFICATIONS IS THAT THE WORK OF THE ALTERATION, REHABILITATION OR RECONSTRUCTION IS TO BE IN ACCORDANCE WITH TITLE 24, CCR. SHOULD ANY EXISTING CONDITIONS SUCH AS DETERIORATION OR NON-COMPLYING CONSTRUCTION BE DISCOVERED WHICH IS NOT COVERED BY THE CONTRACT DOCUMENTS WHEREIN THE FINISHED WORK WILL NOT COMPLY WITH TITLE 24, CCR, A CONSTRUCTION CHANGE DOCUMENT (CCD), OR A SEPARATE SET OF PLANS AND SPECIFICATIONS, DETAILING AND SPECIFYING THE REQUIRED WORK SHALL BE SUBMITTED TO AND APPROVED BY DSA BEFORE PROCEEDING WITH THE WORK. (SECTION 4-317(C), PART 1, TITLE 24, CCR
- 10. FABRICATION AND INSTALLATION OF DEFFERED SUBMITTAL ITEMS SHALL NOT BE STARTED UNTIL CONTRACTOR'S DRAWINGS, SPECIFICATIONS, AND ENGINEERING CALCULATIONS FOR THE ACTURAL SYSTEMS TO BE INSTALLED HAVE ACCEPTED AND SIGNED BY THE ARCHITECT OR STRUCTURAL ENGINEER AND APPROVED BY DSA. LIST DEFFERED SUBMITTAL ITEMS FOR THIS PROJECT. (IF THIS PROJECT HAS NO DEFFERED SUBMITTAL ITEMS, PLEASE INDICATE AS SUCH. 11. GRADING PLANS, DRAINAGE IMPROVEMENTS, ROAD AND ACCESS REQUIREMENTS AND ENVIRONMENTAL HEALTH CONSIDERATIONS SHALL COMPLY WITH ALL LOCAL ORDINANCES.
- 12. THE CALIFORNIA ENERGY CODE SECTION 10-103 REQUIRES ACCEPTANCE TESTING ON ALL NEWLY INSTALLED LIGHTING CONTROLS, MECHANICAL SYSTEMS, ENVELOPES, AND PROCESS EQUIPMENT AFTER INSTALLATION AND BEFORE PROJECT COMPLETION. AN ACCEPTANCE TEST IS A FUNCTIONAL PERFORMANCE TEST TO HELP ENSURE THAT NEWLY INSTALLED EQUIPMENT IS OPERATING AND IN COMPLIANCE WITH THE ENERGY CODE 13. LIGHTING CONTROLS ACCEPTANCE TESTS MUST BE PERFORMED BY CERTIFIED LIGHTING CONTROLS ACCEPTANCE TEST TECHNICIAN (ATT).
- 14. MECHANICAL SYSTEM ACCEPTANCE TEST MUST BE PERFORMED BY A CERTIFIED MECHANICAL ATT FOR PROJECTS SUBMITTED ON OR AFTER OCTOBER 1 15. ENVELOPE AND PROCESS EQUIPMENT ACCEPTANCE TESTS SHALL BE PERFORMED BY THE INSTALLING CONTRACTOR, ENGINEER/ARCHITECT OR RECORD OR THE OWNER'S AGENT.
- 16. A LISTING OF CERTIFIED ATT CAN BE FOUND AT HTTPS://WWW.ENERGY.CA.GOV/PROGRAMS-AND-TOPICS/PROGRAMS/ACCEPTANCE-TESTING-TECHNICIAN-CERTIFICATION-PROVIDER-PROGRAM/ACCEPTANCE.COM 17. THE ACCEPTANCE TESTING PROCEDURES MUST BE REPEATED, AND DEFICIENCIES MUST BE CORRECTED BY THE BUILDER OR INSTALLING CONTRACTOR
- UNTIL THE CONSTRUCTION/INSTALLATION OF THE SPECIFICED SYSTEMS CONFORM AND PASS THE REQUIRED ACCEPTANCE CRITERIA. 18. PROJECT INSPECTORS WILL COLLECT THE FORMS TO CONFIRM THAT THE REQUIRED ACCEPTANCE TESTS HAVE BEEN COMPLETED.

MECHANICAL ENGINEER DLR GROUP 700 FLOWER ST 22ND FLOOR LOS ANGELES, CA 90017 CONTACT: TONG FANG (DONNA) ZHAO PH: 213.444.0610 DZHAO@DLRGROUP.COM

2016 ADDITION

2013 ADDITION

2016 ADDITION

2017 ADDITION

2017 ADDITION 2013 ADDITION

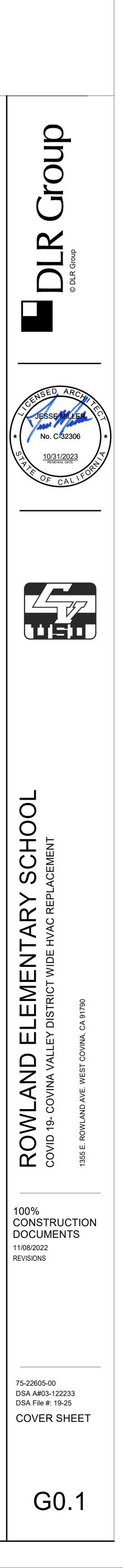
2016 ADDITION

2016 ADDITION

2016 ADDITION

2015 ADDITION

2005 (R2010)


2003 ADDITION

1999 ADDITION

2017 ADDITION

2002 (R2010)

(CA AMENDED)

ATIONS

GENER	AL ABBREVIATION
#	NUMBER
&	AND
@	AT
ADA	AMERICANS WITH DISABILITY ACT
ADDN	ADDITION OR ADDITIONAL
AFF	ABOVE FINISHED FLOOR
AFG	ABOVE FINISHED GRADE
AHJ	AUTHORITY HAVING JURISDICTION
ALT	ALTERNATE
ANSI	AMERICAN NATIONAL STANDARDS INSTITUTE
APPROX	APPROXIMATE
ARCH	ARCHITECTURAL
BLDG	BUILDING
BSMT	BASEMENT
CL	CENTER LINE
CLG	CEILING
CM	CENTIMETER
CONC	CONCRETE
CONN(S)	CONNECTION(S)
CONST	CONSTRUCTION
CONTR	CONTINUOUS
CONTR	CONTRACT(OR)
CTR	CENTER
D	DEPTH
DEG	DEGREE
DEMO	DEMOLISH OR DEMOLITION
DIA	DIAMETER
DIM	DIMENSION
DIV	SPECIFICATION DIVISION
DN	DOWN
DTL	DETAIL
DWG(S)	DRAWING(S)
E	EAST
EA	EACH
EC	ELECTRICAL CONTRACTOR
EL	ELEVATION
ELEC	ELECTRICAL
ENG	ENGINEER
EQ	EQUAL
EQUIP	EQUIPMENT
EQUIV	EQUIVALENT
EXST	EXISTING
EXT	EXTERIOR
FIN	FINISHED
FL	FLOOR
FT	FEET
FUT	FUTURE
GC	GENERAL CONTRACTOR
GOVT	GOVERNMENT
H	HEIGHT
Horiz	HORIZONTAL
Ht	HEIGHT
i.e.	THAT IS
IBC	INTERNATIONAL BUILDING CODE
IN	INCH
INT	INTERIOR
LB(S)	POUND(S)
M MAX MC MECH MEZZ MFR MIN MISC MM	THOUSAND METER MAXIMUM MECHANICAL CONTRACTOR MECHANICAL MEZZANINE MANUFACTURER MINIMUM MISCELLANEOUS MILLIMETER
N	NORTH
N/A	NOT APPLICABLE
NIC	NOT IN CONTRACT
NTS	NOT TO SCALE
OC	ON CENTER
OPP	OPPOSITE
OVHD	OVERHEAD
PAR	PARALLEL
PENT	PENTHOUSE
PLYWD	PLYWOOD
QTY	QUANTITY
REQ(D)	REQUIRE(D)
REV	REVISION(S)
RM	ROOM
RND	ROUND
S	SOUTH
SCHED	SCHEDULE
SECT	SECTION
SHT	SHEET
SIM	SIMILAR
SPEC	SPECIFICATION(S)
STD	STANDARD
STL	STEEL
STOR	STORAGE
STRUCT	STRUCTURAL
SYM	SYMETRICAL
TEMP	TEMPORARY
TYP	TYPICAL
UNEX	UNEXCAVATED
UNFIN	UNFINISHED
UNO	UNLESS NOTED OTHERWISE
VERT	VERTICAL
VEST	VESTIBULE
VIF	VERIFY IN FIELD
W	WEST
W/	WITH
W/O	WITHOUT

ARCHITECTURAL ABBREVIATIONS

A/E

AB

ABS

ACC ACR

ACT

ADJ

ADJT

ADMIN

ALUM

AP

APC

ASPH

AUTO

AVG

AWP

B.O.

BCS

BD

BLK

BLKG

BLKHD

BM(S)

BRDG

BRG

BRKT

BTWN

CAB

CBD

CER

CFCI CFMF

CJA CLO

CLR

CMU COL

COM

COMB COMM

COMPR

CONFIG

CORR

CS CSTJ

CSWK

СТ

CTG

CTIG

CU

CV

CY

CYL

DB

DBL

DEPR

DEPT

DET

DG

DIAG DPFG

DR

DSN

DW

DWL(S)

DWR

EEW EEWS

EFF

EJ ELAS

ELEV

EMER

ENCL

ENTR

ERF

EUI

EW

EWC

EXP

EXP

F.O.

FAB

FB

FDN

FEC

FHC

FIG

FIX FLASH

FLEX

FLG

FLM

FO

FOC

FOF

FOM

FOS

FRT

FSS FTG

FVC

FWC

GAL

GALV

GB

GD GEN

GFA

GRAB BAR

GENERAL

GARBAGE DISPOSAL

GROSS FLOOR AREA

FOW

FLUOR

CONF

BOT

AEC

В

	ITECT/ENGINEER ARRIER STOS
ADA A ACRY	ACCESSIBLE
ACOU	ISTIC CEILING TILE SS DOOR
ADJU	STABLE
adja(Admii	CENT NISTRATION
AUTO ALUM	MATED EXTERNAL DEFIBRILLATORS
ALUM ACCE	INUM SS PANEL
	ISTIC PANEL CEILING
AUTO	MATIC
AVER ACOU	AGE ISTIC WALL PANEL
BOTT	OM OF
-	CHANGING STATION
BLOC	К
BLOC BULK	
BEAM BOTT	
BRIDO BEAR	
BRAC	KET
BATH BETW	
CABIN	IET
CHAL CERA	KBOARD MIC
CUBIC	CFEET
COLD	RACTOR FURNISHED CONTRACTOR INSTALLE
CLEA CAST	R FLOAT GLASS IRON
-	R INSULATING GLASS IN PLACE
CONT	ROL JOINT ROL JOINT ABOVE
CLOS	ET
	RETE MASONRY UNIT
COLU COMN	
COME	BINATION /UNICATIONS
COMF	PRESSIBLE
CONF	IGURATION
	RIDOR R PLATE
CARP	ET R RAIL
COUN	ITERSINK ITRUCTION JOINT
CASE	WORK
-	MIC TILE R TEMPERED FLOAT GLASS
CLEA COPP	R TEMPERED INSULATING GLASS
COME	BINATION UNIT
CUBIC	CYARD
CYLIN	IDER
DECIE	
	COLLECTOR ESS(ION)(ED)
DEPA	RTMENT
DRIN	NTION KING FOUNTAIN
DIAG	
DAMF DOOF	PROOFING
DOW	NSPOUT NOZZLE NASHER
DOWE	EL(S)
DRAV	/ER
EXPA EACH	NSION BOLT END
EMER	GENCY EYE WASH
EFFIC	IGENCY EYE WASH SHOWER
	NSION JOINT TOMERIC
ELEV	
ENCL	OSURE
	Y RESIN FLOORING
ENER EACH	GY USE INTENSITY WAY
	TRIC WATER COOLER NSION
EXPO	
FABR	
FACE FABR	OF ICATE(D)
FACE	BRICK R DRAIN
FOUN	DATION
FIRE I	EXTINGUISHER EXTINGUISHER CABINET
FIRE I	H FLOOR HYDRANT
FIRE I FIGUF	HOSE CABINET RE
FIXTU	RE
FLASI FLEXI	BLE
FLOO FULL	RING LENGTH MIRROR
FLUO	RESCENT H OPENING
FACE	OF CONCRETE
FACE	OF FINISH OF MASONRY
	OF STUD OF WALL
FIREF	PROOFING RESISTANT
	GLASS REINFORCED PANEL
FIBER	RESISTANCE TREATED
fiber Fire I Floo	
fiber Fire I Floo	ING SHOWER SEAT
FIBER FIRE I FLOO FOLD FOOT FIRE ¹	ING SHOWER SEAT ING VALVE CABINET
FIBER FIRE I FLOO FOLD FOOT FIRE ¹ FABR	ING SHOWER SEAT ING VALVE CABINET IC WALL COVERING
FIBER FIRE I FLOO FOLD FOOT FIRE [\]	ING SHOWER SEAT ING VALVE CABINET IC WALL COVERING JT
FIBER FIRE I FOOD FOLD FOOT FIRE ^V FABR GROU GAUG	ING SHOWER SEAT ING VALVE CABINET IC WALL COVERING JT SE

GLUE LAMINATED	SD
GLASS	SECY
GUARANTEED MAXIMUM PRICE	SF
GUARD RAIL	SG
GRADE	SGL
GALVANIZED RIGID STEEL	SH
GYPSUM WALL BOARD	SHM
GYPSUM	SLNT
	SM
HOLLOW CORE	SND
HAND DRYER	SNV
HIGH DENSITY FIBERBOARD	SPL
HEADER	SQ
HARDWOOD	SS
HARDWARE	SSA
HOLLOW METAL	SSS
HOUR	SST
HANDRAIL	ST
HARDWARE SET	ST
HOLLOW STRUCTURAL SHAPE	STAG'D
HEATING VENTILATING AND AIR CONDITIONING	STC
	STGR
IN ACCORDANCE WITH	SUBFL
INSIDE DIAMETER	SURF
INSIDE FACE	SUSP
INSULATED INFILL PANEL GLASS	SVF
ISOLATION JOINT	
IN JOIST SPACE	Т
INCLUDE(ING)	T&G
INSULATION	T.O.
	TAN
JANITOR	TB
JOIST BEARING ELEVATION	TBD
JUNCTION	TCP
JOINT FILLER BOARD	TERR
JOIST	TFG
JOINT	TG
	TH
KEYED CONSTRUCTION JOINT	THK
KNOCKDOWN	TI
KITCHEN HOOD	TIG
KITCHEN	TMR
	TOIL
ANGLE	TOP
LABORATORY	TRANS
LAMINATED	TT
LAVATORY	TTD
LUMBER	TTG
LOADING	TTIG
LINEAR FOOT	TW
LENGTH (LONG)	
LAMINATED GLASS	UL
LINEAR	UR
LINOLEUM	US
LOCKER	UTIL
LOCATION	
LONGITUDINAL	VB
LIFE SAFETY CODE	VB
	VCB
	VF
LUXURY VINYL TILE	VOC
	VOL
MAGNETIC	VP
MAINTENANCE	VT
MANUAL	VWC
MASONRY	
	W
MOP BASIN	WB
	WC
	WC
	WCL
	WD
	WDF
MIRROR WITH SHELF	WDW
	WG
MOUNTING	WOM
MULLION	WOM WP
	WR
NOISE CRITERIA NATIONAL FIRE PROTECTION ASSOCIATION	WRB
	WW WWF
NOMINAL	VVVVF
OUT TO OUT	YD
OVERALL	U

SECURITY HOLLOW METAL SEALANT SHEET METAL SANITARY NAPKIN DISPOSAL SANITARY NAPKIN VENDOR SOUND PRESSURE LEVEL SQUARE SOLID SURFACE STORM SHELTER AREA STAINLESS STEEL SHELF STAINLESS STEEL STONE STAIR STAGGERED SOUND TRANSMISSION CLASS STRINGER SUBFLOOR SURFACE SUSPENDED SHEET VINYL FLOORING TREAD TONGUE AND GROOVE TOP OF TANGENT TOWEL BAR TACK BOARD TOILET COMPARTMENT PARTITION TERRAZZO TINTED FLOAT GLASS TEMPERED GLASS THRESHOLD THICK(NESS) TENANT IMPROVEMENT TINTED INSULATING GLASS TILT MIRROR UNIT TOILET TOP OF PAVING TRANSVERSE TERRAZZO TILE TOILET TISSUE DISPENSER TINTED TEMPERED FLOAT GLASS TINTED TEMPERED INSULATING GLASS TACK WALL UNDERWRITERS LABORATORIES URINAL UTILITY SHELF UTILITY VAPOR BARRIER VINYL BASE VENTED COVE BASE VINYL FLOOR VOLITILE ORGANIC COMPOUND VOLUME VENEER PLASTER VINYL TILE VINYL WALL COVERING WIDE WALL BASE WATER CLOSET WALL COVERING WATER CLOSET/LAVATORY COMBINATION WOOD WOOD FLOORING WINDOW POLISHED WIRE GLASS WROUGHT IRON WALK OFF MAT WASTE RECEPTACLE WEATHER RESISTANT BARRIER

WARM WHITE

YARD

WELDED WIRE FABRIC

OVERALL

OWNER FURNISHED CONTRACTOR INSTALLED OFFICE

OWNER FURNISHED OWNER INSTALLED OPPOSITE HAND

OPENING(S)

OPERATIONAL SAFETY AND HEALTH ADMINISTRATION OPEN TO BELOW

OVERFLOW PAINT PANIC BOLT PARTICLE BOARD PRECAST CONCRETE PAPER CUP DISPENSER PORCELAIN CERAMIC TILE PANIC DEVICE PERFORATED PERPENDICULAR PATTERN GLASS PORTABLE INSTRUMENT CONNECTION PATTERN INSULATING GLASS PLATE PROPERTY LINE PLASTIC LAMINATE PLASTIC LAMINATE PLUMBING PAIR PREFABRICATED PROJECT(OR) (ION) PROJECTION SCREEN POINT POINT OF TANGENCY PAPER TOWEL DISPENSER COMBINATION TOWEL DISPENSER/RECEPTACLE PARTITION

SOUND POWER LEVEL QUARRY TILE

POLYVINYL CHLORIDE

QUARTER ROUND

RISER RADIUS RUBBER BASE REMOTE CONTROL REFLECTED CEILING PLAN ROOF DRAIN REFERENCE REFLECTED REMOVABLE RESILIENT RESILIENT FLOORING RUBBER FLOOR RECESSED FLOOR MAT ROBE HOOK ROUGH IN AND CONNECT

SINK SPRAYED ACOUSTIC TREATMENT SOUND ABSORBING WALL UNITS SPLASH BLOCK SOLID CORE SHOWER CURTAIN SEAT COVER DISPENSER SHOWER CURTAIN HOOK SHOWER CURTAIN ROD STRUCTURAL CLAY TILE

SCH

SCR

SCT

D

SOAP DISPENSER

SPANDREL GLASS

SECRETARY SQUARE FEET

SINGLE

SHOWER

GENERAL SYMBOLS

?	DETAIL NUMBER CROSS REFERENCE		EARTH
2112	SHEET NUMBER		GRAVEL
XX (A4.XX)	BUILDING ELEVATION		SAND
XX		à A	CONCRETE
XX A12.X XX	INTERIOR ELEVATION		PRECAST CONCRETE
XX			STEEL
·	- SIMILAR OR TYPICAL		STONE
? SIM	REFERENCE	$\left[\right]$	CONCRETE MASONRY UNIT
2777	WALL SECTION		BRICK VENEER
?	DETAIL REFERENCE		STEEL (LARGE SCALE)
???			GYM FLOOR
			WOOD (CONTINUOUS BLOCKING)
7777 7777	BUILDING SECTION		WOOD (NON-CONTINUOUS BLOCKING)
(X)	SHEET NOTE		WOOD (TRIM/FINISH)
			GLASS
?	REFERENCE KEYNOTE		SHINGLES
(?)	COLUMN GRID LINE		PLYWOOD (LARGE SCALE)
ROOM NAME			GYPSUM WALL BOARD
???	ROOM NUMBER/NAME		BLANKET INSULATION
xxx-xx	REVISION NUMBER		RIGID INSULATION
			SPRAY FOAM INSULATION
LEVEL XX XXX'-XX"	LEVEL ELEVATION		MINERAL WOOL INSULATION
TYP FF EL=	FINISH FLOOR		PROTECTION BOARD
100'-0"	ELEVATION		CARPET (LARGE SCALE)
100'-0"	SPOT ELEVATION		ACOUSTIC TILE (LARGE SCALE)
• • •			TILE (LARGE SCALE)
L			

SITE SYMBOLS

	PROPERTY LINE		AREA INLET
	LOT LINE	0	CURB INLET
	EASMENT LINE	•	MANHOLE
	BUILDING LINE, EXISTING	(HEAD WALL
	BUILDING LINE, NEW W/DOOR	►	FLARED END
100	OPENING AND STRUCTURAL STOOP	• ^{CO}	CLEAN OUT
100	PRIMARY CONTOUR, EXISTING	C	CAP
99	PRIMARY CONTOUR, NEW		THRUST BLOCK
99 -	SECONDARY CONTOUR, EXISTING	\mathbf{H}	VALVE
	SECONDARY CONTOUR, NEW	PIV	POST INDICATOR VALVE
1% SLOPE DOWN	SLOPE, PAVEMENT		REDUCER
\sim	DRAINAGE DITCH OR SWALE	¥FH	FIRE HYDRANT
	STREET CENTERLINE	ŢFH ¢	POWER POLE
	CURB, THICKENED EDGE		LIGHT POLE
	CURB, EXISTING		TELEPHONE MANHOLE
	CURB, NEW		TELEPHONE BOX
	PAVING CONTRACTION JOINT		
KCJ	PAVING KEYED CONSTRUCTION JOINT	•	SPRINKLER HEAD, 360°
— <u> </u>	PAVING TIED CONSTRUCTION JOINT	•	SPRINKLER HEAD, 270°
EJ	PAVING EXPANSION JOINT	0	SPRINKLER HEAD, 180°
	FENCE, SECURITY	• 00	SPRINKLER HEAD, 90°
- <u>x x x x</u>	FENCE, BARBED WIRE	⊗ ^{QC} ×"	QUICK COUPLING
-000	FENCE, CHAIN LINK	\bigotimes^{X^*}	TREE, EXISTING DECIDUOL
	FENCE, WOOD	${}^{\!$	TREE, EXISTING CONIFER
	SEED LIMIT	e	SHADE TREE
	SOD LIMIT	Lunt	
——— FD ———	FOUNDATION DRAIN, NON-PERFORATED	Entry with	ORNAMENTAL TREE
— — — FD — — — —	FOUNDATION DRAIN, PERFORATED	×	DECIDUOUS TREE
— — — PSD — — —	SUBDRAIN, PERFORATED		
S	SANITARY SEWER		SHRUB
FM	FORCE MAIN	2223	CLIPPED SHRUB
W	WATER		
F	FIRE		
G	GAS		
	HIGH PRESSURE STEAM		
MPS	MEDIUM PRESSURE STEAM		
LPS			
UGE/UGT			
— - — OHP— - —			
—— НОТ ——			
LAT	LAWN SPRINKLER LATERAL		

ARCHITECTURAL SYMBOLS

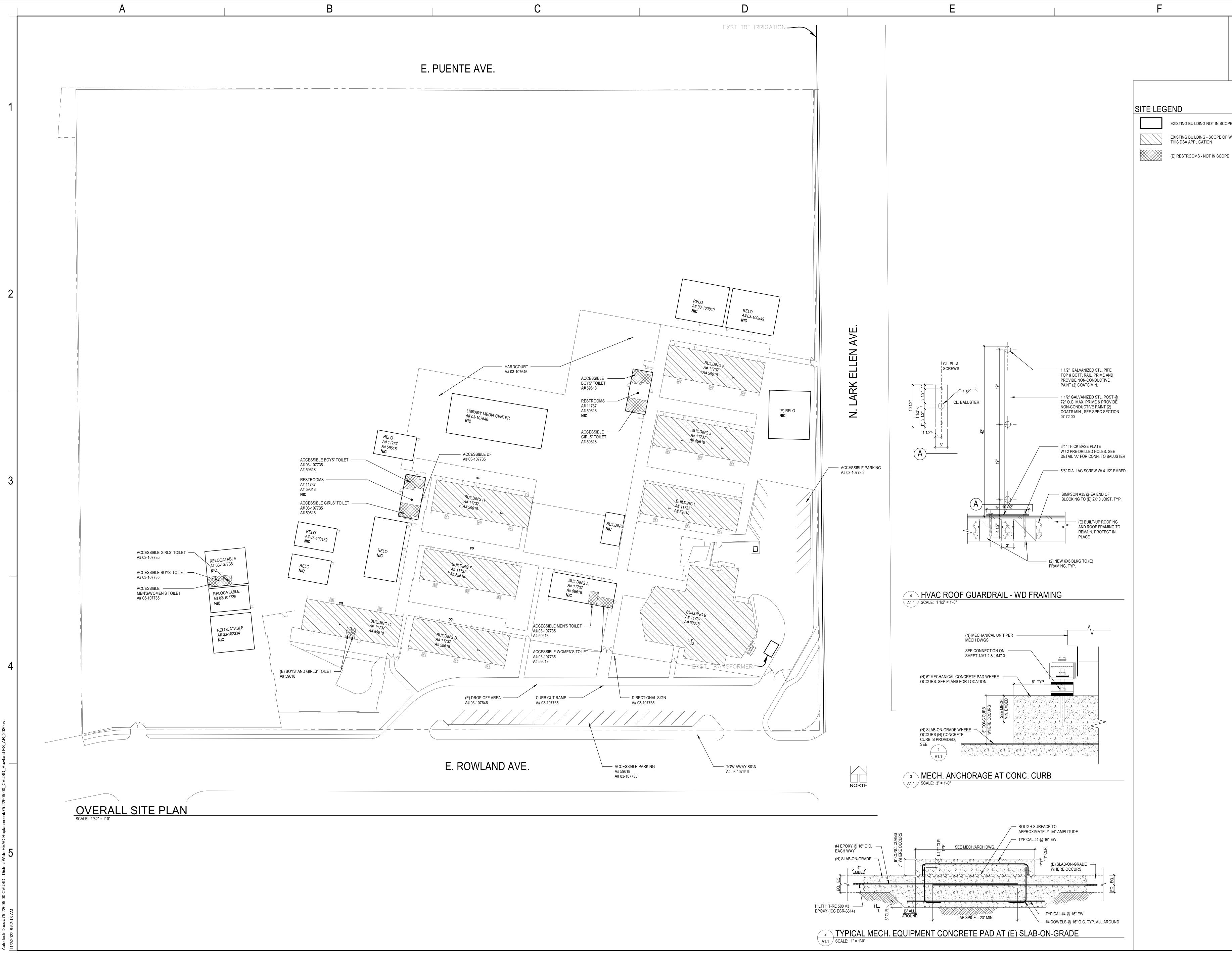
XX/A11.X XX XX/A11.X XX XX	CASEWORK ELEVATION
A110	DOOR NUMBER
A124	INTERIOR WINDOW NUMBER
~?	EXTERIOR WINDOW / CURTAIN WALL NUMBER
(XX. X. XX)	WALL TYPE
APC-1 CEILING TYPE 9' - 0" CEILING HEIGHT	CEILING TYPE

	OWNER-FURNISHED AND CONTRACTOR-INSTALLED ITEMS IN
	THE CONSTRUCTION SCHEDULE, AND SHALL COORDINATE
	WITH THE OWNER TO ACCOMMODATE THESE ITEMS.
D.	COORDINATE ALL MECHANICAL CHASE SIZES WITH THE
- ·	MECHANICAL CONTRACTOR.
F	ARCHITECTURAL FINISH FLOOR ELEVATION 100'-0" EQUALS
L.	ACTUAL SITE REFERENCE ELEVATION OF FINISH FLOOR ?????
	FEET.
F.	
	RESISTANCE-RATED CONSTRUCTION. ALL WALLS OF FIRE-
	RESISTANCE-RATED CONSTRUCTION SHALL EXTEND TO
	UNDERSIDE OF FLOOR OR ROOF DECK ABOVE.
G.	ALL PENETRATIONS THROUGH WALLS SHALL BE SEALED WITH
	PENETRATION FIRE STOPPING MATERIAL AS REQUIRED TO
	ACHIEVE THE RESPECTIVE FIRE-RESISTANCE RATING AND
	SMOKE STOPPAGE. SEE SPECIFICATION SECTION 078413.
H.	
	CONTRACTORS THE SIZE AND LOCATION OF EQUIPMENT PADS
	SHOWN ON PLANS.
1.	CONSTRUCTION DOCUMENTS ARE COMPLEMENTARY. SEE
1.	DRAWING FOR QUANTITIES AND LOCATION OF WORK. SEE
	SPECIFICATIONS FOR QUALITIES AND CONDITIONS OF WORK.
J.	WORK: ALL ASPECTS OF THE WORK AND ITEMS NOT
	SPECIFICALLY MENTIONED, BUT NECESSARY TO MAKE A
	COMPLETE WORKING INSTALLATION, SHALL BE INCLUDED AND
	INDICATED IN THE CONTRACTOR'S BID.
K.	GENERAL SHEET NOTES ONLY APPLY TO PARTICULAR
	DRAWING OR SERIES OF DRAWINGS.
L.	NO ASBESTOS OR PCB CONTAINING MATERIALS SHALL BE USED
	ON THIS PROJECT.
M.	DO NOT SCALE DRAWINGS. DIMENSIONS NOTED PREVAIL.
	NOTIFY ARCHITECT IN CASE OF DISCREPANCY.
N.	HORIZONTAL AND VERTICAL DIMENSIONS ARE MINIMUM
	DIMENSIONS. CLEARANCES ARE GIVEN TO FINISH SURFACES.
	GC TO VERIFY ALL CLEARANCES. NOTIFY ARCHITECT IN CASE
	OF DISCREPANCY.

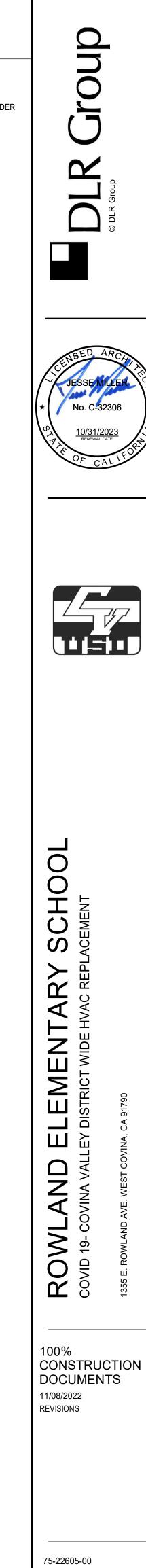
(HEAD WALL
	FLARED END
• ^{CO}	CLEAN OUT
ן	CAP
\triangleright	THRUST BLOCK
	VALVE
PIV ►◀	POST INDICATOR VALVE
\supset	REDUCER
FH	FIRE HYDRANT
e	POWER POLE
-•	LIGHT POLE
	TELEPHONE MANHOLE
3	TELEPHONE BOX
	SPRINKLER HEAD, 360°
	SPRINKLER HEAD, 270°
	SPRINKLER HEAD, 180°
•	SPRINKLER HEAD, 90°
QC	QUICK COUPLING
⊘ ^X "	TREE, EXISTING DECIDUOUS
D ^{X'}	TREE, EXISTING CONIFER
N. N	SHADE TREE
2 LUMMA	ORNAMENTAL TREE
	DECIDUOUS TREE
$\langle \rangle$	SHRUB
22	CLIPPED SHRUB

GENERAL NOTES

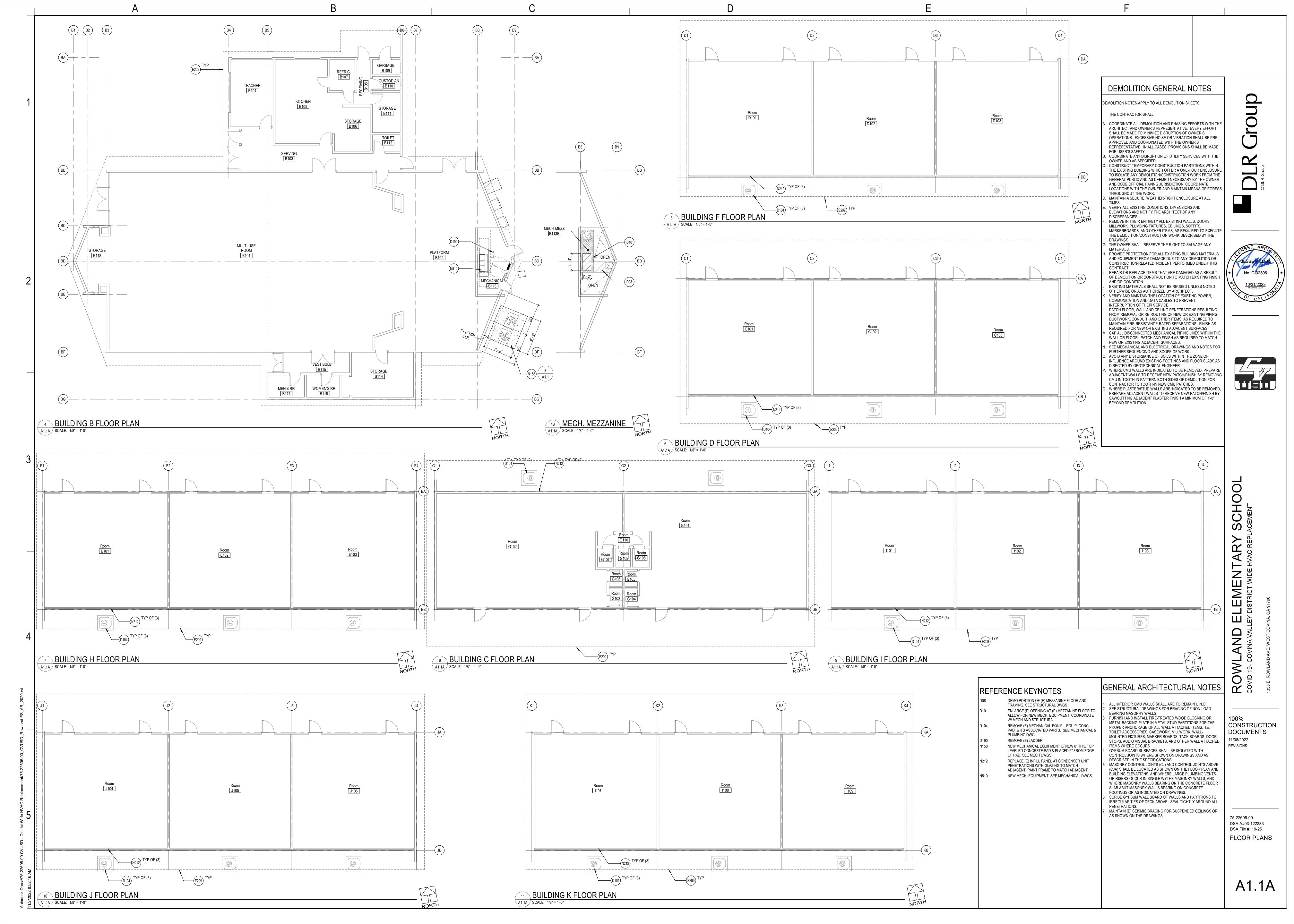
A. GENERAL NOTES APPLY TO ALL SHEETS. B. DIMENSIONS ARE ACTUAL AND ARE TO FACE OF STUDS, FACE OF CONCRETE WALLS, FACE OF CMU WALLS, FACE OF FRAMES, OR CENTERLINE OF COLUMNS, UNLESS NOTED OTHERWISE. C. INCLUDE ALL OWNER-FURNISHED AND INSTALLED ITEMS AND OWNER-FURNISHED AND CONTRACTOR-INSTALLED ITEMS IN CTION SCHEDULE, AND SHALL COORDINATE NER TO ACCOMMODATE THESE ITEMS. ALL MECHANICAL CHASE SIZES WITH THE

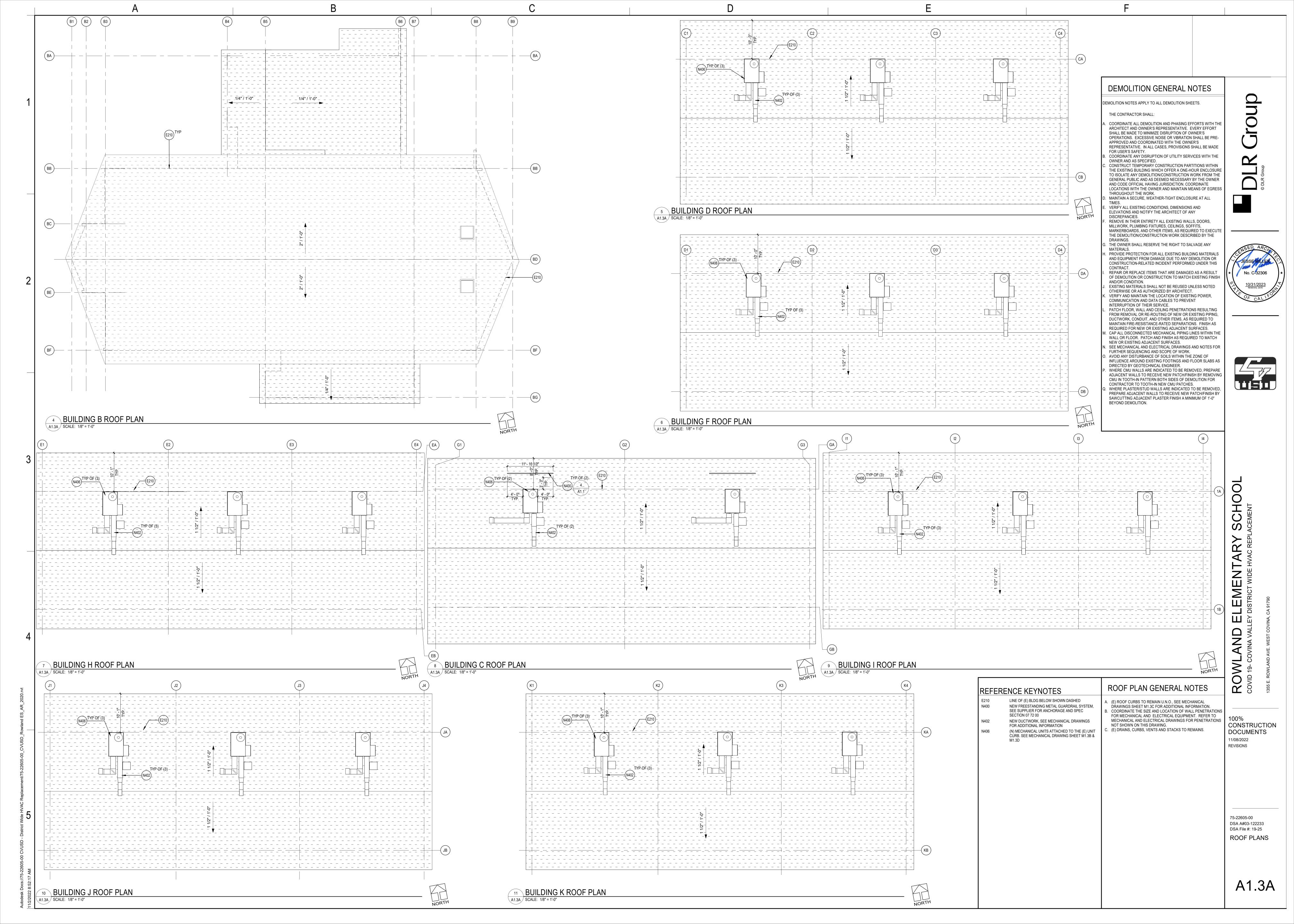


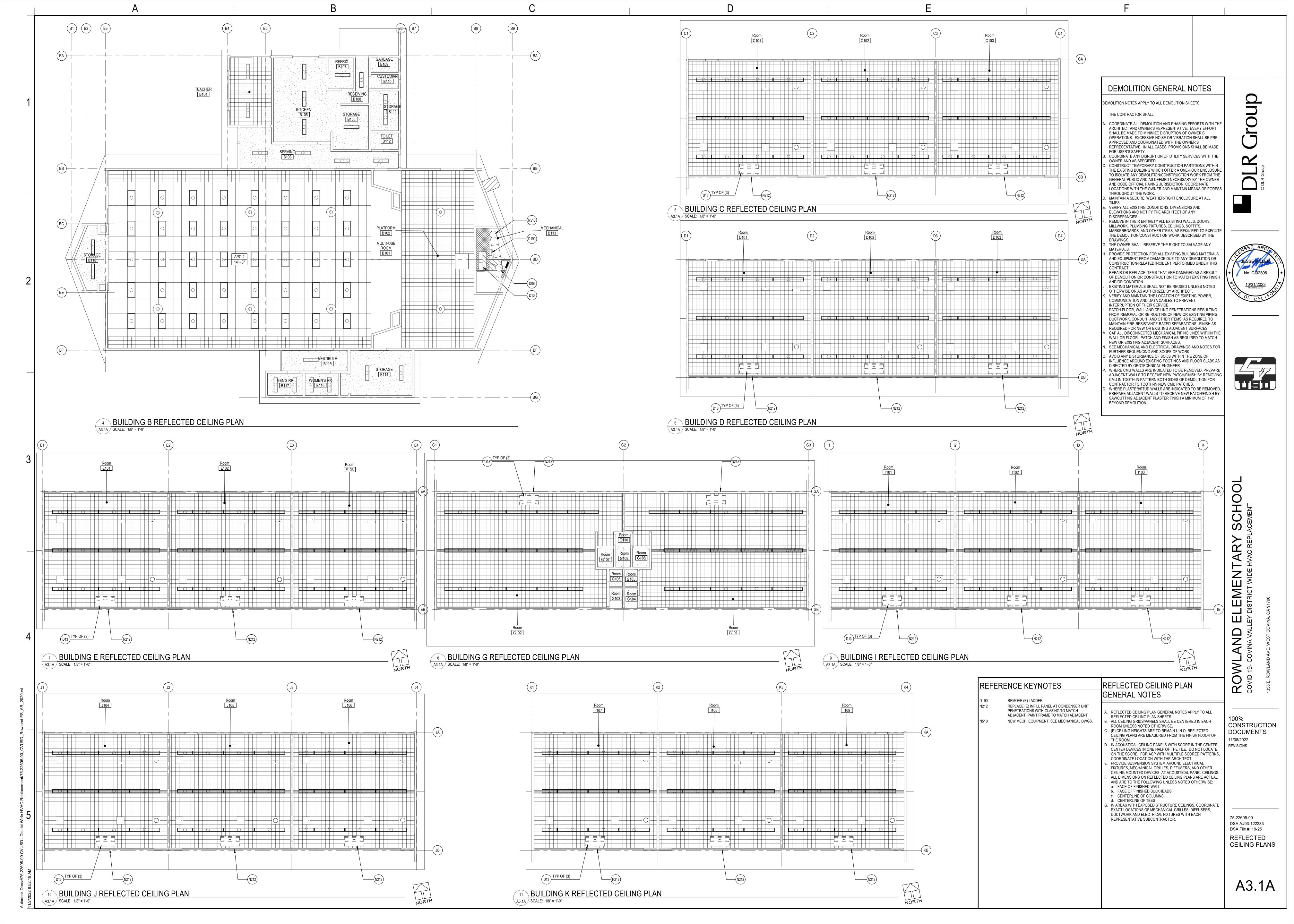
100% CONSTRUCTION DOCUMENTS 11/08/2022 REVISIONS


75-22605-00 DSA A#03-122233 DSA File #: 19-25 GENERAL NOTES, SYMBOLS AND ABBREVIATIONS

G1.1


EXISTING BUILDING NOT IN SCOPE


EXISTING BUILDING - SCOPE OF WORK UNDER THIS DSA APPLICATION



DSA A#03-122233 DSA File #: 19-25 ARCHITECTURAL SITE PLAN

A1.1

ABBREVIATIONS

(D)	DEMOLISHED	HTR
(E) (R)	EXISTING RELOCATED	HTWR HTWS
°C °F	DEGREES CELSIUS DEGREES FAHRENHEIT	HUM HV
Ø	DIAMETER	HVAC
A	AMPERE	HWR HWS
A/C AABC	AIR CONDITIONING(ER) ASSOCIATED AIR BALANCE COUNCIL	HX HZ
AAV ACC	AUTOMATIC AIR VENT ACCESSIBLE	IAQ
ACCU	AIR COOLED CONDENSING UNIT	IAQ
AD ADJ	ACCESS DOOR ADJUSTABLE	ID IH
AF	AIR FILTER	INSUL
AHRI	AIR-CONDITIONING HEATING AND REFRIGERATION INSTITUTE	КН
AHU AMB	AIR HANDLING UNIT AMBIENT	LAT
AMBA	AMERICAN BOILER MANUFACTURERS ASSOCIATION	LF
AMP	AMPERE	LG LIN
AP AS	ACCESS PANEL AIR SEPARATOR	LOX LPG
ASCE ASHRAE	AMERICAN SOCIETY OF CIVIL ENGINEERS AMERICAN SOCIETY OF HEATING	LPR LPS
	REFRIGERATION AND AIR CONDITIONING ENGINEERS	LTD
ASME	AMERICAN SOCIETY OF MECHANICAL ENGINEERS	LV LVG
AUTO	AUTOMATIC	МА
AV	ACID VENT	MAINT
B BAS	BOILER BUILDING AUTOMATION SYSTEM	MAN MATL
BAT	BATTERY	MAU MAV
BBO BC	BOILER BLOW OFF BALANCING COCK	MBH
BC BDD	BARE COPPER BACK DRAFT DAMPER	MFRG ML
BF	BOILER FEED	MPG MTD
BFF BFV	BELOW FINISH FLOOR BUTTERFLY VALVE	MTG
BHP BLKG	BREAK HORSEPOWER BLOCKING	MTWR MTWS
BLKHD BMS	BULKHEAD BUILDING MANAGEMENT SYSTEM	N.C.
BOD	BOTTOM OF DUCT	N.O.
BOT BPIP	BOTTOM BOILER PLANT INSTRUMENTATION PANEL	NEC NEMA
BTU BTUH	BRITISH THERMAL UNIT BRITISH THERMAL UNIT PER HOUR	NO NOM
C CA	CONDUIT COMBUSTION AIR	O&M OA
CAP CD	CAPACITY CONSTRUCTION DOCUMENTS	OD
CENT	CENTRIFUGAL	P P/T
CF CFH	CUBIC FEET CUBIC FEET PER HOUR	P/T PB
CFM CH	CUBIC FEET PER MINUTE CHILLER	PCF PD
CIRC	CIRCULATING	PERF
CLR CO	CLEAR CARBON MONOXIDE	PERP PG
CO2 COMB	CARBON DIOXIDE COMBINATION	PI PI
CONV	CONVECTOR	PL PLBG
CP CPS	CONDENSATE PUMP CYCLES PER SECOND	PNEU
CR CR	CONDENSER WATER RETURN CORROSION RESISTANT	PNL POC
CRAC	COMPUTER ROOM AIR CONDITIONING UNIT	PR PSI
CS CS	COUNTERSINK CONDENSER WATER SUPPLY	PVC
CT CTL	COOLING TOWER CONTROL	PWR
CU CUH	CONDENSING UNIT CABINET UNIT HEATER	RA RAD
CWR	CHILLED WATER RETURN	RAD
CWS CYL	CHILLED WATER SUPPLY CYLINDER	RAD RCP
D	DIFFUSER	RCU RD
DB	DECIBEL	REFR
DB DBL	DRY BULB DOUBLE	REM
DC DEPT	DUST COLLECTOR DEPARTMENT	RESP RF
DH	DUCT HEATER	RH RH
DI DIAG	DISTILLED WATER DIAGONAL	RHC
DIC DISCH	DISCHARGE DISCHARGE	RHG RL
DISTR	DISTRIBUTION	RPM RS
DSTB	DISTRIBUTED	RTU
EA EA	EACH EXHAUST AIR	S
EAT	ENTERING AIR TEMPERATURE	SA SC
EDH EER	ELECTRIC DUCT HEATER ENERGY EFFICIENCY RATIO	SD
EF EFF	EXHAUST FAN EFFICIENCY	SD SD
EFF	EFFICIENCY ELECTRICAL HEATER	SE SGL
ELEV	ELEVATOR	SP SPD
EMER ENCL	EMERGENCY ENCLOSURE	SQ
ENT ESP	ENTERING EXTERNAL STATIC PRESSURE	SS STOR
EST	ESTIMATE EXPANSION TANK	SUSP SV
ET EWT	ENTERING WATER TEMPERATURE	SWP
EXH EXP	EXHAUST EXPOSED	Т
F	FAHRENHEIT	T&B TA
F	FURNACE	TB TC
F.V. FA	FIELD VERIFY FACE	TD
FAB FCU	FABRICATE(D) FAN COIL UNIT	TEMP THK
FD FF	FIRE DAMPER FINISH FLOOR	TOD TS
FLEX	FLEXIBLE	TSP TT
FME FPM	FLOW MEASURING EQUIPMENT FEET PER MINUTE	
FS FSD	FLOW SWITCH FIRE SMOKE DAMPER	UC UG
FT	FIN TUBE	UH UL
G	GRILLE	UV
GA GAL	GAUGE GALLON	V
GALV GFI, GFCI	GALVANIZED GROUND FAULT CIRCUIT INTERRUPTER	VA VA
GHR	GLYCOL-WATER HEATING RETURN	VAC VAV
GHS GPD	GLYCOL-WATER HEATING SUPPLY GALLONS PER DAY	VD
GPH GPM	GALLONS PER HOUR GALLONS PER MINUTE	VEL VENT
GV	GATE VALVE	VFD VOL
HCR	HOT/CHILLED WATER RETURN	VP
HCS HGR	HOT/CHILLED WATER SUPPLY HANGER	VSMP
HID HP	HIGH INTENSITY DISCHARGE HORSE POWER	W W
HP	HEAT PUMP	WB WC
HP HPR	HIGH PRESSURE HIGH PRESSURE STEAM RETURN	WCC
HPS HR	HIGH PRESSURE STEAM SUPPLY HOUR	WFMD WH
HTG	HEATING	WLR WLS
		WES WP WT

ABBREVIATIONS

HEATER HIGH TEMPERATURE HOT WATER RETURN HIGH TEMPERATURE HOT WATER SUPPLY HUMIDIFIER HEATING VENTILATING UNIT HEATING VENTILATING AND AIR CONDITIONING HEATING WATER RETURN HEATING WATER SUPPLY HEAT EXCHANGER HERTZ (FREQUENCY) INDOOR AIR QUALITY IN ACCORDANCE WITH INSIDE DIAMETER INTAKE HOOD INSULATION KITCHEN HOOD LEAVING AIR TEMPERATURE LINEAR FOOT LENGTH (LONG) LINEAR LIQUID OXYGEN LIQUIFIED PETROLEUM GAS LOW PRESSURE STEAM RETURN LOW PRESSURE STEAM SUPPLY LINED TRANSFER DUCT LOUVER LEAVING MIXED AIR MAINTENANCE MANUAL MATERIAL MAKEUP AIR UNIT MANUAL AIR VENT THOUSAND BTU PER HOUR MANUFACTURING MOTORIZED LOUVER MEDIUM PRESSURE GAS MOUNTED MOUNTING MEDIUM TEMP HOT WATER RETURN MEDIUM TEMP HOT WATER SUPPLY NORMALLY CLOSED NORMALLY OPEN NATIONAL ELECTRIC CODE NATIONAL ELECTRICAL MANUFACTURERS ASSN NUMBER NOMINAL **OPERATION AND MAINTENANCE** OUTSIDE AIR OUTSIDE DIAMETER PUMP PRESSURE/TEMPERATURE TEST PORT PUSH BUTTON POUNDS PER CUBIC FOOT PRESSURE DROP PERFORATED PERPENDICULAR PRESSURE GAUGE POINT OF INTERSECTION PRESSURE INDICATOR PLATE PLUMBING PNEUMATIC PANEL POINT OF CONNECTION PAIR POUNDS PER SQUARE INCH POLYVINYL CHLORIDE POWER **RETURN AIR** RADIUS RADIATOR RADIATED REFLECTED CEILING PLAN RECIPROCATING CHILLER UNIT REFRIGERANT DISCHARGE REFRIGERANT REGISTER REMOVABLE RESPONSIVE RETURN FAN RELATIVE HUMIDITY REFLIEF HOOD REHEAT COIL REFRIGERANT HOT GAS REFRIGERANT LIQUID **REVOLUTIONS PER MINUTE REFRIGERANT SUCTION** ROOF TOP UNIT SMOKE DAMPER SUPPLY AIR SECURITY SMOKE DAMPER SMOKE DETECTOR SOAP DISPENSER STEAM EXHAUST VENT SINGLE STATIC PRESSURE (H2O) SURGE PROTECTION DEVICE SQUARE STAINLESS STEEL STORAGE SUSPENDED SOLENOID VALVE STEAM WORKING PRESSURE THERMOSTAT TOP AND BOTTOM TRANSFER AIR TERMINAL BOX TEMPERATURE CONTROL TRANSFER DUCT TEMPERATURE THICK(NESS) TOP OF DUCT TEMPERATURE SENSOR TOTAL STATIC PRESSURE TEMPERATURE TRANSMITTER UNIT COOLER UNDERGROUND UNIT HEATER UNDERWRITERS LABORATORIES UNIT VENTILATOR VOLT VOLT-AMPERE VALVE VACUUM VARIABLE AIR VOLUME VOLUME DAMPER VELOCITY

VENTALATOR(TION)

VACUUM PUMP

VOLUME

WIDE

WATT

WET BULB

WATER COLUMN

WATER HEATER

WATER LOOP RETURN

WATER LOOP SUPPLY

WEATHERPROOF

VARIABLE FREQUENCY DRIVE

WATER COOLED CONDENSER

WATER FLOW MEASURING DEVICE

VARIABLE SPEED MOTOR CONTROLLER

SHEET INDEX

B

M0.1 M0.2 M0.3 M0.4 M0.5 M0.6 M0.7	TITLE 24 COMPLIANCE TITLE 24 COMPLIANCE TITLE 24 COMPLIANCE TITLE 24 COMPLIANCE
M1.1 MD1.1 MD1.2 M1.1A M1.1B	MECHANICAL DEMOLITION PLANS MECHANICAL DEMOLITION PLANS MECHANICAL FLOOR PLANS
M5.1 M5.2	CONTROLS DIAGRAMS CONTROLS DIAGRAMS
M7.2 M7.3	MECHANICAL DETAILS
M8.1 MP1.1	MECHANICAL SCHEDULES
1411 1.1	

MECHANICAL MANDATORY MEASURES

EQUIPMENT AND SYSTEMS EFFICIENCY ANY APPLIANCE FOR WHICH THERE IS A CALIFORNIA STADARD ESTABLHISHED IN THE APPLIANCE EFFICIENCY STANDARDS SHALL COMPLY WITH THAT STANDARD. PIPING, EXCEPT THOSE CONVEYING FLUIDS WITH A DESIGN OPERATING TERMPERATURE BETWEEN 60°F AND 105°F, OR WITHIN SPACE-CONDITIONING EQUIPMENT CERTIFIED UNDER, §110.1 OR §110.2, SHALL BE INSULATED

IN ACCORDANCE WITH §120.3.

VENTILATION

CONTROLS SHALL BE PROVIDED TO ALLOW OUTSIDE AIR DAMPERS OR DEVICES TO BE OPERATED AT THE VENTILATION RATES AS SPECIFIED IN THESE PLANS. ALL GRAVITY VENTILATING SYSTEMS SHALL BE PROVIDED WITH AUTOMATIC OR READILY ACCESSIBLE MANUALLY OPERATED DAMPERS IN ALL OPENINGS TO THE OUTSIDE. AIR BALANCING: ALL SPACE CONDITIONING AND VENTILATION SYSTEMS SHALL BE BALANCED TO THE

(AABC) NATIONAL STANDARDS. GRAVITY OR AUTOMATIC DAMPERS INTERLOCKED AND CLOSED ON FAN SHUTDOWN SHALL BE PROVIDED ON THE OUTSIDE AIR INTAKES AND DISCHARGES OF ALL SPACE CONDITIONING AND EXHAUST SYSTEMS. FANS USED FOR VENTIALATION SHALL OPERATE CONTINUOUSLY DURING OCCUPIED HOURS.

CONTROLS

COOLING IS SHUT OFF OR REDUCED TO A MINIMUM.

SYSTEM PROVIDES MECHANICAL HEATING AND SETPU COOLING THERMOSTAT SETPOINT, IF THE SYSTEM PROVIDES MECHANICAL COOLING.

ACCESSIBLE ONLY BY AUTHORIZED PERSONNEL.

С

GENERAL SYMBOLS

POINT OF DISCONNECT - DEMOLITION REMOVED EXISTING
POINT OF CONNECTION - NEW CONNECTS TO EX
AREA NOT IN CONTRACT

GENERAL NOTES

- 1 THE MECHANICAL CONTRACTOR SHALL BE RESPONSIBLE FOR FIELD VERIFYIN TO FINAL BID, ALL EXISTING CONDITIONS FOR PLUMBING AND MECHANICAL SY WHERE FLOOR DRAINS OCCUR WITHIN THE LIMITS OF CONSTRUCTION, PREVE
- CONSTRUCTION DEBRIS FROM ENTERING DRAIN BODY BY SEALING DRAIN OPE PRIOR TO START OF WORK. UNSEAL DRAINS AT COMPLETION OF CONSTRUCT
- COORDINATE INSTALLATION OF PIPING, DUCTWORK, CONDUIT, LIGHTS, CABLE STRUCTURE, AND EQUIPMENT TO PREVENT CONFLICTS. THE CONTRACTOR SHALL BE FAMILIAR WITH ALL THE CONDITIONS BOTH EXIST
- THOSE ILLUSTRATED BY THESE DOCUMENTS AS WELL AS THOSE WHICH CAN REASONABLY ANTICIPATED INCLUDING, BUT NOT LIMITED TO ARCHITECTURAL, ELECTRICAL, VENTILATION, PLUMBING, AND OTHER SYSTEMS INVOLVED ON TH PROJECT
- FINAL PRODUCT SHALL BE A COMPLETE AND FUNCTIONING SYSTEM. AND SHAL CONFORM TO ALL REQUIREMENTS OF APPLICABLE FEDERAL, STATE, AND LOCA INCLUDING BUT NOT LIMITED TO THE INTERNATIONAL BUILDING CODE AND INTERNATIONAL MECHANICAL CODE.
- INSTALL ALL EQUIPMENT IN ACCORDANCE WITH THE RESPECTIVE MANUFACTU WRITTEN INSTALLATION INSTRUCTIONS, AT A LEVEL OF QUALITY AND WORKMA CONSISTENT WITH THE SPECIFICATIONS. FOR DETAILS, EQUIPMENT CONNECTIONS, AND PIPE SIZES NOT SHOWN ON TH
- SEGMENTS, REFER TO DETAILS, SCHEDULES, AND SPECIFICATIONS. LOCATIONS OF PIPING, DUCTWORK AND EQUIPMENT AS INDICATED ON THE DR ARE APPROXIMATE AND SUBJECT TO MINOR ADJUSTMENTS IN THE FIELD. WOF
- BE COORDINATED WITH ALL OTHER TRADES TO AVOID INTERFERENCE IN THE I REFER TO MECHANICAL SERIES DRAWINGS FOR GAS AND A.C. CONDENSATE D 9
- 10 ADJUST PIPING AND DUCTWORK SIZES TO PROPERLY CONNECT TO MECHANIC EQUIPMENT

GENERAL HVAC NOTES

- CONDENSATE DRAINS SHALL BE SUPPLIED FOR ALL COOLING EQUIPMENT. CO SHALL ENSURE PROPER INSTALLATION AND DRAINAGE AS REQUIRED BY FEDE
- STATE, AND LOCAL CODES. CONDENSATE PIPING SHALL BE TYPE "L" COPPER. ALL SUPPLY, RETURN, AND EXHAUST DUCTWORK SHALL BE RATED FOR PRESS
- CLASS OF 2" W.G. UNLESS NOTED OTHERWISE. THIS CONTRACTOR SHALL BE REQUIRED TO REPLACE FILTERS ON HVAC EQUIF AFTER ALL DUST PRODUCING CONSTRUCTION HAS BEEN COMPLETED AND PRI FINAL PUNCH.

EQUIPMENT ANCHORAGE NOTE

MEP COMPONENT ANCHORAGE NOTE

ALL MECHANICAL, PLUMBING, AND ELECTRICAL COMPONENTS SHALL BE ANCHORED AND INSTALLED PER THE DETAILS ON THE DSA APPROVED CONSTRUCTION DOCUMENTS. THE FOLLOWING COMPONENTS SHALL BE ANCHORED OR BRACED TO MEET THE FORCE AND DISPLACEMENT REQUIREMENTS PRESCRIBED IN THE 2019 CBC, SECTIONS 1617A.1.18 THROUGH 1617A.1.26 AND ASCE 7-16 CHAPTERS 13, 26 AND 30.

- ALL PERMANENT EQUIPMENT AND COMPONENTS.
- TEMPORARY, MOVABLE OR MOBILE EQUIPMENT THAT IS PERMANENTLY ATTACHED (E.G. HARD WIRED) TO THE BUILDING UTILITY SERVICES SUCH AS ELECTRICITY, GAS OR WATER. *PERMANENTLY ATTACHED" SHALL INCLUDE ALL ELECTRICAL CONNECTIONS EXCEPT PLUGS FOR 110/220 VOLT RECEPTACLES HAVING A FLEXIBLE CABLE.
- TEMPORARY, MOVABLE OR MOBILE EQUIPMENT WHICH IS HEAVIER THAN 400 POUNDS OR HAS A CENTER OF MASS LOCATED 4 FEET OR MORE ABOVE THE ADJACENT FLOOR OR ROOF LEVEL THAT DIRECTLY SUPPORT THE COMPONENT IS REQUIRED TO BE RESTRAINED IN A MANNER APPROVED BY DSA.

THE FOLLOWING MECHANICAL AND ELECTRICAL COMPONENTS SHALL BE POSITIVELY ATTACHED TO THE STRUCTURE BUT NEED NOT DEMONSTRATE DESIGN COMPLIANCE WITH THE REFERENCES NOTED ABOVE, THESE COMPONENTS SHALL HAVE FLEXIBLE CONNECTIONS PROVIDED BETWEEN THE COMPONENT AND ASSOCIATED DUCTWORK, PIPING, AND CONDUIT. FLEXIBLE CONNECTIONS MUST ALLOW MOVEMENT IN BOTH TRANSVERSE AND LONGITUDINAL DIRECTIONS:

- A. COMPONENTS WEIGHING LESS THAN 400 POUNDS AND HAVING A CENTER OF MASS LOCATED 4 FEET OR LESS ABOVE THE ADJACENT FLOOR OR ROOF LEVEL THAT DIRECTLY SUPPORT THE COMPONENT.
- B. COMPONENTS WEIGHING LESS THAN 20 POUNDS, OR IN THE CASE OF DISTRIBUTED SYSTEMS, LESS THAN 5 POUNDS PER FOOT, WHICH ARE SUSPENDED FROM A ROOF OR FLOOR OR HUNG FROM A WALL.

THE ANCHORAGE OF ALL MECHANICAL, ELECTRICAL AND PLUMBING COMPONENTS SHALL BE SUBJECT TO THE APPROVAL OF THE DESIGN PROFESSIONAL IN GENERAL RESPONSIBLE CHARGE OR STRUCTURAL ENGINEER DELEGATED RESPONSIBILITY AND ACCEPTANCE BY DSA. THE PROJECT INSPECTOR WILL VERIFY THAT ALL COMPONENTS AND EQUIPMENT HAVE BEEN ANCHORED IN ACCORDANCE WITH THE ABOVE REQUIREMENTS.

PIPING, DUCTWORK, AND ELECTRICAL DISTRIBUTION SYSTEM BRACING NOTE

PIPING, DUCTWORK, AND ELECTRICAL DISTRIBUTION SYSTEMS SHALL BE BRACED TO COMPLY WITH THE FORCES AND DISPLACEMENTS PRESCRIBED IN ASCE 7-16 SECTION 13.3 AS DEFINED IN ASCE 7-16 SECTIONS 13.6.5, 13.6.6, 13.6.7, 13.6.8; AND 2019 CBC, SECTIONS 1617A.1.24, 1617A.1.25 AND 1617A.1.26.

THE METHOD OF SHOWING BRACING AND ATTACHMENTS TO THE STRUCTURE FOR THE IDENTIFIED DISTRIBUTION SYSTEM ARE AS NOTED BELOW. WHEN BRACING AND ATTACHMENTS ARE BASED ON A PRE-APPROVED INSTALLATION GUIDE (E.G., OSHPD OPM FOR 2019 CBC OR LATER), COPIES OF THE BRACING SYSTEM INSTALLATION GUIDE OR MANUAL SHALL BE AVAILABLE ON THE JOBSITE PRIOR TO THE START OF AND DURING THE HANGING AND BRACING OF THE DISTRIBUTION SYSTEMS. THE STRUCTURAL ENGINEER OF RECORD SHALL VERIFY THE ADEQUACY OF THE STRUCTURE TO SUPPORT THE HANGER AND BRACE LOADS.

MECHANICAL PIPING (MP), MECHANICAL DUCTS (MD), PLUMBING PIPING (PP), ELECTRICAL DISTRIBUTION SYSTEMS (E):

MPX MDX PP E OPTION 1: DETAILED ON THE APPROVED DRAWINGS WITH PROJECT SPECIFIC NOTES AND DETAILS.

MP MD PP E OPTION 2: SHALL COMPLY WITH THE APPLICABLE OSHPD PRE-APPROVAL (OPM#) #0043-13.

ACCEPTANCE TESTING

MANDATORY ACCEPTANCE TESTING PER TITLE 24, PART 6 SHALL BE AS FOLLOWS: AN AABC AGENCY SHALL ACT AS THE ACCEPTANCE AGENT AND PERFORM WORK REQUIRED IN THE FOLLOWING ACCEPTANCE TESTS AS DESCRIBED IN CHAPTER 13 OF THE 2019 NONRESIDENTIAL COMPLIANCE MANUAL. THIS SHALL INCLUDE FILLING OL SIGNING, AND SUBMITTING APPLICABLE FORMS LISTED HEREIN.

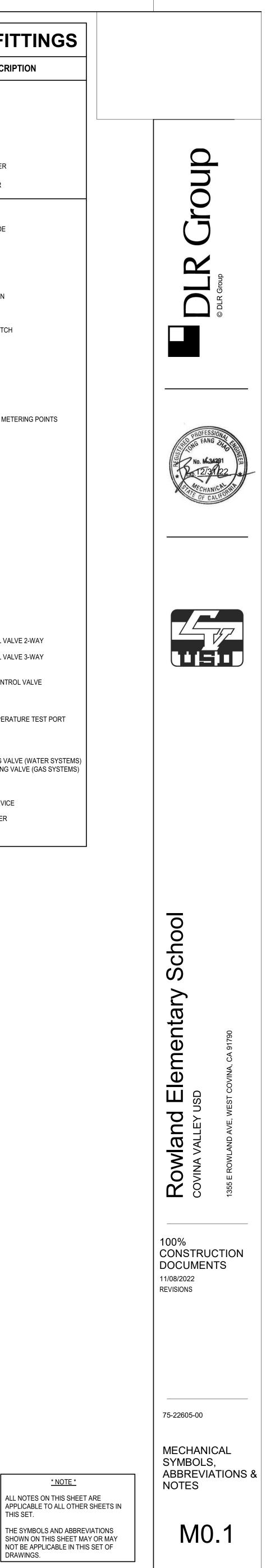
- NRCA-MCH-02-A OUTDOOR AIR ACCEPTANCE NRCA-MCH-03-A - CONSTANT VOLUME, SINGLE ZONE, UNITARY AIR CONDITIONER AND HEAT PUMP SYSTEMS. NRCA-MCH-04-A – AIR DISTRIBUTION SYSTEMS ACCEPTANCE
- NRCA-MCH-05-A AIR ECONOMIZER CONTROLS ACCEPTANCE NRCA-MCH-06-A – DEMAND CONTROL VENTILATION SYSTEMS ACCEPTANCE
- NRCA-MCH-07-A SUPPLY FAN VFD ACCEPTANCE NRCA-MCH-08-A – VALVE LEAKAGE TEST NRCA-MCH-11-A – AUTOMATIC DEMAND SHED CONTROL ACCEPTANCE
- NRCA-MCH-12-A FAULT DETECTION & DIAGNOSITCS (FDD) FOR PACKAGED DIRECT EXPANSION UNITS NRCA-MCH-13-A - AUTOMATIC FAULT DETECTION & DIAGNOSITCS (FDD) FOR AIR HANDLING UNITS & ZONE TERMINAL UNIT ACCEPTANCE
- NRCA-MCH-16-A SUPPLY AIR TEMPERATURE RESET CONTROLS ACCEPTANCE NRCA-MCH-18-A – ENERGY MANAGEMENT CONTROL SYSTEM ACCEPTANCE

ALL AIR DISTRIBUTION SYSTEM DUCTS AND PLENUMS ARE REQUIRED TO BE INSTALLED, SEALED, AND INSULATED IN ACCORDANCE WITH THE CALIFORNIA MECHANICAL CODE (CMC) SECTIONS 601, 602, 603, 604, 605, AND ANSI/SMACNA-006-2006 HVAC DUCT CONSTRUCTION STANDARDS METAL AND FLEXIBLE 3RD EDITION.

QUANTITIES SPECIFIED IN THESE PLANS, IN ACCORDANCE WITH THE ASSOCIATED AIR BALANCE COUNCIL

THE MINIMUM OUTDOOR AIR LISTED OR THREE COMPLETE AIR CHANGES SHALL BE SUPPLIED TO THE ENTIRE BLDG. DURING THE ONE HOUR PERIOD IMMEDIATELY BEFORE THE BLDG. IS NORMALLY OCCUPIED.

EACH SPACE CONDITIONING ZONE SHALL BE CONTROLLED BY AN INDIVIDUAL THERMOSTATIC CONTROL THAT RESPONDS TO THE SUPPLY OF HEATING AND COOLING ENERGY WITHIN THAT ZONE §120.2(a). WHEN USED TO CONTROL HEATING, THE THERMOSTATIC CONTROL MUST BE ADJUSTABLE UP TO 55°F OR LOWER. FOR COOLING, THE THERMOSTATIC CONTROL MUST BE ADJUSTABLE UP TO 85°F OR HIGHER. WHEN USED TO CONTROL BOTH HEATING AND COOLING, THE THERMOSTATIC THE CONTROL MUST BE ADJUSTABLE FROM 55°F TO 85°F AND ALSO PROVIDE A DEAD BAND OF AT LEAST 5°F WITHIN WHICH THE SUPPLY OF HEATING AND


EACH SPACE CONDITIONING SYSTEM SERVING BUILDING TYPES SUCH AS OFFICES AND MANUFACTURING FACILITIES (AND ALL OTHERS NOT EXPLICITLY EXEMPT FROM THE REQUIREMENTS OF SECTION 112 (D)) SHALL BE INSTALLED WITH AN AUTOMATIC TIME SWITCH WITH AN ACCESSIBLE MANUAL OVERRIDE THAT ALLOWS OPERATION OF THE SYSTEM DURING OFF-HOURS FOR UP TO 4 HOURS. THE TIME SWITCH SHALL BE CAPABLE OF PROFGRAMMING DIFFERENT SCHEDULES FOR WEEKDAYS OR WEEKENDS. INCORPORATE AN AUTOMATIC HOLIDAY "SHUTOFF" FEATURE THAT TURNS OFF ALL LOADS FOR AT LEAST 24 HOURS, THEN RESUMES THE NORMALLY SCHEDULED OPERATION; AND HAS PROGRAM BACKUP CAPABILITIES THAT PREVENT THE LOSS OF THE DEVICES PROGRAM AND TIME SETTING FOR AT LEAST 10 HOURS IF POWER IS INTERRUPTED.

SYSTEM WITH DDC TO THE §110.2(c) ARE ALSO REQUIRED TO HAVE AUTOMATIC DEMAND SHED CONTROLS. EACH SPACE CONDITIONING SYSTEM MUST BE PROVIDED WITH CONTROLS THAT CAN AUTOMATICALLY SHUT OFF THE EQUIPMENT DURING UNOCCUPIED HOURS. WHEN SHUT DOWN, THE CONTROLS SHALL AUTOMATICALLY RESTART THE SYSTEM TO MAINTAIN A SETBACK HEATING THERMOSTAT SETPOINT, IF THE

THERMOSTATS SHALL HAVE NUMERIC SETPOINTS IN DEFREES FAHRENHEIT (F) AND ADJUSTABLE STOPS

		HVAC S	YMBOLS
M	SCHEMATIC	3D	DESCRIPTION
3	∠ FEA	FEA FEA	GAS FLUE EXHAUST AIR
	► EA	EA C	GENERAL EXHAUST AIR
		GEA C	GREASE EXHAUST AIR
	RELA		RELIEF AIR
IOR			
S.			ENERGY RECOVERY AIR RETURN AIR
, ,			
ND			COMBUSTION AIR
	<u>ک</u> مم		OUTSIDE AIR
DDES,	∠ SA~		SUPPLY AIR
S P			
			GRILLE (RETURN) GRILLE (EXHAUST)
G, ALL			WALL REGISTER
			LINEAR DIFFUSER (SLOT)
			AIR FLOW MEASURING STATION
	AFMS F	AFMS r	BACKDRAFT DAMPER
	RD	RD r	BAROMETRIC RELIEF DAMPER DIFFERENTIAL PRESSURE SENSOR
CTOR			
	GD F		GRAVITY DAMPER MOTORIZED DAMPER
T O THE	PR r SB r	PR r□- SB ●□	PRESSURE REDUCING DAMPER SECURITY BARS
	SP	SP r	STATIC PRESSURE SENSOR
	VD r	VD r	VOLUME DAMPER REMOTE VOLUME DAMPER
	F 📥		
	FS A	FSD A	COMBINATION FIRE / SMOKE DAMPER SMOKE DAMPER
		$\overline{\mathbb{X}}$	ROUND DUCT UP
		\square	RECTANGULAR DUCT UP
	~	$\square $	OVAL DUCT UP
			ROUND DUCT DOWN
			RECTANGULAR DUCT DOWN
			OVAL DUCT DOWN
	(cree		
]	MITERED ELBOW WITH VANES
		- 1 -	MITERED ELBOW WITHOUT VANES
			RADIUSED ELBOW
		Creating and Compared and Com	TEE WITH VANES
			TEE WITH VAINES
			RADIUSED TEE
			DUCT WITH INSULATION
		{	
			DUCT WITH LINING
		\boxtimes	DUCT IS FABRIC
			FLEXIBLE DUCT
			TRANSFER DUCT
		0	DUCT SMOKE DETECTOR
	4		SUPPLY ARROW RETURN ARROW
		-h	EXHAUST ARROW
			DOOR UNDERCUT ARROW WITH CFM
	12	D-1	DIFFUSER, REGISTER OR GRILLE TAG NECK SIZE (00"x00" - SQ / RECT) (0"ø ROUND)
			AIR FLOW (CUBIC FEET PER MINUTE)
	24	"x12"	(WIDTH x DEPTH) SIZE INDICATED FREE AREA
		<u>DDC-xx</u>	 MECHANICAL EQUIPMENT TAG MECHANICAL EQUIPMENT CLEARANCE
		02 02	CARBON DIOXIDE SENSOR - WALL MOUNTED CARBON DIOXIDE SENSOR - CEILING MOUNTED
		20	CARBON MONOXIDE SENSOR - WALL MOUNTED
), 2	CARBON MONOXIDE SENSOR - CEILING MOUNTED HUMIDISTAT - WALL MOUNTED
	Œ	Ð	HUMIDISTAT - CEILING MOUNTED
		802 802	NITROGEN DIOXIDE SENSOR - WALL MOUNTED NITROGEN DIOXIDE SENSOR - CEILING MOUNTED
		2	PRESSURE SENSOR - WALL MOUNTED
	(PRESSURE SENSOR - CEILING MOUNTED TEMPERATURE SENSOR - WALL MOUNTED
		2	TEMPERATURE SENSOR - CEILING MOUNTED THERMOSTAT - WALL MOUNTED
	-	L	

PIPING	VALVE	S AND FITTI
SCHEMATIC	3D	DESCRIPTION
C∋		PIPE DROP
•		PIPE RISE
		PIPE TEE DOWN
<i>←</i> −−→		PIPE TEE UP
		CONCENTRIC REDUCER
<u>}</u>		ECCENTRIC REDUCER
	6	PIPE CAP
		PIPE ALIGNMENT GUIDE
→		PIPE ANCHOR
		FLOW DIRECTION
		EXPANSION JOINT
		FLEXIBLE CONNECTION
		UNION
	۶	DIRECTION OF PIPE PITCH
		AQUASTAT
		EXPANSION LOOP
		BALANCING VALVE
		BALANCING VALVE W/ METERING P
<u>ک</u> ـــــاه		BALL VALVE
		BUTTERFLY VALVE
		CHECK VALVE
⊘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		STEAM TRAP
	i constantino de la constanti	GATE VALVE
		CIRCUIT SETTER
→ · · · · · · · · · · · · · · · · · · ·		MANUAL AIR VENT
· ─ ─ ─ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		AUTOMATIC AIR VENT
		PLUG VALVE
		PRESSURE GAUGE
·₽>	<u>R</u>	SOLENOID VALVE
		ANGLE VALVE
		AUTOMATIC CONTROL VALVE 2-WA
		AUTOMATIC CONTROL VALVE 3-WA
لہ ل جــــــــــــــــــــــــــــــــــــ		AUTOMATIC FLOW CONTROL VALV
		STRAINER
$ \xrightarrow{\Psi} $		PRESSURE AND TEMPERATURE TE
		THERMOMETER
		PRESSURE REDUCING VALVE (WAT
	,, ", ", ", ", ", ", ", ", ", ", ", ", ",	PRESSURE REGULATING VALVE (G
		RELIEF VALVE
		FLOW MEASURING DEVICE
	│ ──── र⊜ा ────	BACKFLOW PREVENTER
		UNION

Α

CERTIFICATE OF COMPLIANCE				_				FORNIA ENERGY COMMISSIC NRCC-MCH		
This document is used to demonstrate compliance for	5.0	ems that are within th	e scop	e e	of the permit application	and are	demonstrating com	pliance using the prescriptive		
path outlined in <u>§140.4</u> , or <u>§141.0(b)2</u> for alteration	<i>IS.</i>						2002 00			
Project Name: Project Address:		CVUSD Rowland 1355 E Rowland Ave	1000 C. 1000 C. 100		15.87.00			(Page 1 of 4 7/29/20		
Project Address:		1355 E Rowland Ave	Date P	Pre	epared:			7/29/20		
A. GENERAL INFORMATION										
01 Project Location (city)	We	West Covina			Total Conditioned Floor A	vrea		23160		
02 Climate Zone	111	10	05	T	otal Unconditioned Floo	r Area		0		
03 Occupancy Types Within Project:					f of Stories (Habitable Al	ove Grad	le)	1		
Office (B)	Retail (M)				Non-refrigerated Wareho					
□ Hotel/ Motel Guest Rooms (R-1) □	School (E)			l F	lealthcare Facility (I)					
□ High-Rise Residential (R-2/R-3) □	Relocatable Cla	able Class Bldg (E)			Other (write in)		See Table J			
B. PROJECT SCOPE										
This table Includes mechanical systems or componen <u>§140.4</u> , or <u>§141.0(b)2</u> for alterations.	nts that are withir	the scope of the perm	it appl	lic	ation and are demonstro	nting com	pliance using the pro	escriptive path outlined in		
01		C)2			03				
Air System(s)		Wet System	Compo	on	ents	Dry System Components				
Heating Air System		Water Economize	r			\boxtimes	Air Economizer			
Cooling Air System		Pumps					Electric Resistance	e Heat		
Mechanical Controls		System Piping				\boxtimes	Fan Systems			
	, altered	Cooling Towers								
Mechanical Controls (existing to remain, or new)	881135									
		Chillers					Ventilation			

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601 Registration Provider: Energysoft

Report Generated: 2022-07-29 10:57:02

STATE OF CALIFORNIA Mechanical Systems

incentation by seems					
NRCC-MCH-E		CALIFORNI			
CERTIFICATE OF COMPLIANCE					
Project Name:	CVUSD Rowland	Report Page:			
Project Address:	1355 E Rowland Ave	Date Prepared:			

		ditioners, condensers, heat pumps, \	-							
01	02	03	04	05	06	07	08	09	10	11
RTU-H3	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	13.59	23	0	25.35	23	31.36	27.39
RTU-C1	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	15.36	26	0	30.54	30	35.91	34.15
RTU-C2	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	15.36	26	0	30.54	28	35.91	33.7
RTU-I1	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	13.59	23	0	26.59	24	31.36	27.84
RTU-I2	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	12.4	21	0	25.33	23	29.39	26.53
RTU-I3	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	13.59	23	0	26.49	24	31.36	27.39
RTU-J1	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	13.59	23	0	26.59	24	31.36	27.84
RTU-J2	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	13	22	0	25.33	23	29.39	26.53
RTU-J3	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	13.59	23	0	26.49	24	31.36	27.39
RTU-K1	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	13.59	23	0	25.45	23	31.36	27.84
RTU-K2	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	13	22	0	25.33	23	29.39	26.53
RTU-K3	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	13.59	23	0	25.35	23	31.36	27.39

§140.4(a). Healthcare facilities are excepted. ²It is common practice to show rated output capacity on the equipment schedule. Sensible cooling output comes from specification sheet tables.

³ If equipment is heating only, leave cooling output and load blank. If equipment is cooling only, leave heating output and load blank.

Registration Number: Registration Date/Time: CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance Report Version: 2019.1.003 Schema Version: rev 20200601

STATE OF CALIFORNIA Mechanical Systems

CERTIFICATE OF COMPLIANCE

NRCC-MCH-E

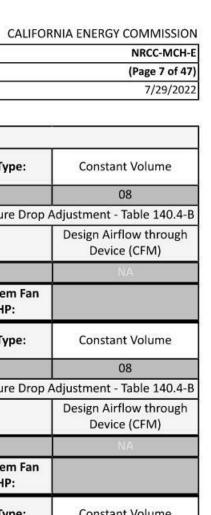
Project Name:

Project Address:

CVUSD Rowland Report Page: 1355 E Rowland Ave Date Prepared:

H. FAN SYSTEMS & AIR ECONOMIZERS System Economizer Designed per §140.4(e) and NA: <=54 kBtu/h cooling System Fan Type: RTU-D1 Economizer: Controls: Name: (m) 01 06 07 02 03 04 05 an Power Pressure Drop Adjustment - Table 140.4-B Fan Name or Maximum Design Supply Airflow Fan Function Design HP HP Unit² Item Tag (CFM) Device SF Supply 1200 BHP 0.91 Maximum System Fan Total System Design Total System Design Supply Airflow (CFM): 1200 0.91 (B)HP: Power (B)HP: System Economizer Designed per <u>§140.4(e)</u> and RTU-D2 NA: <=54 kBtu/h cooling System Fan Type: Economizer:1 Controls: Name: (m) 01 02 03 04 05 06 07 an Power Pressure Drop Adjustment - Table 140.4-B Fan Name o Aaximum Design Supply Airflow Fan Function HP Unit² Design HP Qtv Item Tag (CFM) Device SF Supply | 1 1200 BHP 0.91 Maximum System Fan Total System Design Total System Design Supply Airflow (CFM): 1200 0.91 (B)HP: Power (B)HP: System Name: Economizer Designed per §140.4(e) and RTU-D3 Economizer:¹ NA: <=54 kBtu/h cooling System Fan Type: Controls: (m) 01 02 03 04 05 06 07 Fan Power Pressure Drop Adjustment - Table 140.4-B Maximum Design Supply Airflow Fan Name or Fan Function HP Unit² Design HP Qtv Item Tag (CFM) Device BHP 0.91 SF Supply 1200 1 Total System Design Maximum System Fan 1200 Total System Design Supply Airflow (CFM): 0.91 (B)HP: Power (B)HP:

Registration Number:


CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

RGY COMMISSION
NRCC-MCH-E
(Page 4 of 47)
7/29/2022

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

Constant Volume 08 Design Airflow through Device (CFM)

NRCC-MCH-E														CALIFURNIA E	NERGY COMMISSION
CERTIFICATE C	F COMP	PLIANCE													NRCC-MCH-I
Project Name:							CVUS	D Rowland Repo	ort Page	e:					(Page 2 of 47
Project Addres	SS:					13	55 E Ro	wland Ave Date	Prepar	ed:					7/29/2023
C. COMPLIA	NCE R	ESULTS			2							·			
										Il requirements compliant for			itable b	y the user. If this t	able says "DOES
01		02		03		04		05		06	i — j	07		08	09
System Summary §110.1, §110.2, §140.4	AND	Pumps <u>§140.4(k)</u>	AND	Fans/ Economizers <u>§140.4(c)</u> , <u>§140.4(e)</u>	AND	System Controls <u>§110.2</u> , <u>§120.2</u> , <u>§140.4(f)</u>	AND	Ventilation §120.1	AND	Terminal Box Controls §140.4(d)	AND	Distribution <u>§120.3</u> , <u>§140.4(I)</u>	AND	Cooling Towers §110.2(e)2	Compliance Result
(See Table F)		(See Table G)		(See Table H)		(See Table I)		(See Table J)		(See Table K)		(See Table L)		(See Table M)	
Yes	AND		AND	Yes	AND	Yes	AND	Yes	AND		AND	Yes	AND		COMPLIES
				Mandatory	Measu	ires Complian	ce (See	Table Q for D	etails)				COMP	LIES	2
D. EXCEPTIC	NAL C											1			
	Nese Autoria		able co	omments beca	use of	selections mad	de or de	ata entered in	tables	throughout the	e form.	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			

Registration Number:

STATE OF CALIFORNIA

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

CVUSD Rowland Report Page:

1355 E Rowland Ave Date Prepared:

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

STATE OF CALIFORNIA Mechanical Systems NRCC-MCH-E

CERTIFICATE OF COMPLIANCE Project Name:

Project Address:

ry System Equipme	nt Sizing (includes air conditioners,	condensers, heat	pumps, VRF, furna	ces and unit h	neate	ers)				
01	02	03 04 05 06		06	07	08	09	10 11		
Authority Having Ju	risdiction may ask for load calculatio	ns used for compli	ance per <u>§140.4(b</u>	<u>)</u> .						
ry System Equipme	nt Efficiency (other than Package Te	rminal Air Conditi	oners (PTAC) and	Package Termi	inal H	Heat Pumps (PT	HP))			
01	02	03	04	05		06		07	08	09
			Heati	ng Mode		2			Cooling Mod	e
Name or Item Tag			Efficiency Unit	Minimum Efficiency Required per Tables 110.2 / Title 20		Design Efficiend	y Efficio	ency Unit	Minimum Efficiency Required pe Tables 110.2 Title 20	
FCU/CU-B1	>=135,000 and <240,000		СОР	3.2		3.5		EER IEER	10.6 11.6	10.7 12.5
RTU-D1	<65,000		HSPF	7.7		13		SEER	13.0	14.3
RTU-D2	<65,000		HSPF	7.7		13		SEER	13.0	14.3
RTU-D3	<65,000		HSPF	7.7		13		SEER	13.0	14.3
RTU-F1	<65,000		HSPF	7.7		13		SEER	13.0	14.3
RTU-F2	<65,000		HSPF	7.7		13		SEER	13.0	14.3
RTU-F3	<65,000		HSPF	7.7		13		SEER	13.0	14.3
RTU-H1	<65,000		HSPF	7.7		13		SEER	13.0	14.3
RTU-H2	<65,000		HSPF	7.7		13		SEER	13.0	14.3
RTU-H3	<65,000		HSPF	7.7		13		SEER	13.0	14.3
RTU-C1	<65,000		HSPF	7.7		13	1	SEER	13.0	14.3
RTU-C2	<65,000		HSPF	7.7		13		SEER	13.0	14.3
RTU-I1	<65,000		HSPF	7.7		13		SEER	13.0	14.3
RTU-I2	<65,000		HSPF	7.7		13		SEER	13.0	14.3
RTU-I3	<65,000		HSPF	7.7		13		SEER	13.0	14.3
RTU-J1	<65,000		HSPF	7.7		13		SEER	13.0	14.3
RTU-J2	<65,000		HSPF	7.7		13		SEER	13.0	14.3

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Report Version: 2019.1.003 Schema Version: rev 20200601 Report Generated: 2022-07-29 10:57:02

STATE OF CALIFORNIA Mechanical Systems

NRCC-MCH-E		CALIFORNIA ENERGY CO		
CERTIFICATE OF COMPLIANCE		n		
Project Name:	CVUSD Rowland Report Page:	(1		
Project Address:	1355 E Rowland Ave Date Prepared:			
H. FAN SYSTEMS & AIR ECONOMIZERS				

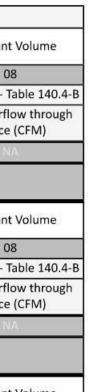
System Name:	RTU-F1	Econon	nizer:1	NA: <=54 kBtu/h cooling	Economi Control	10.007	Designe	ed per <u>§140.4(e)</u> and (m)	System Fan Type:	Constant V	
01	02		03	04	1	05		06	07	08	
Fan Name or				Maximum Design Supply	Airflow				Fan Power Pressure Drop A	Adjustment - Tal	
Item Tag	Fan Functi	on	Qty	(CFM)	Airilow	HP Unit ²		Design HP	Device	Design Airflov Device (0	
SF	Supply	s	1	1200	BHP		0.91	NA	NA		
Total System	m Design Supply	Airflow (CF	M):	1200	Total Sy (stem l B)HP:	Design	0.91	Maximum System Fan Power (B)HP:		
System Name:	RTU-F2	Econon	nizer:1	NA: <=54 kBtu/h cooling		Controls:		ed per <u>§140.4(e)</u> and (m)	System Fan Type:	Constant V	
01	02	- A	03	04			05	06	07	08	
Fan Name or	n Name or			Maximum Docign Supply	Airflow				Fan Power Pressure Drop A	Adjustment - Tal	
Item Tag	Fan Functi	on	Qty	Maximum Design Supply (CFM)	Airilow	HP Unit ²		Design HP	Device	Design Airflov Device (C	
SF	Supply	6	1	1200		BHP		0.91	NA	NA	
Total Syste	m Design Supply	Airflow (CF	M):	1200	Total Sy (stem l B)HP:	Design	0.91	Maximum System Fan Power (B)HP:		
System Name:	RTU-F3	Econon	nizer:1	NA: <=54 kBtu/h cooling	Economi Contro		Designe	ed per <u>§140.4(e)</u> and (m)	System Fan Type:	Constant V	
01	02	- A - A - A - A - A - A - A - A - A - A	03	04			05	06	07	08	
Fan Name or				Maximum Design Supply	Airflow				Fan Power Pressure Drop A	Adjustment - Tak	
Item Tag	Fan Functi	on	Qty	(CFM)	Airnow	HP Unit ²		Design HP	Device	Design Airflov Device (C	
SF	Supply	2	1	1200		E	знр	0.91	NA	NA	
Total Syste	m Design Supply	Airflow (CF	M):	1200		al System Design (B)HP:		0.91	Maximum System Fan Power (B)HP:		

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601 Registration Provider: Energysoft

Report Generated: 2022-07-29 10:57:02


NRCC-MCH-E
(Page 2 of 47)
7/29/2022
ays "DOES
09
pliance Results
COMPLIES

CALIFORNIA ENERGY COMMISSION NRCC-MCH-E (Page 5 of 47) 7/29/2022

> 11 09 ign Efficiency 10.7 12.5

14.3 14.3 14.3 Registration Provider: Energysoft

> COMMISSION NRCC-MCH-E (Page 8 of 47) 7/29/2022

nt Volume . Table 140.4-B flow through e (CFM) NA.

STATE OF CALIFORNIA Mechanical Systems

NRCC-MCH-E

Project Name:

Project Address:

CERTIFICATE OF COMPLIANCE

CVUSD Rowland Report Page: 1355 E Rowland Ave Date Prepared:

F. HVAC SYSTEM SUMMARY (DRY & WET SYSTEMS) This table is used to demonstrate compliance for mechanical equipment with mandatory requirements found in §110.1 and §110.2(a) and prescriptive requirements found in §140.4(a),

Ory System Equi	pment Sizing (includes air co	onditioners, condensers, heat pumps, VRI	F, furnaces and u	unit heaters)								
01	02	03	04	05	06	07	08	09	10	11		
				Equipment Sizing per Mechanical Schedule (kBtu/h) <u>§140.4</u> (a&b)								
		5 · · · · · · · · · · · · · · · · · · ·	Smallest Size	Hea	ating Outpu	t ^{2,3}	Cooling C	Output ^{2,3}	Load Calc	ulation		
Name or Item Tag	Equipment Category per Tables 110.2	Equipment Type per Tables 110.2 / Title 20	Available ¹ §140.4(a)	Per Design (kBtu/h)	Rated (kBtu/h)	Supp. Heating Output (kBtu/h)	Sensible Per Design (kBtu/h)	Rated (kBtu/h)	Total Heating Load (kBtu/h)	Tota Sensi Cool Loa (kBtu		
FCU/CU-B1	Unitary Heat Pumps	Air-cooled, split (3 phase)	NA: Load Controls	94.51	160	0	172.98	160	225.32	182.		
RTU-D1	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	13	22	0	22.79	23	31.36	27.8		
RTU-D2	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	12.4	21	0	21.93	22	29.39	26.5		
RTU-D3	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	13	22	0	26.49	24	31.36	27.3		
RTU-F1	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	13.59	23	0	26.59	24	31.36	27.8		
RTU-F2	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	13.59	23	0	25.33	23	29.39	26.5		
RTU-F3	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	13.59	23	0	25.35	23	31.36	27.3		
RTU-H1	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	13.59	23	0	26.59	24	31.36	27.8		
RTU-H2	Unitary Heat Pumps	Air-cooled, pkg (3 phase)	NA: Load Controls	13.59	23	0	25.33	23	29.39	26.5		

Registration Number:

STAT

M

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time:

Registration Provider: Energysoft

Report Version: 2019.1.003 Schema Version: rev 20200601

Report Generated: 2022-07-29 10:57:02

E OF CALIFORNI	A
echanical	Systems
C-MCH-E	

NRCC-MCH-E			CALIFORNIA ENERGY COMM
CERTIFICATE OF COMPLIANCE			NRCC
Project Name:	CVUSD Rowland	Report Page:	(Page
Project Address:	1355 E Rowland Ave	Date Prepared:	7/2
1/2			

Pry System Equipment	Efficiency (other than Package	Terminal Air Conditi	oners (PTAC) and	Package Terminal	Heat Pumps (PTHP	·))		
01	02	03	04	05	06	07	08	09
			Heati	ng Mode			Cooling Mode	
Name or Item Tag	Size Category (Btu/h)	Rating Condition (°F)	Efficiency Unit	Minimum Efficiency Required per Tables 110.2 / Title 20	Design Efficiency	Efficiency Unit	Minimum Efficiency Required per Tables 110.2 / Title 20	Design Effic
RTU-J3	<65,000		HSPF	7.7	13	SEER	13.0	14.3
RTU-K1	<65,000		HSPF	7.7	13	SEER	13.0	14.3
RTU-K2	<65,000		HSPF	7.7	13	SEER	13.0	14.3
RTU-K3	<65,000		HSPF	7.7	13	SEER	13.0	14.3

G. PUMPS

This section does not apply to this project.

H. FAN SYSTE	MS & AIR ECONO	MIZERS								
				escriptive requirements four be included in Table H.	nd in <u>§140</u>	.4(c), §	140.4(e) a	nd <u>§140.4(m)</u> for fan	systems. Fan systems servin	g only process loads
System Name:	FCU/CU-B1	Econon	nizer:1	NA: Special OA filtration	Econon Contre	227.75	Designe	d per <u>§140.4(e)</u> and (m)	System Fan Type:	Constant Volum
01	02		03	04			05	06	07	08
Fan Name er				Mayimum Daciga Supply	Airflow				Fan Power Pressure Drop	Adjustment - Table 14
Fan Name or Item Tag	Fan Functio	n	Qty	Maximum Design Supply (CFM)	AITHOW	HP	Unit ²	Design HP	Device	Design Airflow thr Device (CFM)
SF	Supply		1	8000		1	внр	0.91	NA	NA
Total Syste	em Design Supply A	Airflow (CF	M):	8000	Total S	ystem (B)HP:	1	0.91	Maximum System Fan Power (B)HP:	

Registration Number:

Registration Date/Time: Report Version: 2019.1.003

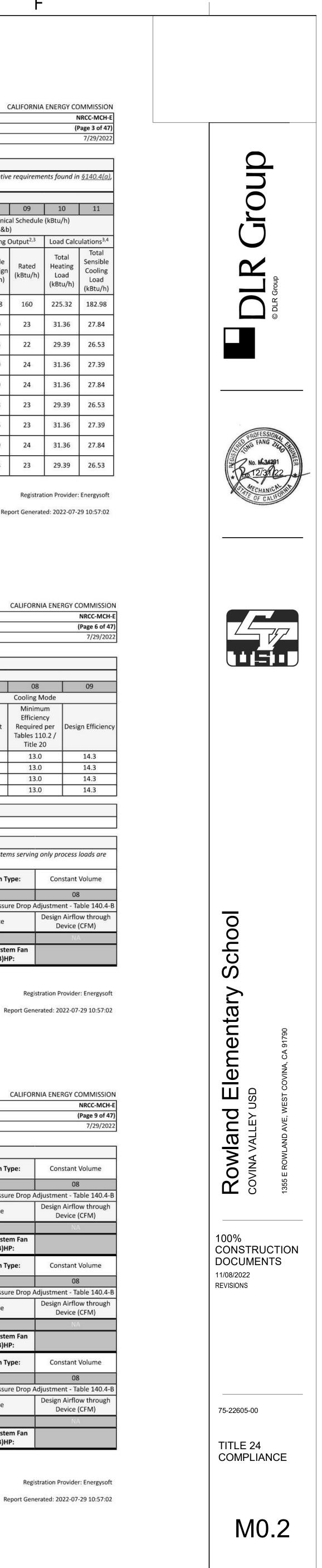
Schema Version: rev 20200601

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

STATE OF CALIFORNIA

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Mechanical Systems			
NRCC-MCH-E			CALIFORNIA ENERGY COM
CERTIFICATE OF COMPLIANCE			NRC
Project Name:	CVUSD Rowland	Report Page:	(Pag
Project Address:	1355 E Rowland Ave	Date Prepared:	7


H. FAN SYSTEN	IS & AIR ECON	OMIZERS								
System Name:	RTU-H1	Economiz	ter:1	NA: <=54 kBtu/h cooling	Econor Contro	1963 (State	Designe	d per <u>§140.4(e)</u> and (m)	System Fan Type:	Constant Volun
01	02		03	04	1	1	05	06	07	08
Fan Name ar				Maximum Design Sungly	Airflow				Fan Power Pressure Drop	Adjustment - Table 1
Fan Name or Item Tag	Fan Functi	on	Qty	Maximum Design Supply (CFM)	AITHOW	HP	9 Unit ²	Design HP	Device	Design Airflow thr Device (CFM)
SF	Supply		1	1200			внр	0.91	NA	NA
Total System	m Design Supply	Airflow (CFM)):	1200	Total S	System (B)HP:	Design	0.91	Maximum System Fan Power (B)HP:	
System Name:	RTU-H2	Economiz	er:1	NA: <=54 kBtu/h cooling	Econon Contre		Designe	d per <u>§140.4(e)</u> and (m)	System Fan Type:	Constant Volun
01	02		03	04			05	06	07	08
Fan Name or				Maximum Design Supply	Airflow				Fan Power Pressure Drop	Adjustment - Table 1
Item Tag	Fan Functi	on	Qty	(CFM)	AITTIOW	HF	⁹ Unit ²	Design HP	Device	Design Airflow thr Device (CFM)
SF	Supply		1	1200			внр	0.91	NA	NA
Total System	m Design Supply	Airflow (CFM)):	1200	Total S	System (B)HP:	Design	0.91	Maximum System Fan Power (B)HP:	
System Name:	RTU-H3	Economiz	ter:1	NA: <=54 kBtu/h cooling	Econon Contre		Designe	d per <u>§140.4(e)</u> and (m)	System Fan Type:	Constant Volun
01	02		03	04			05	06	07	08
Fan Name or				Maximum Design Supply	Airflow				Fan Power Pressure Drop	Adjustment - Table 14
Item Tag	Fan Functi	on	Qty	(CFM)	AITTIOW	HP	⁹ Unit ²	Design HP	Device	Design Airflow thr Device (CFM)
SF	Supply		1	1200			внр	0.91	NĄ	NA
Total Syster	m Design Supply	Airflow (CFM)):	1200	Total S	System (B)HP:	Design	0.91	Maximum System Fan Power (B)HP:	

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

STATE OF CALIFORNIA Mechanical Systems NRCC-MCH-E CERTIFICATE OF COMPLIANCE

Project Name: Project Address:

System Name:	RTU-C1	Econor	mizer:1	NA: <=54 kBtu/h cooling	Econon Contro	23/27/27/2	Designe	d per <u>§140.4(e)</u> and (m)	System Fan Type:	Constant Volume
01	02		03	04		1	05	06	07	08
Fan Name or		й. н		Maximum Design Supply	Airflow				Fan Power Pressure Drop A	Adjustment - Table 140.4-
Item Tag	Fan Functio	on	Qty	(CFM)	AITIOW	HP	Unit ²	Design HP	Device	Design Airflow through Device (CFM)
SF	Supply		1	1200		E	знр	0.91	NA	NA
Total Syster	m Design Supply /	Airflow (CF	M):	1200		ystem l (B)HP:	Design	0.91	Maximum System Fan Power (B)HP:	
System Name:	RTU-C2	Econor	nizer:1	NA: <=54 kBtu/h cooling	Econon Contro		Designe	d per <u>§140.4(e)</u> and (m)	System Fan Type:	Constant Volume
01	02	й	03	04			05	06	07	08
Fan Name or		* *		Maximum Design Supply	h. Airflaur				Fan Power Pressure Drop	Adjustment - Table 140.4-I
Item Tag	Fan Functio	on	Qty	(CFM)	AITTOW	HP	Unit ²	it ² Design HP	Device	Design Airflow through Device (CFM)
SF	Supply	i	1	1200		E	внр	0.91	NA	NA
Total System	m Design Supply /	Airflow (CF	M):	1200		ystem l (B)HP:	Design	0.91	Maximum System Fan Power (B)HP:	
System Name:	RTU-I1	Econor	nizer:1	NA: <=54 kBtu/h cooling	Econom Contro		Designe	d per <u>§140.4(e)</u> and (m)	System Fan Type:	Constant Volume
01	02	м ў	03	04			05	06	07	08
Fan Name or				Maximum Design Supply	Airflow				Fan Power Pressure Drop A	Adjustment - Table 140.4-I
Item Tag	Fan Functio	on	Qty	(CFM)	Annow	HP	Unit ²	Design HP	Device	Design Airflow through Device (CFM)
SF	Supply		1	1200		E	3HP	0.91	NA	NA
Total System	m Design Supply /	Airflow (CF	M):	1200		ystem l (B)HP:	Design	0.91	Maximum System Fan Power (B)HP:	

CVUSD Rowland Report Page:

1355 E Rowland Ave Date Prepared:

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Provider: Energysoft

CALIFORNIA ENERGY COMMISSION

NRCC-MCH-E

7/29/2022

(Page 10 of 47)

Report Generated: 2022-07-29 10:57:02

В

STATE OF CALIFORNIA Mechanical Systems

NRCC-MCH-E CERTIFICATE OF COMPLIANCE

Project Name:

CVUSD Rowland Report Page: 1355 E Rowland Ave Date Prepared: Project Address:

System Name:	RTU-K2	Econor	nizer:1	NA: <=54 kBtu/h cooling	Econom Contro	10.000	Designed	d per <u>§140.4(e)</u> and (m)	System Fan Type:	Constant
01	02		03	04	1	[05	06	07	0
Fan Name or				Maximum Design Supply	Airflow				Fan Power Pressure Drop	Adjustment - 1
Item Tag	Fan Functi	on	Qty	(CFM)	Airnow	HP	Unit ²	Design HP	Device	Design Airfl Device
SF	Supply	s	1	1200		I	внр	0.91	NA	N
Total System	m Design Supply	Airflow (CF	M):	1200	Total Sy	/stem (B)HP:	Design	0.91	Maximum System Fan Power (B)HP:	
System Name:	RTU-K3	Econor	nizer:1	NA: <=54 kBtu/h cooling	Econom Contro		Designed	d per <u>§140.4(e)</u> and (m)	System Fan Type:	Constant
01	02	а. С	03	04			05	06	07	0
Fan Name or				Maximum Dasign Sumplu	Aisflow	1.			Fan Power Pressure Drop	Adjustment - 1
Item Tag	Fan Functi	on	Qty	Maximum Design Supply (CFM)	Airnow	HP	Unit ²	Design HP	Device	Design Airfl Device
SF	Supply	ā	1	1200		I	знр	0.91	NA	N
Total System	n Design Supply	Airflow (CF	M):	1200	Total Sy	/stem (B)HP:		0.91	Maximum System Fan Power (B)HP:	

¹ FOOTNOTES: Computer room economizers must meet requirements of <u>§140.9(a)</u> and will be documented on the NRCC-PRC-E document. ² The unit used for HP must be consistent for all fans within a system.

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

STATE OF CALIFORNIA Mechanical Systems NRCC-MCH-E

CERTIFICATE OF COMPLIANCE

Project Name:				CV	USD Rowland	d Report Pa	ge:			
Project Address	•			1355 E	Rowland Av	e Date Prep	ared:			
J. VENTILATIO	ON AND INC	OOR AIR QUALITY					10) (A			
A DEALERS IN THE COMPANY STREET, MANAGED			가슴 옷이 많은 것이 같은 것이 같아. 옷을 가지 않는 것이 같이 같이 같이 같이 많이 많이 많이 많이 많이 많이 없다.					B for all nonresidential,	이 이 그는 것이 많은 그렇게 한 것은 것이 바람들은 것은 것이 없는 것 같아. 것이 같아.	
						2		ed to be documented in t	his table. In lieu of this t	able,
	Concernance of a service of the	nd airflows may be show			1999 Contractor (1998)	 Consideration in the rest of the second secon		procurrent and the		
01								ching the calculations ins	tead of completing this	table
02	\boxtimes	Check this box if the p	roject included	Nonresidenti	al or Hotel/	Motel spa	ces			
02		Check this box if the p	roject included	new or altere	ed high-rise	residentia	l dwelling u	nits.		
03		Check the box if the p	roject is using n	atural ventila	tion in any	nonresider	ntial or hote	el/motel spaces to meet r	equired ventilation rate	es pe
Nonresidentia	and Hotel/	Motel Ventilation Syste	ms							
	04			05				06		07
	5.		6 I D	04.0514	С г				Air Filtration per §120).1(c)
System Name		FCU/CU-B1	System Des Airfl	700	2250		n Design r Air CFM	0	Provided per §	
			AITI	ow-		Inditsiei			Hotel/	
08		09	10	11	12	13	14	15		16
		Mechanical Venti	lation Required	per <u>§120.1(c</u>) <u>3</u> ³		Exh.	Vent per <u>§120.1(c)4</u>		
Space Name ot item Tag	0	ccupancy Type ⁴	Conditioned Floor Area (ft ²)	# of Shower heads/ toilets	# of people ⁵	Required Min OA CFM	Required Min CFM	Provided per Design CFM	DCV or Sensor Con <u>§120.1(d)5</u> , a	
MPR	٨٠	embly- multiuse	3550		150	2250	0	0	DCV	
WEG	A33	embly- multiuse	3330		150	2250		Ŭ	Occ Sensor	Ν
17	Total System	Required Min OA CFM	<i></i>			2250	18	Ventilation for this	System Complies?	
	. 04			05				06		07
		3-	Custom David				- ·		Air Filtration per §120).1(c)
System Name		RTU-D1	System Des Airfl		225		n Design r Air CFM	0	Provided per <u>§:</u> Hotel/	
08	<u> </u>	09	10	11	12	13	14	15	1	16

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Date/Time:

CALIFORNIA ENERGY COMMISSION

NRCC-MCH-E

7/29/2022

(Page 11 of 47)

STATE OF CALIFORNIA **Mechanical Systems** NRCC-MCH-E

CERTIFICATE OF COMPLIANCE	
Project Name:	CVUSD Rowland Report Page:
Project Address:	1355 E Rowland Ave Date Prepared:

H. FAN SYSTEMS & AIR ECONOMIZERS Designed per §140.4(e) and System Economizer System Fan Type: RTU-I2 NA: <=54 kBtu/h cooling Constant Volume Economizer: Name: Controls: (m) 01 07 08 02 03 04 05 06 an Power Pressure Drop Adjustment - Table 140.4-B Maximum Design Supply Airflow Fan Name o Fan Function HP Unit² Design HP Design Airflow through Item Tag (CFM) Device Device (CFM) SF Supply 1200 BHP 0.91 Maximum System Fan Total System Design Total System Design Supply Airflow (CFM): 1200 0.91 (B)HP: Power (B)HP: System Economizer Designed per §140.4(e) and RTU-I3 System Fan Type: NA: <=54 kBtu/h cooling Economizer:1 Constant Volume Name: Controls: (m) 01 02 03 04 06 07 08 05 an Power Pressure Drop Adjustment - Table 140.4-B Fan Name or Maximum Design Supply Airflow Fan Function Design HP HP Unit² Design Airflow through Item Tag (CFM) Device Device (CFM) SF Supply 1200 BHP 0.91 1 Total System Design Maximum System Fan Total System Design Supply Airflow (CFM): 1200 0.91 (B)HP: Power (B)HP: Economizer Designed per §140.4(e) and System RTU-J1 NA: <=54 kBtu/h cooling System Fan Type: **Constant Volume** Economizer:1 Name: Controls: (m) 01 03 05 06 07 08 04 02 an Power Pressure Drop Adjustment - Table 140.4-B Maximum Design Supply Airflow Fan Name o Fan Function HP Unit² Design HP Design Airflow through Item Tag (CFM) Device Device (CFM) 1200 BHP 0.91 SF Supply Total System Design **Maximum System Fan** Total System Design Supply Airflow (CFM): 1200 0.91 (B)HP: Power (B)HP:

Registration Number:

STATE OF CALIFORNIA

NRCC-MCH-E

Project Name:

Project Address:

Registration Number:

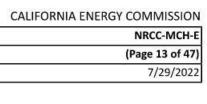
Mechanical Systems

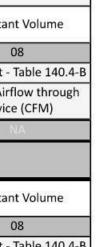
CERTIFICATE OF COMPLIANCE

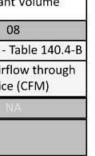
CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

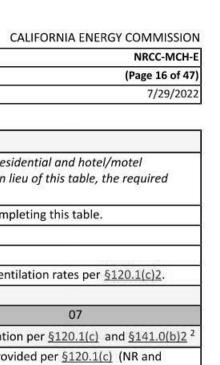
Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

CVUSD Rowland Report Page: 1355 E Rowland Ave Date Prepared:


Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02


CALIFORNIA ENERGY COMMISSION


NRCC-MCH-E


7/29/2022

(Page 14 of 47)

per §120.1(d)3, <u>120.1(e)3</u>⁶

Provided per §120.1(d)4 A: Not required space type Yes

and §141.0(b)2 (c) (NR and

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

conditioning system 01	ns. 02	03	04	05	06	07	08	09
System Name	System Zoning	Conditioned Floor Area Being Served (ft ²)	Thermostats §110.2(b) & (c) ¹ , §120.2(a)or §141.0(b)2E	Shut-Off Controls §120.2(e)	Isolation Zone Controls §120.2(g)	Demand Response §110.12 and §120.2(b)	Supply Air Temp. Reset §140.4(f)	Window Interlocks per §140.4(n)
FCU/CU-B1	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided
RTU-D1	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided
RTU-D2	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided
RTU-D3	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided
RTU-F1	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided
RTU-F2	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided
RTU-F3	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided
RTU-H1	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided
RTU-H2	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided
RTU-H3	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided
RTU-C1	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided
RTU-C2	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Date/Time:

Registration Provider: Energysoft

Report Generated: 2022-07-29 10:57:02

Mechanica NRCC-MCH-E	25							CALIFORNI	A ENERGY COMMISSIC		
CERTIFICATE OF	COMPLIANCE								NRCC-MCH		
Project Name:					land Report Page: (Page 17 of						
Project Address:			1355 E	Rowland Ave	Date Prep	ared:			7/29/20		
I. VENTILATIO	N AND INDOOR AIR QUALITY		ii' i	1							
	Mechanical Ventila	tion Required	per <u>§120.1(c</u>)	<u>3</u> ³		Exh. \	/ent per <u>§120.1(c)4</u>				
Space Name ot item Tag	Occupancy Type ⁴	Conditioned Floor Area (ft ²)	# of Shower heads/ toilets	# of people ⁵	Required Min OA CFM	Required Min CFM	Provided per Design CFM		ontrols per <u>§120.1(d)3</u> , , and <u>§120.1(e)3</u> ⁶		
classical		045		15	225		0	DCV	Provided per §120.1(d)4		
Classroom	Lecture/ postsecondary classroom	945		15	225	0	0	Occ Sensor	NA: Not required space type		
17	Total System Required Min OA CFM	0;-	S		225	18	Ventilation for this	System Complies?	Yes		
	04		05				06		07		
		System Desi	an OA CEM		Custom	Design		Air Filtration per §120.1(c) and §141.0(b)2			
System Name	RTU-D2	Airfl		225		Design Air CFM	0		120.1(c) (NR and // /Motel))		
08	09	10	11	12	13	14	15		16		
	Mechanical Ventilation Required per §120.1(<u>3</u> ³		Exh. ۱	/ent per <u>§120.1(c)4</u>				
Space Name ot item Tag	Occupancy Type ⁴	Conditioned Floor Area (ft ²)	# of Shower heads/ toilets	# of people ⁵	Required Min OA CFM	Required Min CFM	Provided per Design CFM		trols per <u>§120.1(d)3</u> , nd <u>§120.1(e)3</u> ⁶		
	Lecture/ nostsecondary classroom	945		15	225	0	0	DCV	Provided per §120.1(d)4		

Classroom Lecture/ postsecondary classroom 945 15 225 0 0 NA: Not required Occ Sensor space type 17 Total System Required Min OA CFM Ventilation for this System Complies? 225 18 Yes 04 05 06 Air Filtration per §120.1(c) and §141.0(b)2 System Design OA CFM System Design System Name RTU-D3 225 Provided per §120.1(c) (NR and Transfer Air CFM Airflow¹ Hotel/Motel)) 08 12 13 14 16 10 11 09 15

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601 Registration Provider: Energysoft

Report Generated: 2022-07-29 10:57:02

STATE OF CALIFORNIA			
Mechanical Systems			
NRCC-MCH-E			CALIFORNIA ENERGY COM
CERTIFICATE OF COMPLIANCE			NF
Project Name:	CVUSD Rowland	Report Page:	(Pag
Project Address:	1355 E Rowland Ave	Date Prepared:	

H. FAN SYSTEM	VIS & AIR ECONO	MIZERS								<i></i>
System Name:	RTU-J2	Econor	nizer:1	NA: <=54 kBtu/h cooling	Econor Contr		Designe	d per <u>§140.4(e)</u> and (m)	System Fan Type:	Constant Volu
01	02		03	04		05		06	07	08
Fan Name or		÷		Maximum Design Supply Airflow		DW/			Fan Power Pressure Drop	Adjustment - Table
Item Tag	Fan Functio	n	Qty	(CFM)	Aimow	HP Unit ²		Design HP	Device	Design Airflow t Device (CFN
SF	Supply		1	1200		BHP		0.91	NA	NA
Total Syste	m Design Supply A	Airflow (CF	M):	1200	Total S	System (B)HP:	ystem Design (B)HP: 0.91		Maximum System Fan Power (B)HP:	
System Name:	RTU-J3	Econor	nizer:1	NA: <=54 kBtu/h cooling		Economizer Desi Controls:		d per <u>§140.4(e)</u> and (m)	System Fan Type:	Constant Volu
01	02		03	04		05		06	07	08
Fan Name or				Maximum Docign Supply	Airflow			Fan Power Pressure Drop	Adjustment - Table	
Item Tag	Fan Functio	n	Qty	Maximum Design Supply (CFM)	AIIIIOW	HP Unit ²		Design HP	Device	Design Airflow t Device (CFN
SF	Supply		1	1200		BHP		0.91	NA	NA
Total Syste	m Design Supply A	Airflow (CF	M):	1200	Total S	Total System Design (B)HP:		0.91	Maximum System Fan Power (B)HP:	
System Name:	RTU-K1	Econor	nizer:1	NA: <=54 kBtu/h cooling	Econor Contr		Designe	d per <u>§140.4(e)</u> and (m)	System Fan Type:	Constant Volu
01	02	1	03	04			05	06	07	08
Fan Name or				Maximum Design Supply	Airflow			11.000 110 110.000	Fan Power Pressure Drop	Adjustment - Table
Item Tag	Fan Functio	n	Qty	(CFM)	Annow	HF	² Unit ²	Design HP	Device	Design Airflow t Device (CFN
SF	Supply	1	1	1200			внр	0.91	NA	NA
Total Syste	otal System Design Supply Airflow (CFM): 1200		1200	Total S	Total System Design (B)HP:		0.91	Maximum System Fan Power (B)HP:		

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Provider: Energysoft

STATE OF CALIFORNIA

Mechanical Syste	ems						CALIFO	RNIA ENERGY CON		
CERTIFICATE OF COMPLIA	ANCE							NR		
Project Name:			CVU	ISD Rowland Report	Page:			(Page		
Project Address:		1355 E Rowland Ave Date Prepared:								
I. SYSTEM CONTROLS	S									
RTU-I1	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided		
RTU-I2	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided		
RTU-I3	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided		
RTU-J1	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided		
RTU-J2	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided		
RTU-J3	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided		
RTU-K1	Single zone	<= 25,000 ft ²	Setback	Auto Timer Switch	4 Hour Timer	EMCS	Included	Provided		

¹FOOTNOTES: Gravity gas wall heaters, gravity floor heaters, gravity room heaters, non-central electric heaters, fireplaces or decorative gas appliances, wood stoves are not required to have setback thermostats. *Notes: Controls with a * require a note in the space below explaining how compliance is achieved. EX: system 1: SA Temp Reset: Exempt because zones compliant with §140.4(d); EXCEPTION 1 to §140.4(f)

Setback

Setback

Auto Timer

Switch

Auto Timer

Switch

Hour Timer

4 Hour Timer

EMCS

EMCS

Registration Number:

RTU-K2

RTU-K3

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Single zone <= 25,000 ft²

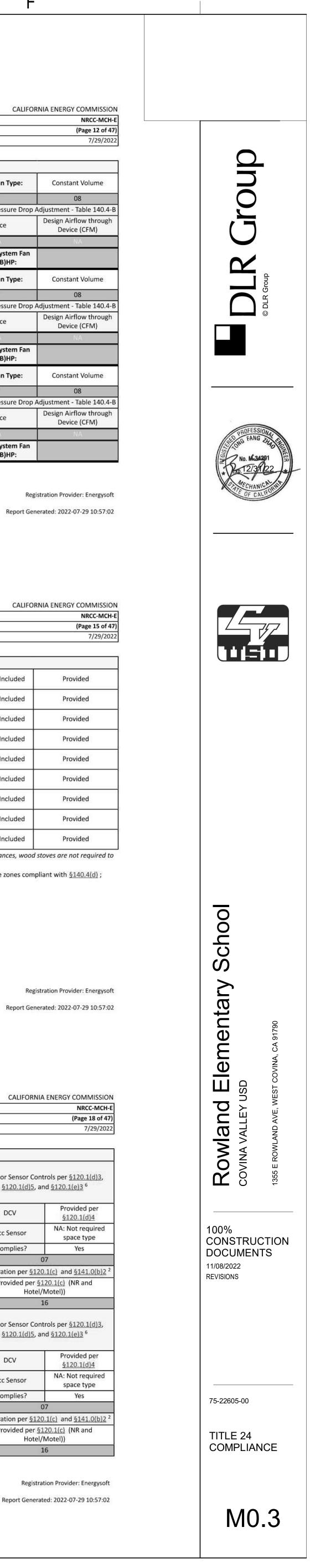
Single zone <= 25,000 ft²

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

Included

Included


STATE OF CALIFORNIA

CERTIFICATE OF	COMPLIANCE								N
Project Name:			CVI	USD Rowland	Report Pag	ge:			(Pa
Project Address:			1355 E	Rowland Ave	Date Prepa	ared:			
J. VENTILATIO	IN AND INDOOR AIR QUALITY								
	Mechanical Ventila	tion Required	per <u>§120.1(c)</u>	<u>3</u> ³		Exh. \	/ent per <u>§120.1(c)4</u>		
Space Name ot item Tag	Occupancy Type ⁴	Conditioned Floor Area (ft ²)	# of Shower heads/ toilets	# of people ⁵	Required Min OA CFM	Required Min CFM	Provided per Design CFM	DCV or Sensor Con <u>§120.1(d)5</u> , a	
Classroom	Lecture/ postsecondary classroom	945		15	225	0	0	DCV	Provid <u>§120.</u>
		545			And and a second		275	Occ Sensor	NA: Not space
17	Total System Required Min OA CFM				225	18	Ventilation for this	System Complies?	Ye
	04		05				06)7
		System Desi	gn OA CFM		System	Design		Air Filtration per §120.1(c)	
System Name	RTU-F1	Airfl		225		Air CFM	0	Provided per <u>§120.1(c)</u> Hotel/Motel))	
08	09	10	11	12	13	14	15		16
	Mechanical Ventila	tion Required	per <u>§120.1(c)</u>	<u>13</u> ³		Exh. ۱	/ent per <u>§120.1(c)4</u>		
Space Name ot item Tag	Occupancy Type ⁴	Conditioned Floor Area (ft ²)	# of Shower heads/ toilets	# of people ⁵	Required Min OA CFM	Required Min CFM	Provided per Design CFM	DCV or Sensor Con <u>§120.1(d)5</u> , a	
Classroom	Lecture/ postsecondary classroom	945		15	225	0	0	DCV	Provid <u>§120.</u>
Classicon	Lecture/ postsecondary classioon	545		15	225	U	0	Occ Sensor	NA: Not space
17	Total System Required Min OA CFM	-			225	18	Ventilation for this	System Complies?	Ye
	04		05				06)7
Ve 11 9537		System Desi	gn OA CFM	si an	System	Design		Air Filtration per §12).1(c) and §1
System Name	RTU-F2	Airfl		225	Contraction of the	Air CFM	0	Provided per <u>§</u> Hotel,	<u>120.1(c)</u> (NR 'Motel))
08	09	10	11	12	13	14	15		16

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601 Registration Provider: Energysoft

В

Mechanical Systems NRCC-MCH-E

CERTIFICATE OF COMPLIANCE

STATE OF CALIFORNIA

Project Name: Project Address:

Α

VENTILATIO	ON AND INDOOR AIR QUALITY		du'	11		a).			J. VENTILAT	ION AND INDOOR AIR QUALITY							
	Mechanical Ventila	tion Required	per §120.1(c)3 ³		Exh.	Vent per <u>§120.1(c)4</u>				Mechanical Ventila	ation Required	per <u>§120.1(c</u>	<u>)3</u> ³	3 Ex		Vent per <u>§120.1(c)4</u>	
Space Name ot item Tag	Occupancy Type ⁴	Conditioned Floor Area (ft ²)			Required Min OA CFM	Required Min CFM		DCV or Sensor Controls per <u>§120.1(d)3</u> , <u>§120.1(d)5</u> , and <u>§120.1(e)3</u> ⁶		Space Name ot item Tag		Conditioned Floor Area (ft ²)	# of Shower heads/ toilets	# of people ⁵	Required Min OA CFM	Required Min CFM	Provided per Design CFM	DCV or Sensor Contro §120.1(d)5, and
Classroom	Lecture/ postsecondary classroom	945		15	225		0	DCV	Provided per §120.1(d)4	Classroom	Lecture/ postsecondary classroom	945		15	225	0	0	DCV
Classicolli	Lecture, possecondary classicom	545		15	225			Occ Sensor	NA: Not required space type			450725			0008400	20.045		Occ Sensor
17	Total System Required Min OA CFM				225	18	Ventilation for this	System Complies?	Yes	17	Total System Required Min OA CFM				225	18	Ventilation for this	
	04		05				06		07		04		05				06	07
		System Des			6.1			Air Filtration per §12	20.1(c) and §141.0(b)2 ²			System Des	ign OA CFM		Systen	n Design		Air Filtration per §120.1
iystem Name	RTU-F3	Airf		225		n Design r Air CFM	0	Provided per <u>§120.1(c)</u> (NR and Hotel/Motel))		System Nam	e RTU-H2	Airflow ¹		225		r Air CFM	0	Provided per <u>§12</u> Hotel/W
08	09	10	11	12	13	14	15		16	08	09	10	11	12	13	14	15	16
	Mechanical Ventila	tion Required	per §120.1(c)3 ³		Exh.	Vent per <u>§120.1(c)4</u>				Mechanical Ventila	ation Required	per <u>§120.1(c</u>	<u>)3</u> ³		Exh.	Vent per <u>§120.1(c)4</u>	
Space Name ot item Tag	Occupancy Type ⁴	Conditioned Floor Area (ft ²)		# of people ⁵	Required Min OA CFM	Required Min CFM	Provided per Design CFM		ntrols per <u>§120.1(d)3</u> , and <u>§120.1(e)3</u> ⁶	Space Name ot item Tag		Conditioned Floor Area (ft ²)	# of Shower heads/ toilets	# of people ⁵	Required Min OA CFM		Provided per Design CFM	DCV or Sensor Contro §120.1(d)5, and
								DCV	Provided per §120.1(d)4	Classroom	Lecture/ postsecondary classroom	945		15	225	0	0	DCV
Classroom	Lecture/ postsecondary classroom	945		15	225	0	0	Occ Sensor	NA: Not required space type			545		15	225		·	Occ Sensor
17	Total System Required Min OA CFM				225	18	Ventilation for this	System Complies?	Yes	17	Total System Required Min OA CFM				225	18	Ventilation for this	System Complies?
	04		05				06		07		04		05				06	07
		System Des			6	Desis		Air Filtration per §12	20.1(c) and §141.0(b)2 ²		10-11-11-11-11-11-11-11-11-11-11-11-11-1	System Des	ign OA CFM	10252222	Systen	n Design	2	Air Filtration per §120.1
ystem Name	RTU-H1	Airf	-	225		n Design r Air CFM	0		<u>120.1(c)</u> (NR and //Motel))	System Nam	e RTU-H3	Airf	-	225		r Air CFM	0	Provided per <u>§12</u> Hotel/M
08	09	10	11	12	13	14	15		16	08	09	10	11	12	13	14	15	16

CALIFORNIA ENERGY COMMISSION

NRCC-MCH-E

7/29/2022

(Page 19 of 47)

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

CVUSD Rowland Report Page:

1355 E Rowland Ave Date Prepared:

Registration Provider: Energysoft

CALIFORNIA ENERGY COMMISSION

NRCC-MCH-E

(Page 22 of 47)

7/29/2022

Report Generated: 2022-07-29 10:57:02

STATE OF CALIFORNIA Mechanical Systems

NRCC-MCH-E CERTIFICATE OF COMPLIANCE Project Name: CVUSD Rowland Report Page: 1355 E Rowland Ave Date Prepared: Project Address:

				11					
J. VENTILATIO	ON AND INDOOR AIR QUALITY								
	Mechanical Ventila	tion Required	per <u>§120.1(c</u>)	<u>3</u> 3		Exh. ۱	Vent per <u>§120.1(c)4</u>		
Space Name ot item Tag			Conditioned # of Shower Floor Area heads/ (ft ²) toilets		Required Min OA CFM	Required Min CFM	Provided per Design CFM	DCV or Sensor Controls per <u>§120.1(d)3</u> §120.1(d)5, and <u>§120.1(e)3</u> ⁶	
Classroom Lecture/ postsecondary classroom		1300		15	15 225	0	0	DCV	Provided per §120.1(d)4
	Lecture/ possecondary classroom	1300		15	1000000	U	U	Occ Sensor	NA: Not required space type
17	Total System Required Min OA CFM				225	18	Ventilation for this S	System Complies?	Yes
	04	05					06	()7
		System Deci	an OA CEM		Custom			Air Filtration per §120).1(c) and §141.0(b)2 ²
System Name	RTU-I1	System Design OA CFM Airflow ¹		225	Transfer	Design Air CFM	0	Provided per <u>§120.1(c)</u> (NR and Hotel/Motel))	
08	09	10	11	12	13	14	15	/1	16
	Mechanical Ventila	tion Required	per <u>§120.1(c</u>)	<u>3</u> ³		Exh. ۱	Vent per <u>§120.1(c)4</u>		
Space Name ot item Tag	Occupancy Type ⁴	Conditioned Floor Area (ft ²)	# of Shower heads/ toilets	# of people ⁵	Required Min OA CFM	Required Min CFM	Provided per Design CFM		trols per <u>§120.1(d)3</u> , nd <u>§120.1(e)3</u> ⁶
Classroom	Lecture/ postsecondary classroom	945		15	225	0	0	DCV	Provided per §120.1(d)4
Classicolli	Lecture/ possecondary classicom	945		15	225	U	0	Occ Sensor	NA: Not required space type
17	Total System Required Min OA CFM				225	18	Ventilation for this S	System Complies?	Yes
	04	05					06	()7
		System Desi		8 8	Suctor	Design		Air Filtration per §120).1(c) and §141.0(b)2 ²
System Name	RTU-I2		System Design OA CFM Airflow ¹		Transfer		0	Provided per <u>§120.1(c)</u> (NR and Hotel/Motel))	
08	09	10	11	12	13	14	15	1	16

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

CVUSD Rowland Report Page:

people⁵ Min OA CFM Min CFM

225

 Floor Area
 heads/
 # of people⁵
 Min OA CFM
 Required Min CFM
 Provided per Design CFM

225

System Design

Transfer Air CFM

0

System Design

Transfer Air CFM

Exh. Vent per <u>§120.1(c)4</u>

Provided per Design

CFM

225 18 Ventilation for this System Complies?

Exh. Vent per §120.1(c)4

0

225 18 Ventilation for this System Complies?

15

1355 E Rowland Ave Date Prepared:

15

225

15

225

10 11 12 13 14

Conditioned # of Shower # of Required R

Report Generated: 2022-07-29 10:57:02

STATE OF CALIFORNIA Mechanical Systems NRCC-MCH-E

CERTIFICATE OF COMPLIANCE

J. VENTILATION AND INDOOR AIR QUALITY

Occupancy Type⁴

Lecture/ postsecondary classroom

RTU-K1

09

Occupancy Type⁴

Lecture/ postsecondary classroom

RTU-K2

09

17 Total System Required Min OA CFM

04

17 Total System Required Min OA CFM

04

Project Name:

Space Name

ot item Tag

Classroom

System Name

08

Space Name

ot item Tag

Classroom

System Name

08

Project Address:

Mechanical Ventilation Required per §120.1(c)3 3

945

Mechanical Ventilation Required per §120.1(c)3 3

945

onditioned # of Shower

05

05

System Design OA CFM

Airflow¹

10 11

Floor Area heads/

System Design OA CFM

Airflow¹

(ft²) toilets

CALIFORNIA ENERGY COMMISSION NRCC-MCH-E (Page 25 of 47) 7/29/2022

Registration Provider: Energysoft

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

12 13 14

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

DCV

Occ Sensor

DCV

Occ Sensor

С

D

CERTIFICATE OF	COMPLIANCE								NRCC-MCH-I
Project Name:			CV	USD Rowland	Report Par	ze:			(Page 20 of 47
Project Address	:			Rowland Ave	1.11				7/29/2022
	2 ¹								
J. VENTILATIO	ON AND INDOOR AIR QUALITY		hi (
	Mechanical Ventila	tion Required	per <u>§120.1(c</u>)	<u>3</u> ³		Exh. \	/ent per <u>§120.1(c)4</u>		
Space Name ot item Tag	Occupancy Type ⁴	Conditioned Floor Area (ft ²)	# of Shower heads/ toilets	# of people ⁵	Required Min OA CFM	Required Min CFM	Provided per Design CFM		trols per <u>§120.1(d)3</u> , nd <u>§120.1(e)3</u> ⁶
Classroom	Lastura (postsocondaru dascroom	945		15	225	0	0	DCV	Provided per §120.1(d)4
Classroom	Lecture/ postsecondary classroom	945		15	225	U	0	Occ Sensor	NA: Not required space type
17	Total System Required Min OA CFM	0; 	Se		225	18	Ventilation for this	System Complies?	Yes
	04		05				06	()7
		System Des	ign OA CEM		Sustam	Docign		Air Filtration per §120).1(c) and <u>§141.0(b)2</u> ²
System Name	RTU-H2	Airfl		225	System Transfer		0		<u>120.1(c)</u> (NR and Motel))
08	09	10	11	12	13	14	15	1	16
	Mechanical Ventila	tion Required	per <u>§120.1(c</u>)	3 ³		Exh. ۱	/ent per <u>§120.1(c)4</u>		
			A DESCRIPTION OF THE REAL PROPERTY OF THE	10/10		<u> </u>		· · · · · · · · · · · · · · · · · · ·	C400 4/ 110

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

Air Filtration per §120.1(c) and §141.0(b)2 Provided per §120.1(c) (NR and Hotel/Motel))

16

DCV or Sensor Controls per §120.1(d)3,

§120.1(d)5, and §120.1(e)3 6

Provided per

§120.1(d)4

NA: Not required

Yes

space type

STATE OF CALIFORNIA **Mechanical Systems** NRCC-MCH-E

NRCC-MCH-E			CALIFORNIA ENERGY CO
CERTIFICATE OF COMPLIANCE			N
Project Name:	CVUSD Rowland	Report Page:	(Pa
Project Address:	1355 E Rowland Ave	Date Prepared:	
3 .			

J. VENTILATIO	ON AND INDOOR AIR QUALITY								
	Mechanical Ventila	tion Required	per <u>§120.1(c</u>)	<u>3</u> 3		Exh.	Vent per <u>§120.1(c)4</u>		
Space Name ot item Tag	Occupancy Type ⁴	Conditioned Floor Area (ft ²)	# of Shower heads/ toilets	# of people ⁵	Required Min OA CFM	Required Min CFM	Provided per Design CFM	DCV or Sensor Controls per <u>§120.1(d</u> <u>§120.1(d)5</u> , and <u>§120.1(e)3</u> ⁶	
Classroom	Lecture/ postsecondary classroom	945		15	225	0	0	DCV	Provided per §120.1(d)4
Classroom	Lecture/ posisecondary classicom	945		15	225	U	U	Occ Sensor	NA: Not required space type
17	Total System Required Min OA CFM				225	18	Ventilation for this	System Complies?	Yes
	04		05				06		07
		System Desi	σn ΩΔ CFM		System	n Design		Air Filtration per §120.1(c) and §141.0	
System Name	RTU-I3	Airflo	225		Air CFM	0	Provided per <u>§120.1(c)</u> (NR and Hotel/Motel))		
08	09	10	11	12	13	14	15	1	16
	Mechanical Ventila	tion Required	per <u>§120.1(c</u>)	<u>3</u> ³	· · · · · ·	Exh.	Vent per <u>§120.1(c)4</u>	DCV or Sensor Controls per <u>§120.1(d</u> §120.1(d)5, and <u>§120.1(e)3</u> ⁶	
Space Name ot item Tag	Occupancy Type ⁴	Conditioned Floor Area (ft ²)	# of Shower heads/ toilets	# of people ⁵	Required Min OA CFM	Required Min CFM	Provided per Design CFM		
Classroom	Lecture/ postsecondary classroom	945		15	225	0	0	DCV	Provided per §120.1(d)4
Classicolli	Lecture/ possecondary classicon	945		15	225	Ū	0	Occ Sensor	NA: Not required space type
17	Total System Required Min OA CFM				225	18	Ventilation for this	System Complies? Yes	
	04		05				06		07
	System Design		gn OA CEM	S. Contractor	Sustam	Design		Air Filtration per §12	0.1(c) and <u>§141.0(b)2</u> ²
System Name	RTU-J1	Airflo	-	225	the second se	Air CFM	0	Provided per <u>§120.1(c)</u> (NR and Hotel/Motel))	
08	09	10	11	12	13	14	15	16	

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Registration Provider: Energysoft

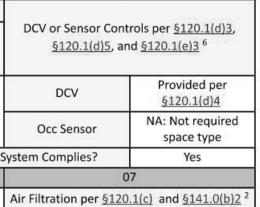
Schema Version: rev 20200601

Report Generated: 2022-07-29 10:57:02

STATE OF CALIFORNIA Mechanical Systems

CERTIFICATE OF	COMPLIANCE								NRCC-MCH	
Project Name:			CV	JSD Rowland	Report Pa	ge:			(Page 26 of 4	
Project Address:			1355 E	Rowland Ave	ve Date Prepared: 7/29/					
I. VENTILATIO	ON AND INDOOR AIR QUALITY		ίŭ ····································							
	Mechanical Ventila	tion Required	per <u>§120.1(c</u>)	<u>3</u> ³		Exh.	Vent per <u>§120.1(c)4</u>			
Space Name ot item Tag	Occupancy Type ⁴	Conditioned Floor Area (ft ²)	# of Shower heads/ toilets	# of people⁵	Required Min OA CFM	Required Min CFM	Provided per Design CFM		trols per <u>§120.1(d)3</u> , nd <u>§120.1(e)3</u> ⁶	
Classroom	Lecture/ postsecondary classroom	945		15	225	0	0	DCV	Provided per §120.1(d)4	
Classicolli	Lecture/ postsecondary classioon	945			225	U	101	Occ Sensor	NA: Not required space type	
17	Total System Required Min OA CFM				225	18	Ventilation for this	System Complies?	Yes	
	04		05				06	()7	
		System Desi	gn OA CEM		System	Docign		Air Filtration per §120	0.1(c) and <u>§141.0(b)</u> 2	
System Name	RTU-K3	Airfl	127.29 General second second	225		Air CFM	0		. <u>20.1(c)</u> (NR and Motel))	
08	09	10	11	12	13	14	15	1	.6	
	Mechanical Ventila	tion Required	per <u>§120.1(c</u>)	<u>3</u> ³		Exh. '	Vent per <u>§120.1(c)4</u>			
Space Name ot item Tag	Occupancy Type ⁴	Conditioned Floor Area (ft ²)	# of Shower heads/ toilets	# of people ⁵	Required Min OA CFM	Required Min CFM	Provided per Design CFM	DCV or Sensor Controls per <u>§120.1</u> §120.1(d)5, and <u>§120.1(e)3</u> ⁶		
Classroom	Lecture/ postsecondary classroom	045		15	225	0	0	DCV	Provided per §120.1(d)4	
Classrooth	Lecture/ postsecondary classroom	945		15	225	0	U	Occ Sensor	NA: Not required space type	
17	Total System Required Min OA CFM				225	18	Ventilation for this	System Complies?	Yes	

¹ FOOTNOTES: System CFM should include both mechanical and natural ventilation for the zone/system ² Air filtration requirements apply to the following three system types per §120.1(c)1A : space conditioning systems utilizing ducts to supply air to occupiable space; supply-only ventilation systems providing outside air to occupiable space; supply side of balanced ventilation systems including heat recovery and energy recovery ventilation systems providing outside air to occupiable space.


³ Uniform Mechanical Code may have more stringent ventilation requirements; the most stringent code requirement takes precedence. ⁴ See Standards Tables 120.1-A and 120.1-B.

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

Provided per §120.1(c) (NR and Hotel/Motel)) DCV or Sensor Controls per §120.1(d)3,

16

§120.1(d)5, and §120.1(e)3 6

16

Provided per §120.1(d)4 NA: Not required space type Yes

Air Filtration per §120.1(c) and §141.0(b)2 Provided per §120.1(c) (NR and Hotel/Motel))

E

STATE OF CALIFORNIA Mechanical Systems NRCC-MCH-E

CERTIFICATE OF COMPLIANCE Project Name:

Project Name:			CV	USD Rowlan	d Report Pa	ge:			(Page 21
Project Address	:		1355 E	Rowland Av	e Date Prep	ared:			7/2
J. VENTILATIO	ON AND INDOOR AIR QUALITY		N	11					
	Mechanical Ventila	tion Required	per <u>§120.1(c</u>)) <u>3</u> ³		Exh. \	/ent per <u>§120.1(c)4</u>		
Space Name ot item Tag	Occupancy Type ⁴	Conditioned Floor Area (ft ²)		# of people ⁵	Required Min OA CFM	Required Min CFM	Provided per Design CFM	DCV or Sensor Cor <u>§120.1(d)5</u> , a	trols per <u>§120.1(c</u> nd <u>§120.1(e)3</u> ⁶
Classroom		045		15	225	0	0	DCV	Provided pe §120.1(d)4
Classroom	Lecture/ postsecondary classroom	945		15	225	U	0	Occ Sensor	NA: Not requi
17	Total System Required Min OA CFM		ж. :		225	18	Ventilation for this	System Complies?	Yes
	04		05				06		07
		System Desi	an OA CEM		Suctor	Design		Air Filtration per §12	0.1(c) and <u>§141.0</u>
System Name	RTU-C1	Airflo		225		Air CFM	0	Provided per <u>§120.1(c)</u> (NR and Hotel/Motel))	
08	09	10	11	12	13	14	15	16	
	Mechanical Ventila	tion Required	per <u>§120.1(c</u>)	<u>)3</u> ³		Exh. \	/ent per <u>§120.1(c)4</u>		
Space Name ot item Tag	Occupancy Type ⁴	Conditioned Floor Area (ft ²)	# of Shower heads/ toilets	# of people ⁵	Required Min OA CFM	Required Min CFM	Provided per Design CFM	DCV or Sensor Cor <u>§120.1(d)5</u> , a	trols per <u>§120.1(c</u> nd <u>§120.1(e)3</u> ⁶
Classroom	Lecture/ postsecondary classroom	1300		15	225	0	0	DCV	Provided pe §120.1(d)4
Classicolli	Lecture/ postsecondary classicon	1500		15	225	U	0	Occ Sensor	NA: Not requi space type
17	Total System Required Min OA CFM				225	18	Ventilation for this	System Complies?	Yes
	04	:	05				06		07
		System Desi	σn ΟΔ CEM		System	Design		Air Filtration per §12	0.1(c) and <u>§141.0</u>
System Name	RTU-C2	Airfle	_	225		Air CFM	0		<u>120.1(c)</u> (NR and /Motel))
08	09	10	11	12	13	14	15		16

Registration Number:

STATE OF CALIFORNIA

NRCC-MCH-E

Project Name:

Space Name

ot item Tag

System Name

08

Space Name

ot item Tag

System Nam

08

Registration Number:

Project Address:

Mechanical Systems

CERTIFICATE OF COMPLIANCE

J. VENTILATION AND INDOOR AIR QUALITY

Classroom Lecture/ postsecondary classroom

17 Total System Required Min OA CFM

04

Classroom Lecture/ postsecondary classroom

17 Total System Required Min OA CFM

04

Occupancy Type⁴

RTU-J2

09

Occupancy Type⁴

RTU-J3

09

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Mechanical Ventilation Required per §120.1(c)3³

945

Mechanical Ventilation Required per §120.1(c)3 3

945

Conditioned # of Shower

Floor Area heads/

(ft²) toilets

System Design OA CFM

Airflow¹

Floor Area heads/

(ft²) toilets

System Design OA CFM

10 | 11 |

Airflow¹

05

Conditioned # of Shower # of

05

Registration Date/Time: Report Version: 2019.1.003

CVUSD Rowland Report Page:

Required I

people⁵ Min OA Min CFM Min CFM

225

Required

225

System Design

Transfer Air CFM

Min OA CFM

1355 E Rowland Ave Date Prepared:

of

15

225

people⁵

15

225

12

10 11 12 13 14

Registration Provider: Energysoft

Schema Version: rev 20200601

Exh. Vent per <u>§120.1(c)4</u>

06

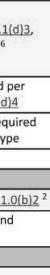
Provided per Design

CFM

225 18 Ventilation for this System Complies?

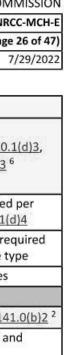
15

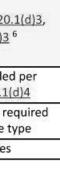
CFM


225 18 Ventilation for this System Complies?

Exh. Vent per §120.1(c)4

Required Provided per Design


Report Generated: 2022-07-29 10:57:02


CALIFORNIA ENERGY COMMISSION NRCC-MCH-E Page 23 of 47) 7/29/2022

Registration Number:

17

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

Hotel/Motel))

16

Hotel/Motel))

16

STATE OF CALIFORNIA Mechanical Systems

NRCC-MCH-E			CALIFORNIA ENERGY COMM
CERTIFICATE OF COMPLIANCE		2	NRCC-
Project Name:	CVUSD Rowland	Report Page:	(Page 27
Project Address:	1355 E Rowland Ave	Date Prepared:	7/2
	2555 6 10110101		

J. VENTILATION AND INDOOR AIR QUALITY

⁵ For lecture halls with fixed seating, the expected number of occupants shall be shall be determined in accordance with the California Building Code. ⁶ <u>§120.2(e)3</u> requires systems serving rooms that are required by <u>§130.1(c)</u> to have lighting occupancy sensing controls to also have occupancy sensing zone controls for ventilation. Examples of spaces which require lighting occupancy sensors include offices 250ft² or smaller, multipurpose rooms less than 1,000 ft², classrooms, conference rooms, restrooms, aisles and open areas in warehouses, library book stack aisles, corridors, stairwells, parking garages, and loading and unloading zones, unless excepted by §130.1(c).

K. TERMINAL BOX CONTROLS
This section does not apply to this p

K. TERMINAL BO	X CONTROL	S						
This section does n	not apply to th	nis project.						
L. DISTRIBUTION	I (DUCTWOR	RK and PIPING)						
This table is used t	o show comp	liance with mand	atory pipe insulation requiren	nents found in <u>§120.3</u> a	nd prescriptive requirements found in <u>§140.4(I)</u> for duct leakage	ge testing.		
Duct Leakage Seal	ing							
The answers to the	e questions be	elow apply to the	following duct systems:	FCU/CU-B1	Duct leakage testing triggered for these systems?	No		
11	No	The scope of	the project includes only duc	t systems serving health	ncare facilities			
12	Yes	Duct system	provides conditioned air to ar	n occupiable space for a	constant volume, single zone, space-conditioning system.			
13	Yes	The space co	nditioning system serves less	than 5,000 ft ² of condit	ioned floor area.			
14	No	The combine	d surface area of the ducts in	the following locations	is more than 25% of the total surface area of the entire duct sy	/stem:		
			Outdoors					
			In a space directly under a roof that has a U-factor greater than the u-factor of the ceiling, or if the roof does not m requirements of §140.3(a)1B or if the roof has fixed vents or openings to the outside/ unconditioned spaces					
			In an unconditioned crav	vl space				
[In other unconditioned s	paces				
15	1	The scope of	of the project includes extending an existing duct system, which is constructed, insulated or sealed with asbestos.					
16					ocumented to have been previously sealed as confirmed throu ence Nonresidential Appendix NA2.	gh field verifica		

Yes Duct system shall be sealed in acordance with the California Mechanical Code

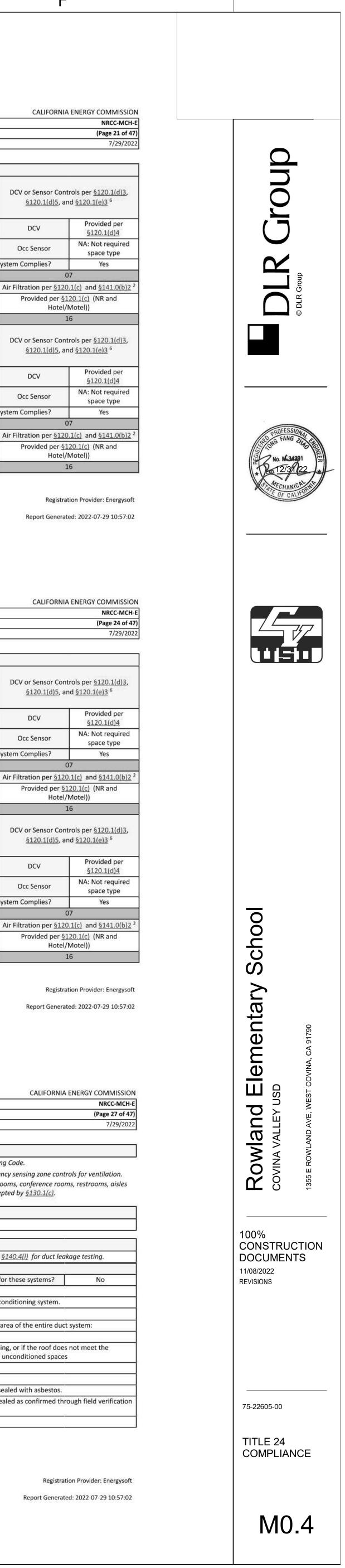
13 14 Registration Date/Time:

System Design

Transfer Air CFM

Report Version: 2019.1.003 Schema Version: rev 20200601

DCV


Occ Sensor

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

CALIFORNIA ENERGY COMMISSION

DCV

Occ Sensor

CERTIFICATE OF COM	PLIANCE					NERGY COMMISSIC NRCC-MCH	
Project Name:	FLIANCE			CVUSD Rowland Report Page:		(Page 28 of 4	
Project Address:			1	355 E Rowland Ave Date Prepared	4:	7/29/202	
						5. 8 . 39.8 8 . 39.9	
L. DISTRIBUTION	(DUCTWOR	(and PIPING)					
	2	ow apply to the following	duct systems:	RTU-D1	Duct leakage testing triggered for these systems?	No	
11	No		and a second	duct systems serving healthcar		68990	
12	Yes				nstant volume, single zone, space-conditioning system.		
13	Yes	the second se		ess than 5,000 ft ² of condition			
14	No				nore than 25% of the total surface area of the entire duct s	vstem:	
		Outdo		•			
		In a s	bace directly un	der a roof that has a U-factor g	reater than the u-factor of the ceiling, or if the roof does n	ot meet the	
		requirements of <u>§140.3(a)1B</u> or if the roof has fixed vents or openings to the outside/ unconditioned spaces					
			unconditioned c	rawl space			
		🗌 🗌 In oth	er unconditione	ed spaces			
15		The scope of the project	t includes exten	ding an existing duct system, v	which is constructed, insulated or sealed with asbestos.		
16					mented to have been previously sealed as confirmed throu e Nonresidential Appendix NA2.	ugh field verification	
17	Yes	Duct system shall be se	aled in acordand	ce with the California Mechani	cal Code		
The answers to the	questions be	ow apply to the following	duct systems:	RTU-D2	Duct leakage testing triggered for these systems?	No	
11	No	The scope of the project	t includes only a	duct systems serving healthcar	e facilities		
12	Yes	Duct system provides c	onditioned air to	o an occupiable space for a cor	nstant volume, single zone, space-conditioning system.		
13	Yes	The space conditioning	The space conditioning system serves less than 5,000 ft ² of conditioned floor area.				
14	No	The combined surface	area of the duct	s in the following locations is n	nore than 25% of the total surface area of the entire duct s	ystem:	
		Outdo	oors				
					reater than the u-factor of the ceiling, or if the roof does n I vents or openings to the outside/ unconditioned spaces	ot meet the	
		🗌 🗌 In an	unconditioned c	rawl space			
		In oth	er unconditione	ed spaces			
15		The scope of the project	t includes exten	nding an existing duct system, v	which is constructed, insulated or sealed with asbestos.		
16				승규는 것 같은 방법이 있는 것 같은 것은 것 같은 것 같은 것 같은 것 같은 것 같이 많이 있는 것 같은 것 같	mented to have been previously sealed as confirmed throu	ugh field verification	
		and diagnostic testing i	n accordance wi	ith procedures in the Reference	e Nonresidential Appendix NA2.		

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Date/Time:

STATE OF CALIFORNIA

CERTIFICATE OF CO	MPLIANCE					NRCC-MCH-		
Project Name: CVUSD Rowland Report Page:								
Project Address: 1355 E Rowland Ave Date Prepared:								
L. DISTRIBUTION	I (DUCTWOR	K and PIPING)	12 17		i in in it			
The answers to the	e questions be	low apply to the f	ollowing duct systems:	RTU-H1	Duct leakage testing triggered for these systems?	No		
11	No	The scope of t	he project includes only	duct systems serving healthcar	e facilities	104044094		
12	Yes	Duct system p	rovides conditioned air t	o an occupiable space for a cor	nstant volume, single zone, space-conditioning system.			
13	Yes	The space con	ditioning system serves I	ess than 5,000 ft ² of condition	ed floor area.			
14	No	The combined	surface area of the duct	s in the following locations is n	nore than 25% of the total surface area of the entire duct sy	/stem:		
	539.		Outdoors					
					reater than the u-factor of the ceiling, or if the roof does no I vents or openings to the outside/ unconditioned spaces	ot meet the		
			In an unconditioned of	crawl space				
			In other unconditione	ed spaces				
15		The scope of t	The scope of the project includes extending an existing duct system, which is constructed, insulated or sealed with asbestos.					
16			The scope of the project includes an existing duct system that is documented to have been previously sealed as confirmed through field verification and diagnostic testing in accordance with procedures in the Reference Nonresidential Appendix NA2.					
17	Yes	Duct system s	hall be sealed in acordan	ce with the California Mechani	cal Code			
he answers to the	e questions be	low apply to the f	ollowing duct systems:	RTU-H2	Duct leakage testing triggered for these systems?	No		
11	No	The scope of t	he project includes only	duct systems serving healthcar	e facilities			
12	Yes	Duct system p	rovides conditioned air t	o an occupiable space for a cor	nstant volume, single zone, space-conditioning system.			
13	Yes	The space con	ditioning system serves l	ess than 5,000 ft ² of condition	ed floor area.			
14	No	The combined	surface area of the duct	s in the following locations is n	nore than 25% of the total surface area of the entire duct sy	/stem:		
			Outdoors					
				집에 가지 않는 것을 다 이 것이 되었다. 것을 잘 못 하는 것을 다 나라지 않는 것도 가지 않는 것을 위해 있는 것을 가 했다.	reater than the u-factor of the ceiling, or if the roof does no I vents or openings to the outside/ unconditioned spaces	ot meet the		
			In an unconditioned of	crawl space				
			In other unconditione	ed spaces				
15		The scope of t	he project includes exter	nding an existing duct system, v	which is constructed, insulated or sealed with asbestos.			
16				isting duct system that is docu ith procedures in the Reference	mented to have been previously sealed as confirmed throu e Nonresidential Appendix NA2.	gh field verificatior		

Registration Date/Time:

d diagnostic testing in accordance with procedures in the Reference Nonresidential Appendix NA2 17 Yes Duct system shall be sealed in acordance with the California Mechanical Code

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance Report Version: 2019.1.003 Schema Version: rev 20200601

CERTIFICATE OF CO						ENERG		
Project Name:	VIPLIANCE		C	VUSD Rowland Report P	age:			
Project Address:				E Rowland Ave Date Pre				
				· · ·				
L. DISTRIBUTION	I (DUCTWOR	K and PIPING)	ii ii		i in i	-		
	-12	25.	ollowing duct systems:	RTU-I2	Duct leakage testing triggered for these systems?	-		
11	No		he project includes only duct	t systems serving healt		-		
12	Yes	Duct system p	rovides conditioned air to an	occupiable space for	a constant volume, single zone, space-conditioning system.			
13	Yes	The space con	ditioning system serves less	than 5,000 ft ² of condi	tioned floor area.			
14	No	The combined	surface area of the ducts in	the following location:	s is more than 25% of the total surface area of the entire duct	t syster		
			Outdoors			0 0		
					tor greater than the u-factor of the ceiling, or if the roof does fixed vents or openings to the outside/ unconditioned spaces			
		In an unconditioned crawl space						
			In other unconditioned s	paces		0		
15		The scope of the project includes extending an existing duct system, which is constructed, insulated or sealed with asbestos.						
16		The scope of the project includes an existing duct system that is documented to have been previously sealed as confirmed through fix and diagnostic testing in accordance with procedures in the Reference Nonresidential Appendix NA2.						
17	Yes	Duct system sl	nall be sealed in acordance w	vith the California Mec	hanical Code			
he answers to the	e questions be	low apply to the f	ollowing duct systems:	RTU-I3	Duct leakage testing triggered for these systems?			
11	No	The scope of t	he project includes only duc	t systems serving healt	hcare facilities			
12	Yes	Duct system p	rovides conditioned air to an	occupiable space for	a constant volume, single zone, space-conditioning system.			
13	Yes	The space con	ditioning system serves less	than 5,000 ft ² of condi	tioned floor area.			
14	No	The combined	surface area of the ducts in	the following location:	s is more than 25% of the total surface area of the entire duct	t syster		
			Outdoors					
					tor greater than the u-factor of the ceiling, or if the roof does fixed vents or openings to the outside/ unconditioned spaces			
			In an unconditioned craw	/l space		a-		
			In other unconditioned s	paces		0		
15		The scope of t	he project includes extendin	g an existing duct syste	em, which is constructed, insulated or sealed with asbestos.			
16			The scope of the project includes an existing duct system that is documented to have been previously sealed as confirmed through fie and diagnostic testing in accordance with procedures in the Reference Nonresidential Appendix NA2.					
17	Yes	Duct system shall be sealed in acordance with the California Mechanical Code						

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Date/Time:

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

			CALIFORNIA ENERGY COMMISS
CERTIFICATE OF COM	PLIANCE		NRCC-MG
Project Name:		CVUSD Rowland Report Page:	(Page 29 of
Project Address:		1355 E Rowland Ave Date Prepared:	7/29/2
L. DISTRIBUTION	DUCTWOR	(and PIPING)	ñ
The answers to the	questions be	ow apply to the following duct systems: RTU-D3 Duct leakage testing triggered for these sy	vstems? No
11	No	The scope of the project includes only duct systems serving healthcare facilities	10 10
12	Yes	Duct system provides conditioned air to an occupiable space for a constant volume, single zone, space-conditionin	g system.
13	Yes	The space conditioning system serves less than 5,000 ft ² of conditioned floor area.	
14	No	The combined surface area of the ducts in the following locations is more than 25% of the total surface area of the	entire duct system:
C		Outdoors	
		In a space directly under a roof that has a U-factor greater than the u-factor of the ceiling, or if th requirements of <u>§140.3(a)1B</u> or if the roof has fixed vents or openings to the outside/ uncondition	
		In an unconditioned crawl space	
		In other unconditioned spaces	0
15		The scope of the project includes extending an existing duct system, which is constructed, insulated or sealed with	asbestos.
16		The scope of the project includes an existing duct system that is documented to have been previously sealed as co and diagnostic testing in accordance with procedures in the Reference Nonresidential Appendix NA2.	nfirmed through field verificat
17	Yes	Duct system shall be sealed in acordance with the California Mechanical Code	
The answers to the	questions be	ow apply to the following duct systems: RTU-F1 Duct leakage testing triggered for these sy	vstems? No
11	No	The scope of the project includes only duct systems serving healthcare facilities	
12	Yes	Duct system provides conditioned air to an occupiable space for a constant volume, single zone, space-conditionin	g system.
13	Yes	The space conditioning system serves less than 5,000 ft ² of conditioned floor area.	
14	No	The combined surface area of the ducts in the following locations is more than 25% of the total surface area of the	entire duct system:
		Outdoors	
		In a space directly under a roof that has a U-factor greater than the u-factor of the ceiling, or if the requirements of <u>§140.3(a)1B</u> or if the roof has fixed vents or openings to the outside/ uncondition	
		In an unconditioned crawl space	
		In other unconditioned spaces	
15		The scope of the project includes extending an existing duct system, which is constructed, insulated or sealed with	asbestos.
16		The scope of the project includes an existing duct system that is documented to have been previously sealed as co and diagnostic testing in accordance with procedures in the Reference Nonresidential Appendix NA2.	nfirmed through field verificat
17	Yes	Duct system shall be sealed in acordance with the California Mechanical Code	0

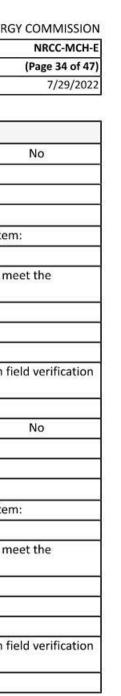
Registration Number:

STATE OF CALIFORNIA

Mechanical Systems

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Report Version: 2019.1.003 Schema Version: rev 20200601


Registration Date/Time:

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

Registration Provider: Energysoft

Report Generated: 2022-07-29 10:57:02

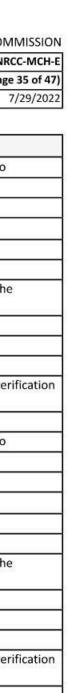
NRCC-MCH-E					CALIFORNIA	ENERGY COMMISSION		
CERTIFICATE OF COM	PLIANCE				2 2	NRCC-MCH-I		
Project Name:				CVUSD Rowland Report Page		(Page 32 of 47		
Project Address:			13	355 E Rowland Ave Date Prepar	ed:	7/29/2022		
L. DISTRIBUTION		K and PIPING)						
	<u>.</u>		following duct systems:	RTU-H3	Duct leakage testing triggered for these systems?	No		
11	No			duct systems serving healthc				
12	Yes				onstant volume, single zone, space-conditioning system.			
13	Yes			ess than 5,000 ft ² of conditio				
14	No				more than 25% of the total surface area of the entire duc	t system:		
			Outdoors	•				
			In a space directly und		greater than the u-factor of the ceiling, or if the roof does ed vents or openings to the outside/ unconditioned spaces			
			In an unconditioned c	rawl space				
			In other unconditione	d spaces)		
15		The scope of t	he project includes exten	ding an existing duct system	, which is constructed, insulated or sealed with asbestos.	6		
16			The scope of the project includes an existing duct system that is documented to have been previously sealed as confirmed through field verification and diagnostic testing in accordance with procedures in the Reference Nonresidential Appendix NA2.					
17	Yes	Duct system s	hall be sealed in acordance	ce with the California Mecha	nical Code			
The answers to the	questions be	low apply to the f	following duct systems:	RTU-C1	Duct leakage testing triggered for these systems?	No		
11	No	The scope of t	he project includes only o	duct systems serving healthc	are facilities			
12	Yes	Duct system p	rovides conditioned air to	o an occupiable space for a c	onstant volume, single zone, space-conditioning system.			
13	Yes	The space con	ditioning system serves le	ess than 5,000 ft ² of conditio	ned floor area.			
14	No	The combined	surface area of the ducts	s in the following locations is	more than 25% of the total surface area of the entire duc	t system:		
			Outdoors					
					greater than the u-factor of the ceiling, or if the roof does ed vents or openings to the outside/ unconditioned spaces			
			In an unconditioned c	rawl space				
			In other unconditione	d spaces				
15		The scope of t	he project includes exten	ding an existing duct system	, which is constructed, insulated or sealed with asbestos.			
16				2 2 2 2 3 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	cumented to have been previously sealed as confirmed thr the Nonresidential Appendix NA2.	rough field verification		
17	Yes	Duct system s	hall be sealed in acordance	ce with the California Mecha	nical Code			

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02


							NIDGG MIGH		
CERTIFICATE OF CO Project Name:	VIPLIANCE			CVUSD Rowland	Papart Page		NRCC-MCH- (Page 35 of 47		
Project Address: 1355 E Rowland Av							7/29/202		
rioject Address.			83			u.	1/25/202		
L. DISTRIBUTION	N (DUCTWOR	K and PIPING)	ti i	i.		· · · · · · · · · · · · · · · · · · ·			
			ollowing duct systems:	RTU-	11	Duct leakage testing triggered for these systems?	No		
11	No		he project includes only		NT-0				
12	Yes					nstant volume, single zone, space-conditioning system.			
13	Yes		ditioning system serves I						
14	No					nore than 25% of the total surface area of the entire duct s	vstem:		
0.560			Outdoors				•		
			In a space directly un	der a roof that ha	is a U-factor g	greater than the u-factor of the ceiling, or if the roof does n	ot meet the		
			requirements of <u>§140.3(a)1B</u> or if the roof has fixed vents or openings to the outside/ unconditioned spaces						
			In an unconditioned						
			In other uncondition						
15			The scope of the project includes extending an existing duct system, which is constructed, insulated or sealed with asbestos.						
16			The scope of the project includes an existing duct system that is documented to have been previously sealed as confirmed through field verification and diagnostic testing in accordance with procedures in the Reference Nonresidential Appendix NA2.						
17	Yes	Duct system sh	all be sealed in acordan	ce with the Califo	rnia Mechani	ical Code			
The answers to th	e questions be	low apply to the f	ollowing duct systems:	RTU-	12	Duct leakage testing triggered for these systems?	No		
11	No	The scope of t	ne project includes only	duct systems serv	ing healthca	re facilities			
12	Yes	Duct system p	rovides conditioned air t	o an occupiable s	pace for a co	nstant volume, single zone, space-conditioning system.			
13	Yes	The space con	ditioning system serves l	less than 5,000 ft ²	² of condition	ed floor area.			
14	No	The combined	surface area of the duct	s in the following	locations is r	nore than 25% of the total surface area of the entire duct s	ystem:		
			Outdoors						
						greater than the u-factor of the ceiling, or if the roof does n d vents or openings to the outside/ unconditioned spaces	ot meet the		
			In an unconditioned	crawl space					
			In other uncondition	ed spaces					
15		The scope of t	ne project includes exter	nding an existing o	duct system,	which is constructed, insulated or sealed with asbestos.			
16						mented to have been previously sealed as confirmed throu e Nonresidential Appendix NA2.	ugh field verification		
17	Yes	Duct system sh	and diagnostic testing in accordance with procedures in the Reference Nonresidential Appendix NA2. Duct system shall be sealed in acordance with the California Mechanical Code						

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

STATE OF CALIFORNIA **Mechanical Systems** Ε

NRCC-MCH-E					CALIFORNIA EN	IERGY COM			
CERTIFICATE OF COM	IPLIANCE					NRC			
Project Name:				CVUSD Rowland Report Page:		(Page 3			
Project Address: 1355 E Rowland Ave Date Prepared:									
L. DISTRIBUTION	(DUCTWOR	K and PIPING)	96 - 96 -						
The answers to the	questions be	low apply to the foll	owing duct systems:	RTU-F2	Duct leakage testing triggered for these systems?	No			
11	No	The scope of the	project includes only d	uct systems serving healthcar	re facilities				
12	Yes	Duct system prov	vides conditioned air to	an occupiable space for a cor	nstant volume, single zone, space-conditioning system.				
13	Yes	The space condit	ioning system serves le	ss than 5,000 ft ² of condition	ed floor area.				
14	No	The combined su	urface area of the ducts	in the following locations is n	nore than 25% of the total surface area of the entire duct sy	stem:			
	2		Outdoors						
					greater than the u-factor of the ceiling, or if the roof does no d vents or openings to the outside/ unconditioned spaces	ot meet the			
			In an unconditioned cr	awl space					
			In other unconditioned	d spaces					
15		The scope of the	The scope of the project includes extending an existing duct system, which is constructed, insulated or sealed with asbestos.						
16	а. 	이 것 것 것 같아? 영양 감정 감독 것 것 같아? 이 것 같아? 것 같아?	The scope of the project includes an existing duct system that is documented to have been previously sealed as confirmed through field verif and diagnostic testing in accordance with procedures in the Reference Nonresidential Appendix NA2.						
17	Yes	Duct system shal	I be sealed in acordance	e with the California Mechani	ical Code				
The answers to the	questions be	low apply to the foll	owing duct systems:	RTU-F3	Duct leakage testing triggered for these systems?	No			
11	No	The scope of the	project includes only d	uct systems serving healthcar	re facilities				
12	Yes	Duct system prov	vides conditioned air to	an occupiable space for a cor	nstant volume, single zone, space-conditioning system.				
13	Yes	The space condit	ioning system serves le	ss than 5,000 ft ² of condition	ed floor area.				
14	No	The <u>combined</u> su	Irface area of the ducts	in the following locations is n	nore than 25% of the total surface area of the entire duct sy	stem:			
			Outdoors						
					greater than the u-factor of the ceiling, or if the roof does no d vents or openings to the outside/ unconditioned spaces	ot meet the			
			In an unconditioned cr	awl space					
			In other unconditioned	d spaces					
15		The scope of the	project includes extend	ding an existing duct system, v	which is constructed, insulated or sealed with asbestos.				
16	90 			이 이 것 같은 것 같아요. 이 것 같은 것 같은 것 같아요. 이 가지 않는 것 않는 것 같아요. 이 가지 않는 것 않는 것 같아요. 이 가지 않는 것 같아요. 이 가지 않는 것 않는 것 같아요. 이 가지 않는 것 않는 것 같아요. 이 가 하는 것 않는 것	mented to have been previously sealed as confirmed throu e Nonresidential Appendix NA2.	gh field verif			
17	Yes	Duct system shal	I be sealed in acordance	e with the California Mechani	ical Code				

Registration Number:

STATE OF CALIFORNIA

NRCC-MCH-E

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

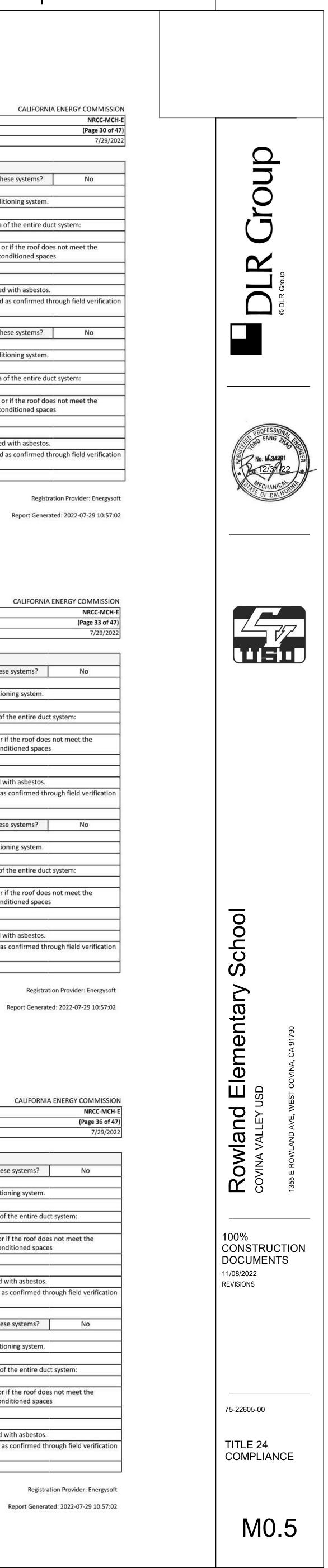
Mechanical Systems CERTIFICATE OF COMPLIANCE

Project Name:		(Page 3						
Project Address:	ed:	7/2						
L. DISTRIBUTION	(DUCTWOR	K and PIPING)	1					
The answers to the	questions be	low apply to the following duct systems:	RTU-C2	Duct leakage testing triggered for these systems?	No			
11	No	The scope of the project includes only	duct systems serving healthca	re facilities				
12	Yes	Duct system provides conditioned air t	o an occupiable space for a co	onstant volume, single zone, space-conditioning system.				
13	Yes	The space conditioning system serves	less than 5,000 ft ² of conditior	ned floor area.				
14	No	The combined surface area of the duct	ts in the following locations is	more than 25% of the total surface area of the entire duct	system:			
·	2	Outdoors						
				greater than the u-factor of the ceiling, or if the roof does d vents or openings to the outside/ unconditioned spaces	not meet the			
		In an unconditioned	crawl space					
		In other uncondition	ed spaces					
15		The scope of the project includes exter	The scope of the project includes extending an existing duct system, which is constructed, insulated or sealed with asbestos.					
16		이 것 같은 것 같	The scope of the project includes an existing duct system that is documented to have been previously sealed as confirmed through field verific and diagnostic testing in accordance with procedures in the Reference Nonresidential Appendix NA2.					
17	Yes	Duct system shall be sealed in acordan	ce with the California Mechan	nical Code				
The answers to the	questions be	low apply to the following duct systems:	RTU-I1	Duct leakage testing triggered for these systems?	No			
11	No	The scope of the project includes only	duct systems serving healthca	re facilities				
12	Yes	Duct system provides conditioned air t	o an occupiable space for a co	onstant volume, single zone, space-conditioning system.				
13	Yes	The space conditioning system serves	less than 5,000 ft ² of conditior	ned floor area.				
14	No	The combined surface area of the duct	ts in the following locations is	more than 25% of the total surface area of the entire duct	system:			
		Outdoors						
				greater than the u-factor of the ceiling, or if the roof does in d vents or openings to the outside/ unconditioned spaces	not meet the			
		In an unconditioned	crawl space					
		In other uncondition	ed spaces					
15		The scope of the project includes exter	nding an existing duct system,	which is constructed, insulated or sealed with asbestos.				
16		The scope of the project includes an ex and diagnostic testing in accordance w		umented to have been previously sealed as confirmed thro ce Nonresidential Appendix NA2.	ugh field verifi			
17	Yes	Duct system shall be sealed in acordan	ce with the California Mechan	nical Code				

Registration Date/Time: **Registration Number:** CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance Report Version: 2019.1.003 Schema Version: rev 20200601

STATE OF CALIFORNIA **Mechanical Systems**

NRCC-MCH-E				CALIFORNIA LI	NERGY COMMISSI				
CERTIFICATE OF COM	PLIANCE		CVUSD Rowland Report Page:		NRCC-MC				
Project Name: Project Address:		12	55 E Rowland Ave Date Prepare	4.	(Page 36 of 7/29/2				
Project Address:		15	55 E Rowland Ave Date Prepare	u:	//29/2				
L. DISTRIBUTION	(DUCTWOR	K and PIPING)							
The answers to the	questions be	low apply to the following duct systems:	RTU-J3	Duct leakage testing triggered for these systems?	No				
11	No	The scope of the project includes only d	uct systems serving healthcar	e facilities					
12	Yes	Duct system provides conditioned air to	an occupiable space for a cor	nstant volume, single zone, space-conditioning system.					
13	Yes	The space conditioning system serves le	ss than 5,000 ft ² of condition	ed floor area.					
14	No	The combined surface area of the ducts	in the following locations is n	nore than 25% of the total surface area of the entire duct sy	/stem:				
	8	Outdoors							
				reater than the u-factor of the ceiling, or if the roof does no events or openings to the outside/ unconditioned spaces	ot meet the				
		In an unconditioned cr	awl space						
		In other unconditioned	d spaces						
15		The scope of the project includes extend	The scope of the project includes extending an existing duct system, which is constructed, insulated or sealed with asbestos.						
16		The scope of the project includes an exis and diagnostic testing in accordance wit		mented to have been previously sealed as confirmed throu e Nonresidential Appendix NA2.	gh field verificatio				
17	Yes	Duct system shall be sealed in acordance	e with the California Mechani	ical Code					
The answers to the	questions be	low apply to the following duct systems:	RTU-K1	Duct leakage testing triggered for these systems?	No				
11	No	The scope of the project includes only d	uct systems serving healthcar	re facilities					
12	Yes	Duct system provides conditioned air to	an occupiable space for a cor	nstant volume, single zone, space-conditioning system.					
13	Yes	The space conditioning system serves le	ss than 5,000 ft ² of condition	ed floor area.					
14	No	The combined surface area of the ducts	in the following locations is n	nore than 25% of the total surface area of the entire duct sy	/stem:				
		Outdoors							
			요즘은 그 가슴 이가 중요즘 가지 않는 것 같아요? 아무나 가지 않는 것은 것을 수 있는 것 같아요? 것 같아?	reater than the u-factor of the ceiling, or if the roof does no d vents or openings to the outside/ unconditioned spaces	ot meet the				
		In an unconditioned cr	awl space						
		In other unconditioned	d spaces						
15		The scope of the project includes extend	ding an existing duct system, v	which is constructed, insulated or sealed with asbestos.					
16		The scope of the project includes an exis and diagnostic testing in accordance wit	이 이 것은 것 <mark>것 것</mark> 이 것 것 것 같은 것 같이 있다. 것 같은 것 이 이 것 것 같은 것 같이 있다. 것 같은 것 같은 것 같은 것 같이 있다. 것 같은 것 같은 것 같은 것 같은 것 같이 있다. 것 같은 것 같	mented to have been previously sealed as confirmed throu e Nonresidential Appendix NA2.	gh field verificatio				
17	Yes	Duct system shall be sealed in acordance		Tester August Incontrol de					


Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Date/Time:

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

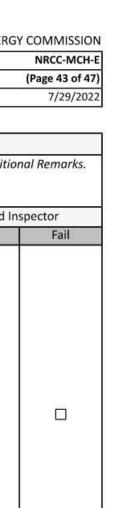
Α

В

IRCC-MCH-E			CALIFORNI	A ENERGY COM
Project Name: Project Address:		CVUSD Rowland Report Page: 1355 E Rowland Ave Date Prepared:		(Page 7
. DISTRIBUTION	12			
11	No	The scope of the project includes only duct systems serving healthcare facilities	esting triggered for these systems?	No
12 13	Yes Yes	Duct system provides conditioned air to an occupiable space for a constant volume, sing The space conditioning system serves less than 5,000 ft ² of conditioned floor area.		
14	No	The <u>combined</u> surface area of the ducts in the following locations is more than 25% of the Outdoors	he total surface area of the entire du	ct system:
		In a space directly under a roof that has a U-factor greater than the u-frequirements of §140.3(a)1B or if the roof has fixed vents or openings		
		In an unconditioned crawl space In other unconditioned spaces		
15 16		The scope of the project includes extending an existing duct system, which is constructed. The scope of the project includes an existing duct system that is documented to have be	en previously sealed as confirmed the	
17	Yes	and diagnostic testing in accordance with procedures in the Reference Nonresidential A Duct system shall be sealed in acordance with the California Mechanical Code wapply to the following duct systems: RTU-K3 Duct leakage te		No
11	No	The scope of the project includes only duct systems serving healthcare facilities	esting triggered for these systems?	No
12 13	Yes Yes	Duct system provides conditioned air to an occupiable space for a constant volume, sing The space conditioning system serves less than 5,000 ft ² of conditioned floor area.		
14	No	The <u>combined</u> surface area of the ducts in the following locations is more than 25% of the Outdoors		
		In a space directly under a roof that has a U-factor greater than the u-frequirements of §140.3(a)1B or if the roof has fixed vents or openings	방송은 것 같아요. 그는 것 같아요. 그는 것 같아요. 그는 것 같아요. 그는 것 같아요. 가지 않는 것 같아요. 같아요. 같이 많이	
0.50%		In an unconditioned crawl space In other unconditioned spaces		7. 4
15 16		The scope of the project includes extending an existing duct system, which is constructed. The scope of the project includes an existing duct system that is documented to have be	en previously sealed as confirmed the	
17	Yes	and diagnostic testing in accordance with procedures in the Reference Nonresidential A Duct system shall be sealed in acordance with the California Mechanical Code	ρρεπαιχ ΝΑΖ.	<u></u>
Registration Number	r:	Registration Date/Time:	Registr	ation Provider: Er
CA Building Energy E	fficiency Standar	rds - 2019 Nonresidential Compliance Report Version: 2019.1.003 Schema Version: rev 20200601	Report Genera	nted: 2022-07-29
Project Name: Project Address:	NOT	CVUSD Rowland Report Page: 1355 E Rowland Ave Date Prepared:		(P
Selections have be	een made base	ED CERTIFICATES OF ACCEPTANCE of on information provided in previous tables of this document. If any selection needs to be ded to the building inspector during construction and can be found online at	e changed, please explain why in Tabl	e E Additional R
2.5 Million (2012)		ded to the building inspector during construction and can be found online at 24/2019standards/2019_compliance_documents/Nonresidential_Documents/NRCA/	Systems/Spaces To Be Field	Field Inspec
NRCA-MCH-03-A	- Constant Volu	Form/Title Ime Single Zone HVAC NOTE: This form does not automatically move to "Yes'. If Constant	Verified FCU/CU-B1; RTU-D1 CARRIER	Pass
Volume Single Zor	ne HVAC Syster	ns are included in the scope, permit applicant should move this form to "Yes".	3-TON; RTU-D2 CARRIER 3-TON; RTU-D3 CARRIER 3-TON; RTU-F1 CARRIER	
			3-TON; RTU-F3 CARRIER 3-TON; RTU-F3 CARRIER 3-TON; RTU-F3 CARRIER	
			3-TON; RTU-H1 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-H3 CARRIER	
			3-TON; RTU-C1 CARRIER 3-TON; RTU-C2 CARRIER	
			3-TON; RTU-I1 CARRIER 3-TON; RTU-I2 CARRIER 3-TON; RTU-K1 CARRIER	
			3-TON; RTU-J1 CARRIER 3-TON; RTU-J2 CARRIER	
			3-TON; RTU-J3 CARRIER 3-TON; RTU-K3 CARRIER 3-TON; RTU-K2 CARRIER	
			3-TON; RTU-K3 CARRIER 3-TON;	
Registration Numb	per:	Registration Date/Time:	Regis	tration Provider:
CA Building Energy	y Efficiency Stanc	lards - 2019 Nonresidential Compliance Report Version: 2019.1.003 Schema Version: rev 20200601	Report Gene	erated: 2022-07-2
STATE OF CALIFORNIA				
NRCC-MCH-E	20.02		CALIFORM	VIA ENERGY COI
Project Name: Project Address:		CVUSD Rowland Report Page: 1355 E Rowland Ave Date Prepared:		(Pag
		ED CERTIFICATES OF ACCEPTANCE		
These documents	must be provid	d on information provided in previous tables of this document. If any selection needs to be led to the building inspector during construction and can be found online at 24/2019standards/2019_compliance_documents/Nonresidential_Documents/NRCA/	cnanged, please explain why in Table	e E Additional R
	J. J. J. Hard	Form/Title	Systems/Spaces To Be Field Verified	Field Inspec Pass
	Automatic Dem	and Shed Controls	FCU/CU-B1; RTU-D1 CARRIER 3-TON; RTU-D2 CARRIER	
NRCA-MCH-11-A A			3-TON; RTU-D3 CARRIER 3-TON; RTU-F1 CARRIER	
NRCA-MCH-11-A				
NRCA-MCH-11-A			3-TON; RTU-F3 CARRIER 3-TON; RTU-F3 CARRIER 3-TON: RTU-H1 CARRIER	
NRCA-MCH-11-A			3-TON; RTU-F3 CARRIER 3-TON; RTU-H1 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-H3 CARRIER	
NRCA-MCH-11-A			3-TON; RTU-F3 CARRIER 3-TON; RTU-H1 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-C1 CARRIER 3-TON; RTU-C2 CARRIER	
NRCA-MCH-11-A			3-TON; RTU-F3 CARRIER 3-TON; RTU-H1 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-H3 CARRIER	
NRCA-MCH-11-A			3-TON; RTU-F3 CARRIER 3-TON; RTU-H1 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-C1 CARRIER 3-TON; RTU-C2 CARRIER 3-TON; RTU-I1 CARRIER 3-TON; RTU-I2 CARRIER 3-TON; RTU-K1 CARRIER 3-TON; RTU-J1 CARRIER 3-TON; RTU-J2 CARRIER	
NRCA-MCH-11-A			3-TON; RTU-F3 CARRIER 3-TON; RTU-H1 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-C1 CARRIER 3-TON; RTU-I1 CARRIER 3-TON; RTU-I1 CARRIER 3-TON; RTU-I2 CARRIER 3-TON; RTU-K1 CARRIER 3-TON; RTU-J1 CARRIER	

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance


Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02 С

D

CERTIFICATE OF COMPLIANCE			IA ENERGY COMMI
			NRCC-I
Project Name:	CVUSD Rowland Report Page:		(Page 38
Project Address: 13	355 E Rowland Ave Date Prepared:		7/29
M. COOLING TOWERS			
This section does not apply to this project.			
N. DECLARATION OF REQUIRED CERTIFICATES OF INSTALLATION		15. W	
Selections have been made based on information provided in previous table These documents must be provided to the building inspector during constru https://www.energy.ca.gov/title24/2019standards/2019_compliance_docu	ction and can be found online at	ged, please explain why in Table	E Additional Rema
Form/1	Title		ield Inspector
NRCI-MCH-01-E - Must be submitted for all buildings		Pass	Fail
Registration Number:	Registration Date/Time:	Registr	ration Provider: Energ
Registration Number: CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance	Report Version: 2019.1.003		
	Report Version: 2019.1.003		
	Report Version: 2019.1.003		
CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance	Report Version: 2019.1.003		
	Report Version: 2019.1.003		
CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance STATE OF CALIFORNIA Mechanical Systems NRCC-MCH-E	Report Version: 2019.1.003	Report Genera	ated: 2022-07-29 10:
CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance STATE OF CALIFORNIA Mechanical Systems NRCC-MCH-E CERTIFICATE OF COMPLIANCE	Report Version: 2019.1.003 Schema Version: rev 20200601	Report Genera	ation Provider: Energ ated: 2022-07-29 10: A ENERGY COMMIS
CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance STATE OF CALIFORNIA Mechanical Systems NRCC-MCH-E CERTIFICATE OF COMPLIANCE Project Name:	Report Version: 2019.1.003 Schema Version: rev 20200601 CVUSD Rowland Report Page:	Report Genera	ated: 2022-07-29 10: A ENERGY COMM NRCC- (Page 41
CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance STATE OF CALIFORNIA Mechanical Systems NRCC-MCH-E CERTIFICATE OF COMPLIANCE Project Name:	Report Version: 2019.1.003 Schema Version: rev 20200601	Report Genera	ated: 2022-07-29 10: A ENERGY COMMI NRCC-
CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance STATE OF CALIFORNIA Mechanical Systems NRCC-MCH-E CERTIFICATE OF COMPLIANCE Project Name: Project Address: 13	Report Version: 2019.1.003 Schema Version: rev 20200601 CVUSD Rowland Report Page:	Report Genera	ated: 2022-07-29 10 A ENERGY COMM NRCC- (Page 41
CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance STATE OF CALIFORNIA Mechanical Systems NRCC-MCH-E CERTIFICATE OF COMPLIANCE Project Name:	Report Version: 2019.1.003 Schema Version: rev 20200601 CVUSD Rowland Report Page: 355 E Rowland Ave Date Prepared:	Report Genera CALIFORNI	ated: 2022-07-29 10 A ENERGY COMM NRCC- (Page 41 7/2
CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance STATE OF CALIFORNIA Mechanical Systems NRCC-MCH-E CERTIFICATE OF COMPLIANCE Project Name: Project Address: 13 O. DECLARATION OF REQUIRED CERTIFICATES OF ACCEPTANCE Selections have been made based on information provided in previous table These documents must be provided to the building inspector during construct	Report Version: 2019.1.003 Schema Version: rev 20200601 CVUSD Rowland Report Page: 355 E Rowland Ave Date Prepared: es of this document. If any selection needs to be changed in the section and can be found online at	Report Genera CALIFORNI	ated: 2022-07-29 10 A ENERGY COMM NRCC- (Page 4: 7/2
CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance STATE OF CALIFORNIA Mechanical Systems NRCC-MCH-E CERTIFICATE OF COMPLIANCE Project Name: Project Address: 13 O. DECLARATION OF REQUIRED CERTIFICATES OF ACCEPTANCE Selections have been made based on information provided in previous table	Report Version: 2019.1.003 Schema Version: rev 20200601 CVUSD Rowland Report Page: 355 E Rowland Ave Date Prepared: es of this document. If any selection needs to be changed in and can be found online at imments/Nonresidential_Documents/NRCA/	Report Genera CALIFORNI	A ENERGY COMM NRCC (Page 4 7/

Verified Pas VRCA-MCH-05-A - Air Economizer Controls RTU-D1 CARRIER 3-TON; RTU-D2 CARRIER 3-TON; RTU-D3 CARRIER 3-TON; RTU-F1 CARRIER 3-TON; RTU-F3 CARRIER 3-TON; RTU-F3 CARRIER 3-TON; RTU-H1 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-C1 CARRIER 3-TON; RTU-C1 CARRIER 3-TON; RTU-C1 CARRIER 3-TON;
RTU-I2 CARRIER 3-TON; RTU-I2 CARRIER 3-TON; RTU-J1 CARRIER 3-TON; RTU-J2 CARRIER 3-TON; RTU-J3 CARRIER 3-TON; RTU-K3 CARRIER 3-TON;

Registration Number: CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

Mechanical Systems CALIFORNIA ENERGY COMMISSION NRCC-MCH-E CERTIFICATE OF COMPLIANCE CVUSD Rowland Report Page: Project Name: 1355 E Rowland Ave Date Prepared: Project Address: O. DECLARATION OF REQUIRED CERTIFICATES OF ACCEPTANCE Selections have been made based on information provided in previous tables of this document. If any selection needs to be changed, please explain why in Table E Additional Remarks. These documents must be provided to the building inspector during construction and can be found online at https://www.energy.ca.gov/title24/2019standards/2019_compliance_documents/Nonresidential_Documents/NRCA/ Systems/Spaces To Be Field Field Inspector Form/Title Verified Pass Fail NRCA-MCH-16-A Supply Air Temperature Reset Controls FCU/CU-B1; RTU-D1 CARRIER 3-TON; RTU-D2 CARRIER 3-TON; RTU-D3 CARRIER 3-TON; RTU-F1 CARRIER 3-TON; RTU-F3 CARRIER 3-TON; RTU-F3 CARRIER 3-TON; RTU-H1 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-C1 CARRIER

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

STATE OF CALIFORNIA

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

3-TON; RTU-C2 CARRIER 3-TON; RTU-I1 CARRIER 3-TON; RTU-I2 CARRIER 3-TON; RTU-K1 CARRIER 3-TON; RTU-J1 CARRIER 3-TON; RTU-J2 CARRIER 3-TON; RTU-J3 CARRIER 3-TON; RTU-K3 CARRIER 3-TON; RTU-K2 CARRIER 3-TON; RTU-K3 CARRIER

3-TON;

Ε

SION	
ICH-E	
of 47)	
/2022	
27.2	

Remarks. Fail

STATE OF CALIFORNIA **Mechanical Systems**

Registration Number:

STATE OF CALIFORNIA

NRCC-MCH-E

Project Name:

Project Address:

Mechanical Systems

CERTIFICATE OF COMPLIANCE

dioxide (CO2) concentration setpoints.

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

O. DECLARATION OF REQUIRED CERTIFICATES OF ACCEPTANCE

These documents must be provided to the building inspector during construction and can be found online at

https://www.energy.ca.gov/title24/2019standards/2019_compliance_documents/Nonresidential_Documents/NRCA/

NRCA-MCH-06-A Demand Control Ventilation Systems must be submitted for all systems required to employ demand

controlled ventilation (refer to §120.1(c)3) can vary outside ventilation flow rates based on maintaining interior carbon

Form/Title

NRCC-MCH-E			CALIFORNIA ENERGY
CERTIFICATE OF COMPLIANCE			
Project Name:	CVUSD Rowland	Report Page:	
Project Address:	1355 E Rowland Ave	Date Prepared:	
1 		2	

O. DECLARATION OF REQUIRED CERTIFICATES OF ACCEPTANCE			
Selections have been made based on information provided in previous tables of this document. If any selection needs to be These documents must be provided to the building inspector during construction and can be found online at https://www.energy.ca.gov/title24/2019standards/2019_compliance_documents/Nonresidential_Documents/NRCA/			
Form/Title	Systems/Spaces To Be Field	Field Inspector	
Formy True	Verified Pass	Fail	
NRCA-MCH-02-A - Outdoor Air must be submitted for all newly installed HVAC units. Note: MCH-02-A can be performed in conjunction with MCH-07-A Supply Fan VFD Acceptance (if applicable) since testing activities overlap.	FCU/CU-B1; RTU-D1 CARRIER 3-TON; RTU-D2 CARRIER 3-TON; RTU-D3 CARRIER 3-TON; RTU-F1 CARRIER 3-TON; RTU-F1 CARRIER 3-TON; RTU-F3 CARRIER 3-TON; RTU-H1 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-C1 CARRIER 3-TON; RTU-C1 CARRIER 3-TON; RTU-C2 CARRIER 3-TON; RTU-I1 CARRIER 3-TON; RTU-I2 CARRIER 3-TON; RTU-I2 CARRIER 3-TON; RTU-J1 CARRIER 3-TON; RTU-J1 CARRIER 3-TON; RTU-J3 CARRIER 3-TON; RTU-J3 CARRIER 3-TON; RTU-K3 CARRIER		

Registration Date/Time:

CVUSD Rowland Report Page:

1355 E Rowland Ave Date Prepared:

Report Version: 2019.1.003

Schema Version: rev 20200601


Energysoft

29 10:57:02

OMMISSION NRCC-MCH-E age 41 of 47) 7/29/2022

Remarks. ctor

Pass Fail

Registration Number:

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601 Registration Provider: Energysoft

Registration Date/Time: Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

Verified

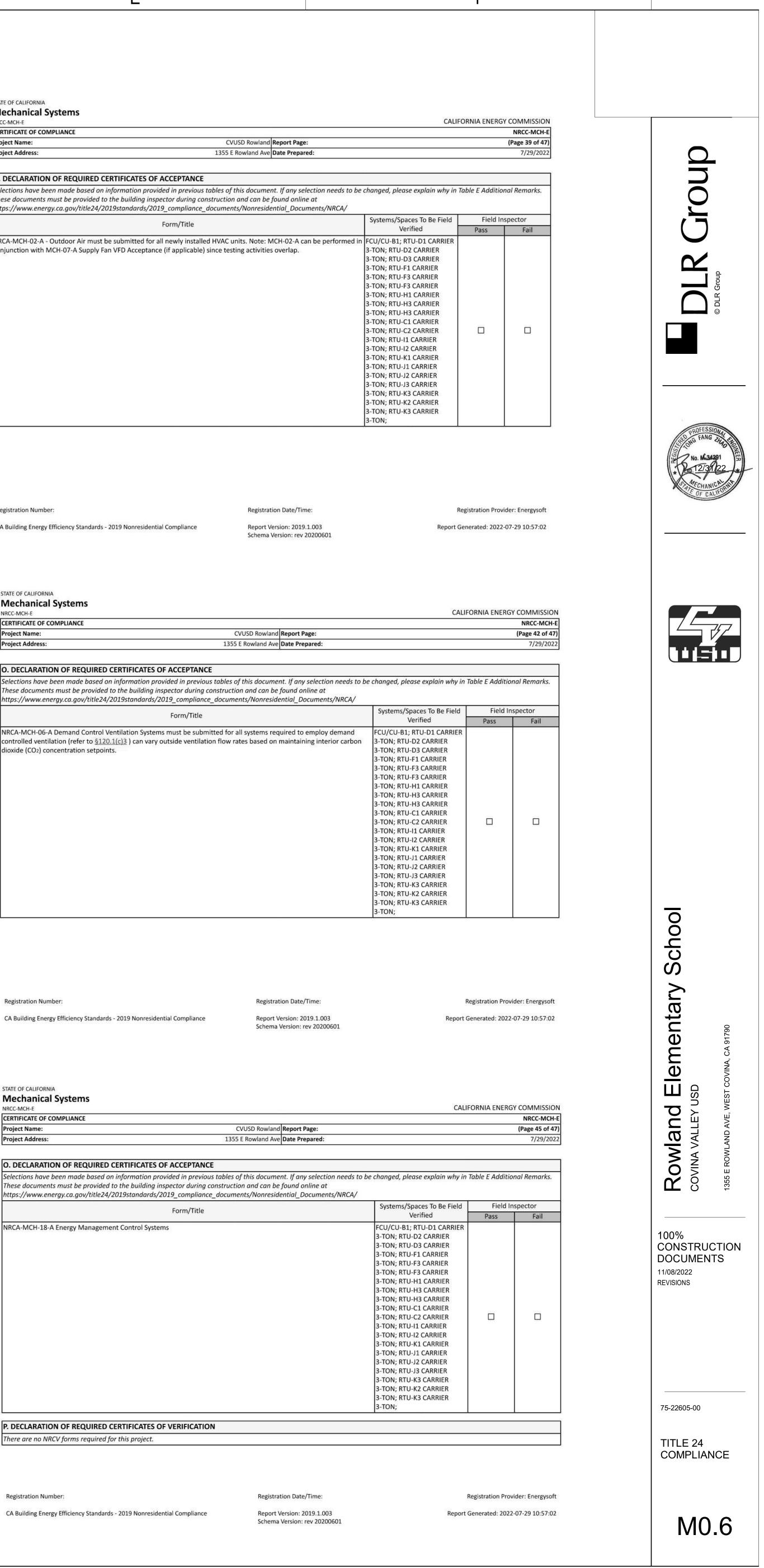
FCU/CU-B1; RTU-D1 CARRIER

3-TON; RTU-D2 CARRIER 3-TON; RTU-D3 CARRIER

3-TON; RTU-F1 CARRIER 3-TON; RTU-F3 CARRIER 3-TON; RTU-F3 CARRIER 3-TON; RTU-H1 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-H3 CARRIER 3-TON; RTU-C1 CARRIER

3-TON; RTU-C2 CARRIER 3-TON; RTU-I1 CARRIER 3-TON; RTU-12 CARRIER 3-TON; RTU-K1 CARRIER 3-TON; RTU-J1 CARRIER 3-TON; RTU-J2 CARRIER 3-TON; RTU-J3 CARRIER 3-TON; RTU-K3 CARRIER 3-TON; RTU-K2 CARRIER 3-TON; RTU-K3 CARRIER

3-TON;


STATE OF CALIFORNIA **Mechanical Systems**

CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Registration Number:

NRCC-MCH-E			CALIFORNIA ENERGY COMMIS
CERTIFICATE OF COMPLIANCE			NRCC-N
Project Name:	CVUSD Rowland	Report Page:	(Page 45
Project Address:	1355 E Rowland Ave	Date Prepared:	7/29
O. DECLARATION OF REQUIRED CERTIFIC	CATES OF ACCEPTANCE		

Form/Title	Systems/Spaces To Be Field	Field Inspector	
romynae	Verified	Pass	Fai
VRCA-MCH-18-A Energy Management Control Systems	FCU/CU-B1; RTU-D1 CARRIER 3-TON; RTU-D2 CARRIER 3-TON; RTU-D3 CARRIER 3-TON; RTU-F1 CARRIER 3-TON; RTU-F3 CARRIER 3-TON; RTU-F3 CARRIER 3-TON; RTU-H1 CARRIER 3-TON; RTU-H1 CARRIER		
	3-TON; RTU-H3 CARRIER 3-TON; RTU-C1 CARRIER 3-TON; RTU-C2 CARRIER 3-TON; RTU-I1 CARRIER 3-TON; RTU-I2 CARRIER 3-TON; RTU-J1 CARRIER 3-TON; RTU-J1 CARRIER 3-TON; RTU-J2 CARRIER 3-TON; RTU-J3 CARRIER 3-TON; RTU-K3 CARRIER 3-TON; RTU-K3 CARRIER 3-TON; RTU-K3 CARRIER		
	3-TON;		ļ
P. DECLARATION OF REQUIRED CERTIFICATES OF VERIFICATION			

А

STATE OF CALIFORNIA **Mechanical Systems** NRCC-MCH-E

CERTIFICATE OF COMPLIANCE Project Name: CVUSD Rowland Report Page: 1355 E Rowland Ave Date Prepared: Project Address: Q. MANDATORY MEASURES DOCUMENTATION LOCATION This table is used to indicate where mandatory measures are documented in the plan set or construction documentation. 01 Compliance with Mandatory Measures documented through MCH Yes Mandatory Measures Note Block

Registration Number: CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Date/Time:

TATE OF CALIFORNIA	
Mechanical Systems	
CERTIFICATE OF COMPLIANCE	
Project Name:	
Project Address:	
DOCUMENTATION AUTHOR'S DECLA	RATI
certify that this Certificate of Comp	
Documentation Author Name: Abhijit Rege	
Company: DLR Group	
Address:	
City/State/Zip:	
RESPONSIBLE PERSON'S DECLARATIO certify the following under penalty of perjury, und	

D

eetent .	ine tene ting ander periority er perjar f, ander t
1.	The information provided on this Certificat
2.	I am eligible under Division 3 of the Busine
3.	The energy features and performance spec of Title 24, Part 1 and Part 6 of the Califorr
4.	The building design features or system des plans and specifications submitted to the e
5.	I will ensure that a completed signed copy inspections. I understand that a completed
Responsi	ble Designer Name:
TONG F	ANG ZHAO
Company	r:
DLR GR	OUP
Address:	
700 FLC	OWER STREET
City/State	e/Zip:
OS AN	GELES CA 90017

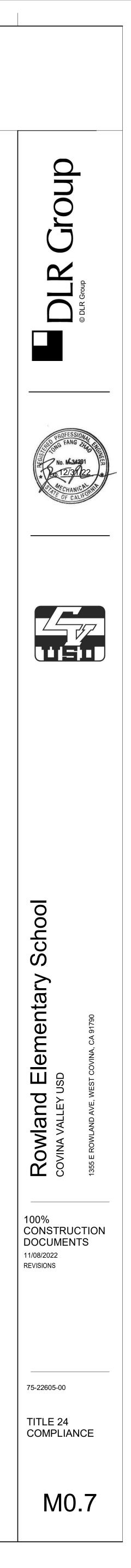
Registration Number: CA Building Energy Efficiency Standards - 2019 Nonresidential Compliance

CALIFORNIA ENERGY COMMISSION NRCC-MCH-E (Page 46 of 47) 7/29/2022 02 M-Sheets

С

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

NRCC-MCH	
CVUSD Rowland Report Page: (Page 47 of 4	CVUSD Rowland
1355 E Rowland AveDate Prepared:7/29/20	1355 E Rowland Ave
ITEMENT	S DECLARATION STATEMENT
mentation is accurate and complete.	of Compliance documentation is accurate and comple
Documentation Author Signature:	
Signature Date: 2022-07-29	
CEA/ HERS Certification Identification (if applicable): 9F30-5A88-E6C4-7653-2F72-A82E-9671-A2D4-7420-7AD7-DA3E-A59B-8F3B-18A3-B88E- 17FE	
Phone:	
(949)-701-8533	LADATION STATEMENT
ENT he State of California: ance is true and correct. issions Code to accept responsibility for the building design or system design identified on this Certificate of Compliance (responsible designer) naterials, components, and manufactured devices for the building design or system design identified on this Certificate of Compliance conform to the requiremen legulations. identified on this Certificate of Compliance are consistent with the information provided on other applicable compliance documents, worksheets, calculations,	rformance specifications, materials, components, and manufactured device s of the California Code of Regulations. s or system design features identified on this Certificate of Compliance are omitted to the enforcement agency for approval with this building permit a ed signed copy of this Certificate of Compliance shall be made available wit
ENT he State of California: ance is true and correct. issions Code to accept responsibility for the building design or system design identified on this Certificate of Compliance (responsible designer) naterials, components, and manufactured devices for the building design or system design identified on this Certificate of Compliance conform to the requiremen legulations. identified on this Certificate of Compliance are consistent with the information provided on other applicable compliance documents, worksheets, calculations, agency for approval with this building permit application. ficate of Compliance shall be made available with the building permit(s) issued for the building, and made available to the enforcement agency for all applicable	perjury, under the laws of the State of California: n this Certificate of Compliance is true and correct. 3 of the Business and Professions Code to accept responsibility for the buil rformance specifications, materials, components, and manufactured device 5 of the California Code of Regulations. 8 or system design features identified on this Certificate of Compliance are witted to the enforcement agency for approval with this building permit apped ed signed copy of this Certificate of Compliance shall be made available wit
ENT he State of California: ance is true and correct. assions Code to accept responsibility for the building design or system design identified on this Certificate of Compliance (responsible designer) haterials, components, and manufactured devices for the building design or system design identified on this Certificate of Compliance conform to the requirement legulations. identified on this Certificate of Compliance are consistent with the information provided on other applicable compliance documents, worksheets, calculations, agency for approval with this building permit application. ficate of Compliance shall be made available with the building permit(s) issued for the building, and made available to the enforcement agency for all applicable y of this Certificate of Compliance is required to be included with the documentation the builder provides to the building owner at occupancy.	perjury, under the laws of the State of California: n this Certificate of Compliance is true and correct. 3 of the Business and Professions Code to accept responsibility for the buil rformance specifications, materials, components, and manufactured device 5 of the California Code of Regulations. 8 or system design features identified on this Certificate of Compliance are witted to the enforcement agency for approval with this building permit apped ed signed copy of this Certificate of Compliance shall be made available wit
ENT he State of California: ance is true and correct. ssions Code to accept responsibility for the building design or system design identified on this Certificate of Compliance (responsible designer) haterials, components, and manufactured devices for the building design or system design identified on this Certificate of Compliance conform to the requirement legulations. identified on this Certificate of Compliance are consistent with the information provided on other applicable compliance documents, worksheets, calculations, agency for approval with this building permit application. ficate of Compliance shall be made available with the building permit(s) issued for the building, and made available to the enforcement agency for all applicable y of this Certificate of Compliance is required to be included with the documentation the builder provides to the building owner at occupancy. Responsible Designer Signature: Date Signed:	perjury, under the laws of the State of California: n this Certificate of Compliance is true and correct. 3 of the Business and Professions Code to accept responsibility for the buil rformance specifications, materials, components, and manufactured device 5 of the California Code of Regulations. 8 or system design features identified on this Certificate of Compliance are witted to the enforcement agency for approval with this building permit apped ed signed copy of this Certificate of Compliance shall be made available wit


Ε

Г

Report Version: 2019.1.003 Schema Version: rev 20200601

Registration Date/Time:

Registration Provider: Energysoft Report Generated: 2022-07-29 10:57:02

GENERAL NOTES

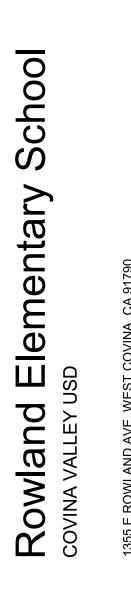
NOT IN SCOPE NOT IN SCOPE BUILDING K NOT IN SCOPE BUILDING J BUILDING I BUILDING B

Ε

SITE LEGEND

A FOR SYMBOLS AND ABBREVIATIONS SEE DRAWING M0.1

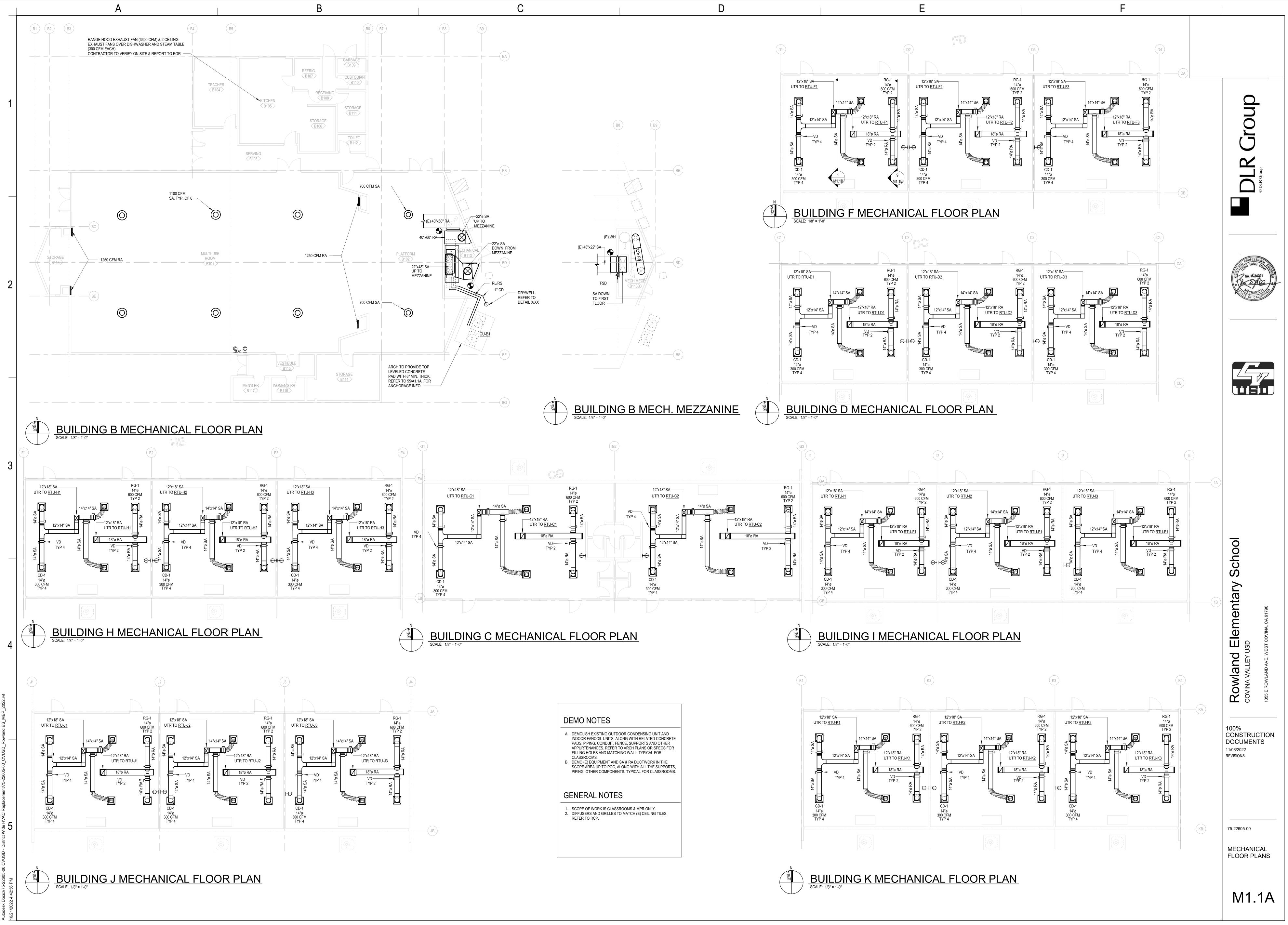
Group R

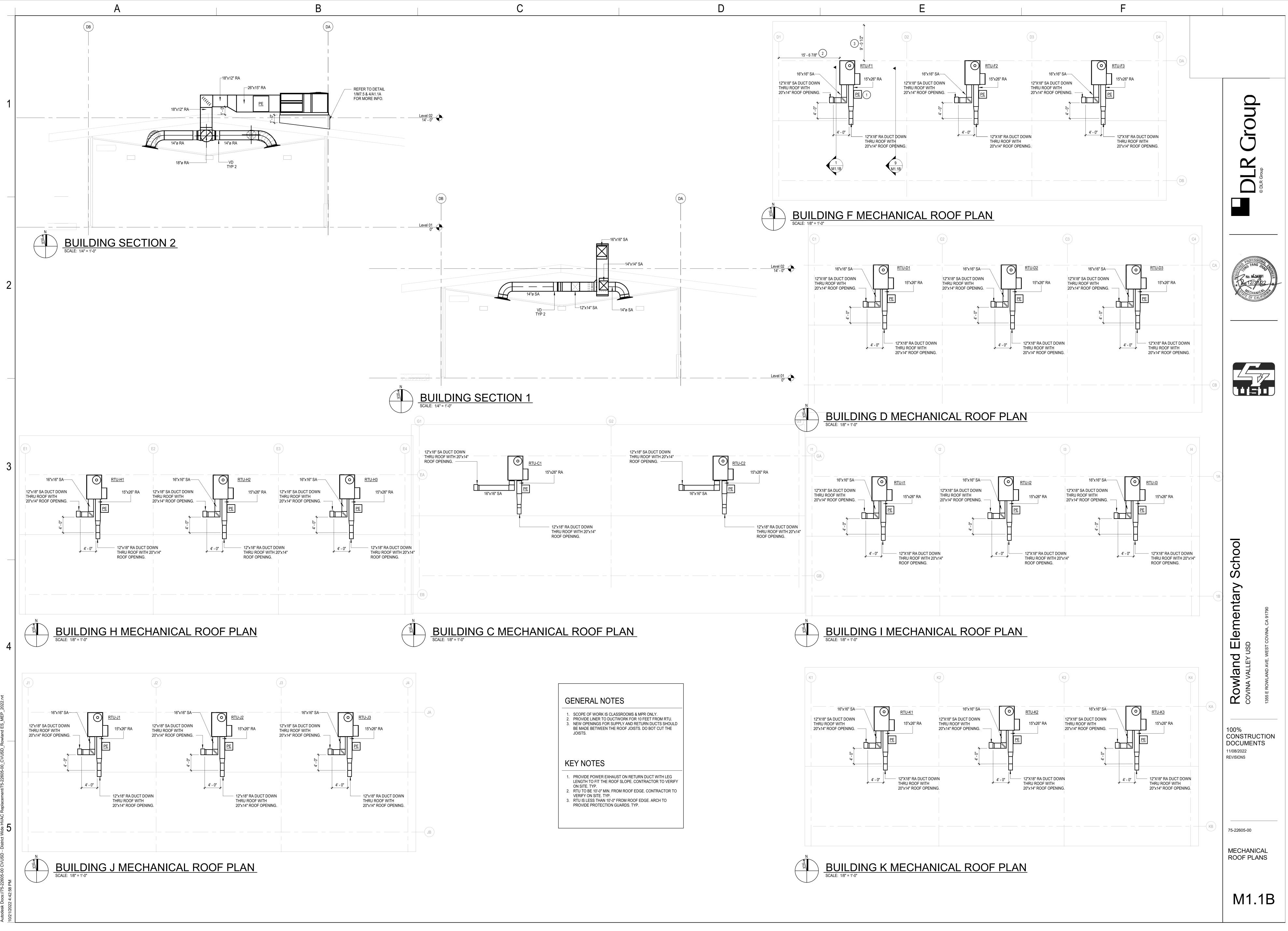


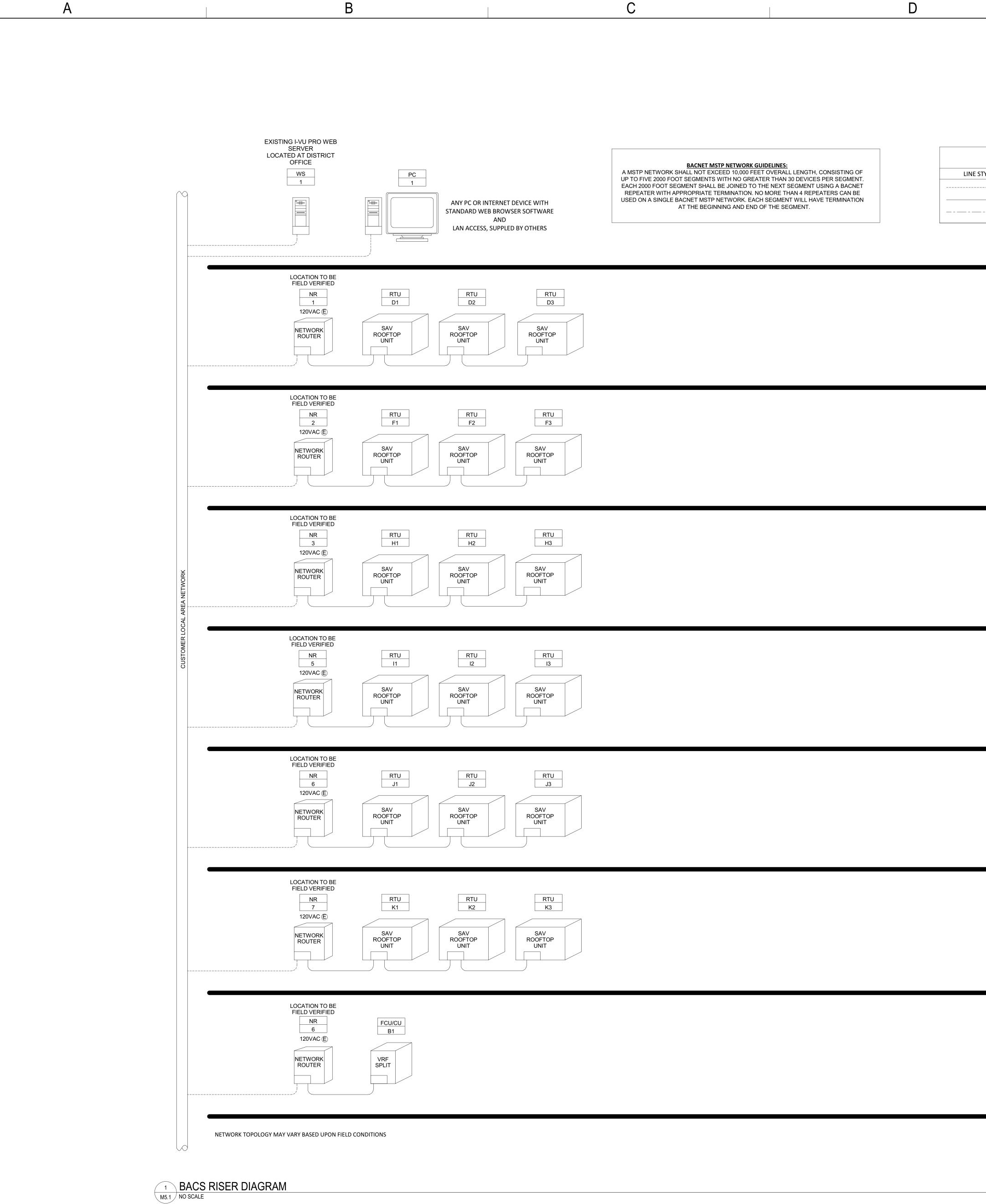
EXISTING BUILDING - SCOPE OF WORK UNDER THIS DSA APPLICATION

(E) RESTROOMS - NOT IN SCOPE

D. M.34

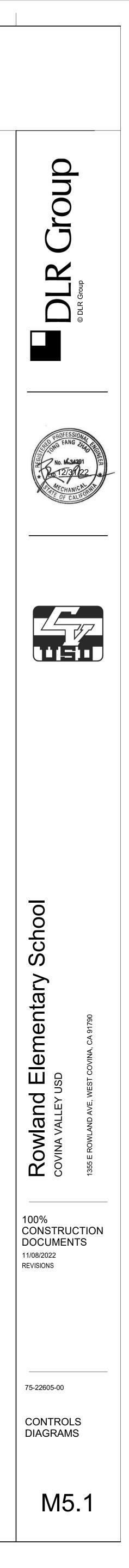



100% CONSTRUCTION DOCUMENTS 11/08/2022 REVISIONS


75-22605-00

MECHANICAL SITE PLAN

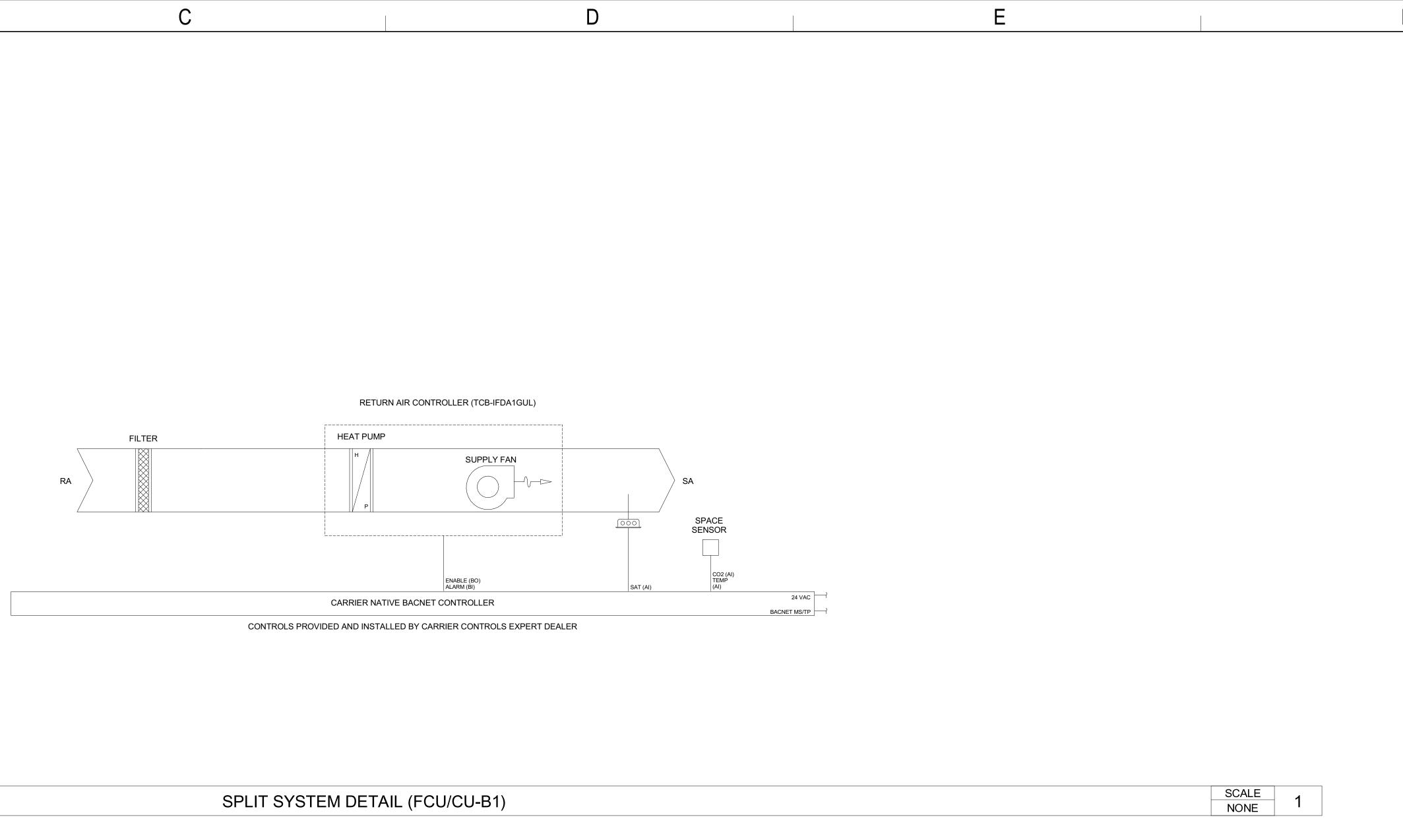
M1.1

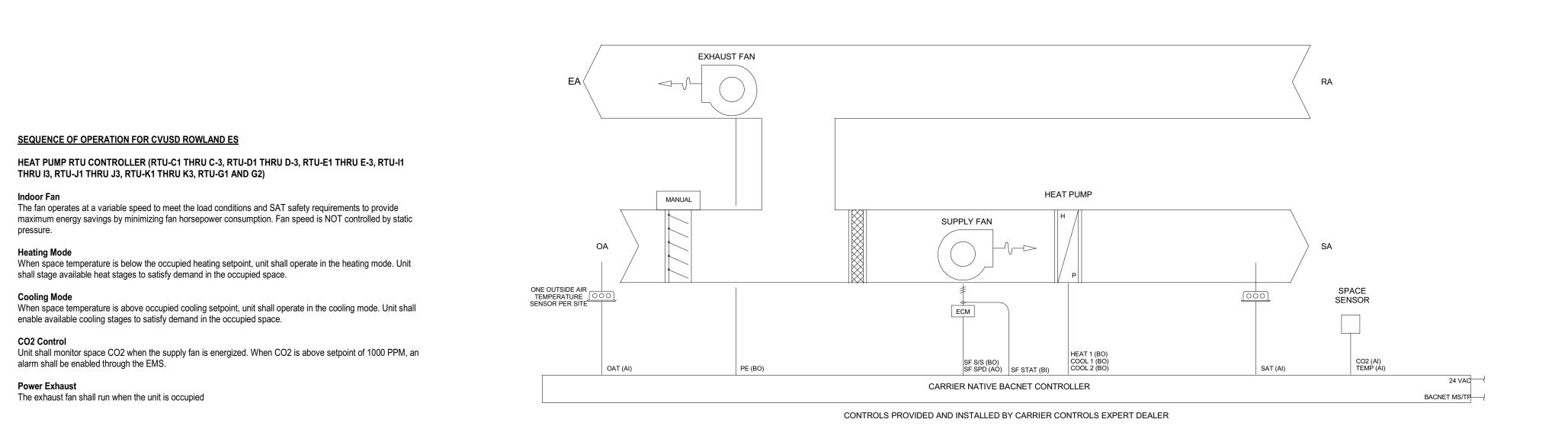


В

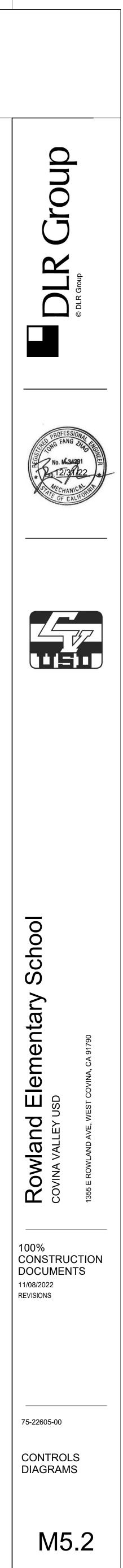
IRE TYPE PART NUMBER DESCRIPTION CAL AREA NETWORK COMORT NETWORK COMORT NETWORK COMORT NETWORK COMORT NETWORK COMORT NETWORK COMORT CO
CNET MS/TP NETWORK WIRING 042002-S 24 AWG 2 COND SHIELDED, PLENUM, ORG RRIER COMORT NETWORK WIRING 03336-S 20 AWG 3 COND SHIELDED, PLENUM, WHT / GRN STRIPE CVUSE
RRIER COMORT NETWORK WIRING 003336-5 20 AWG 3 COND SHIELDED, PLENUM, WHT / GRN STRIPE
CVUS
BLDG
BLDG [
BLDG
BLDG
BLDG
BLDG I
MPI

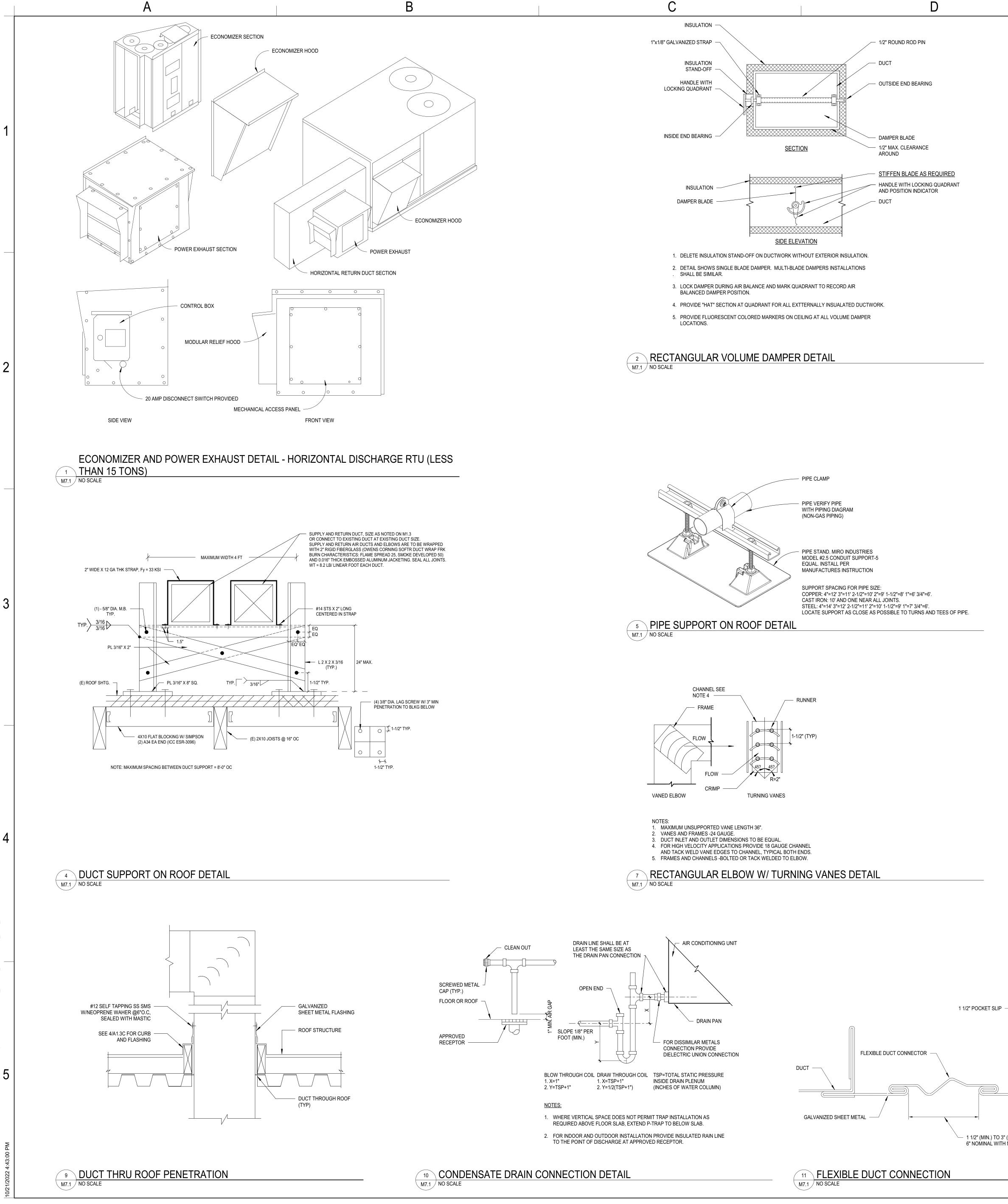
Cooling Mode Power Exhaust The exhaust fan shall run when the unit is occupied


SEQUENCE OF OPERATION FOR CVUSD ROWLAND ES

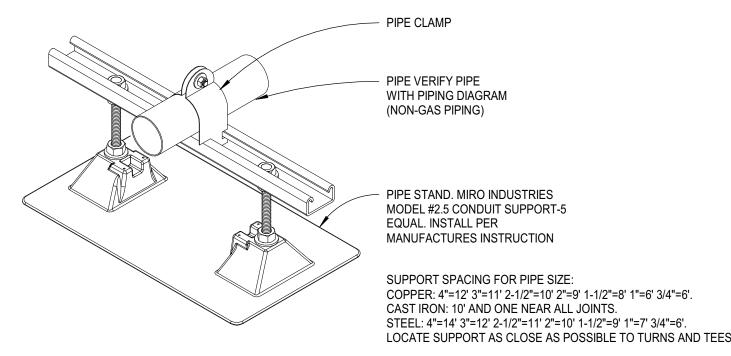

Indoor Fan

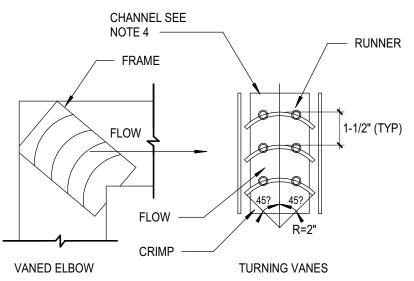
pressure.

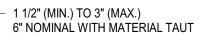

Α

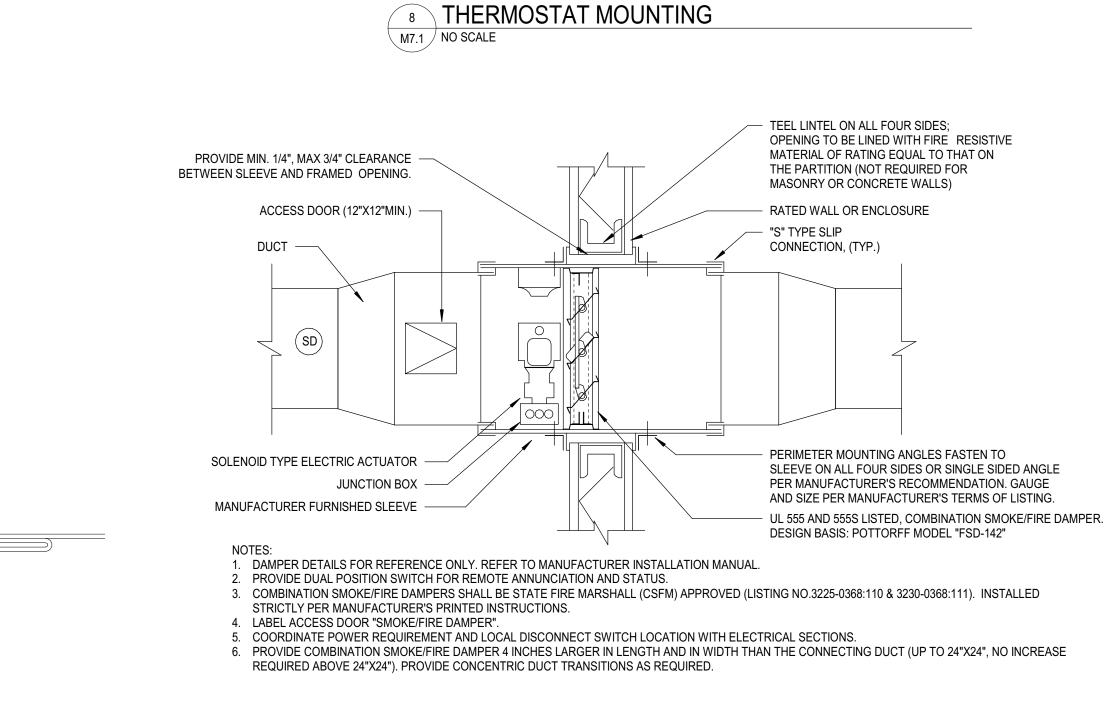


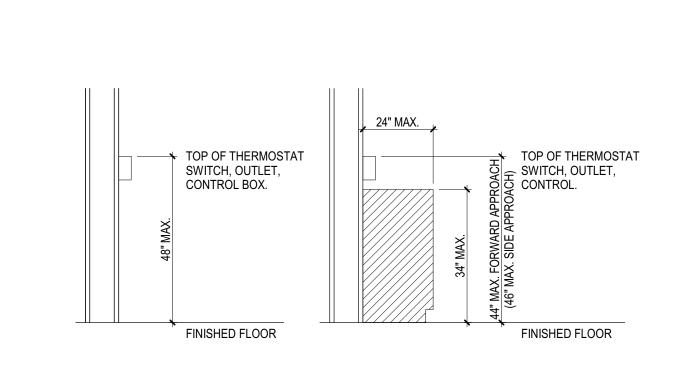


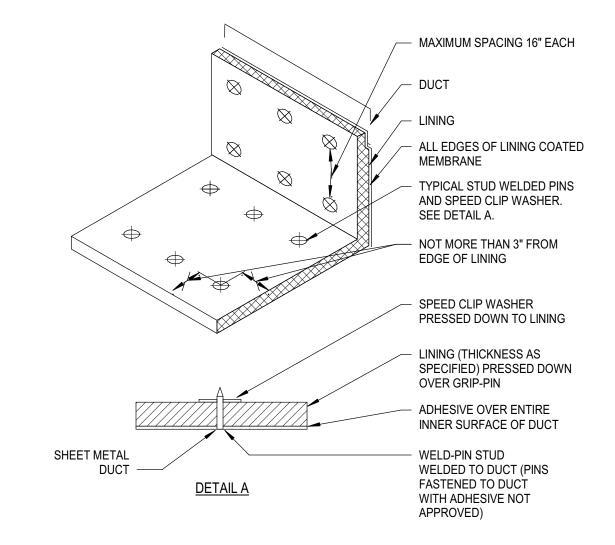

50FCQ HEAT PUMP RTU DETAIL (RTU-D1 THRU D-3, RTU-F1 THRU F3, RTU-I1 THRU I3, RTU-J1 THRU J3, RTU-K1 THRU K3, RTU-H1 AND H3)


NONE SCALE 2

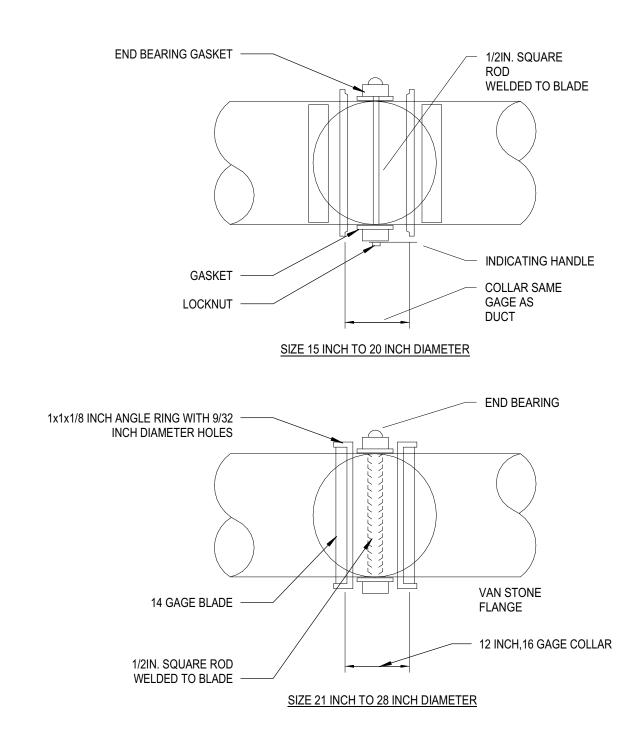


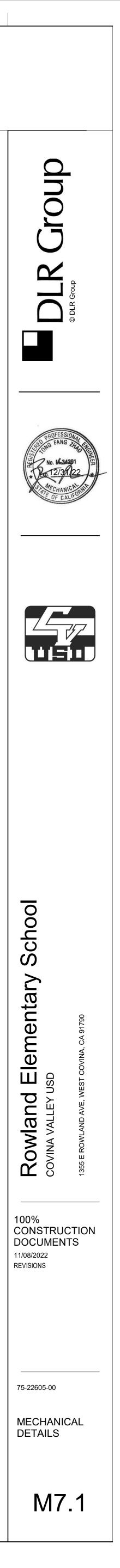


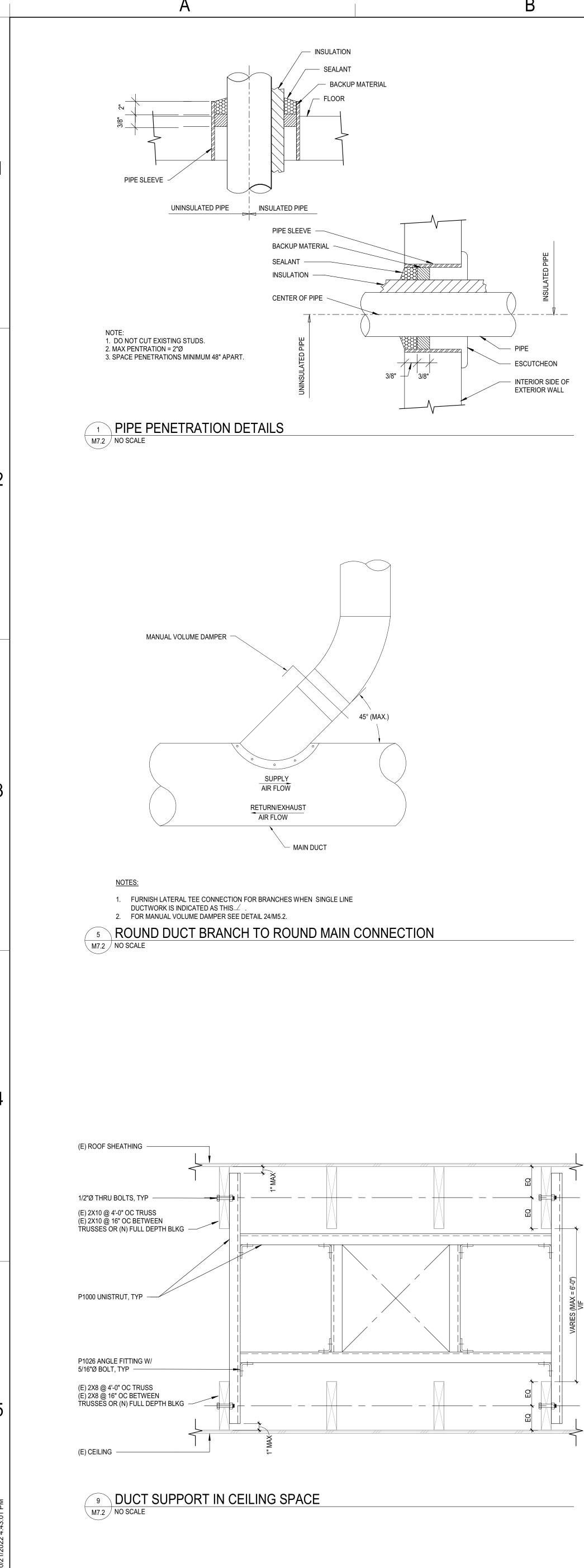


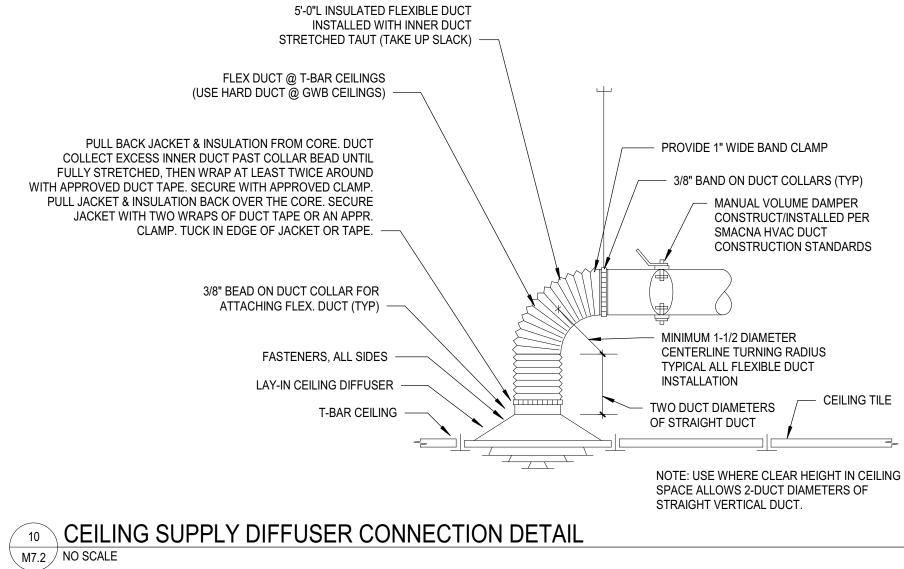

12 COMBINATION FIRE/SMOKE DAMPER INSTALLATION

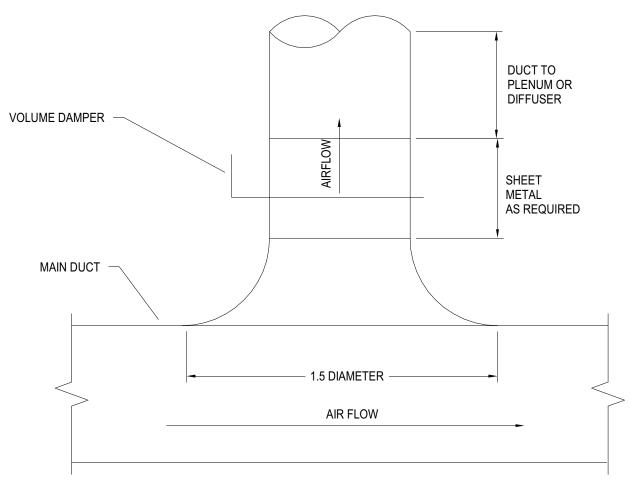
M7.1 / SCALE: 12" = 1'-0"

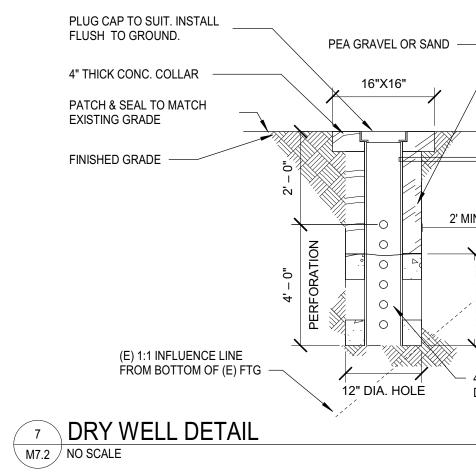




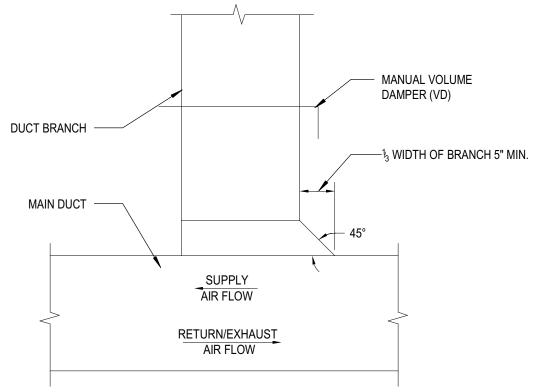

6 ACOUSTICAL DUCT LINING INSTALLATION DETAIL M7.1 NO SCALE

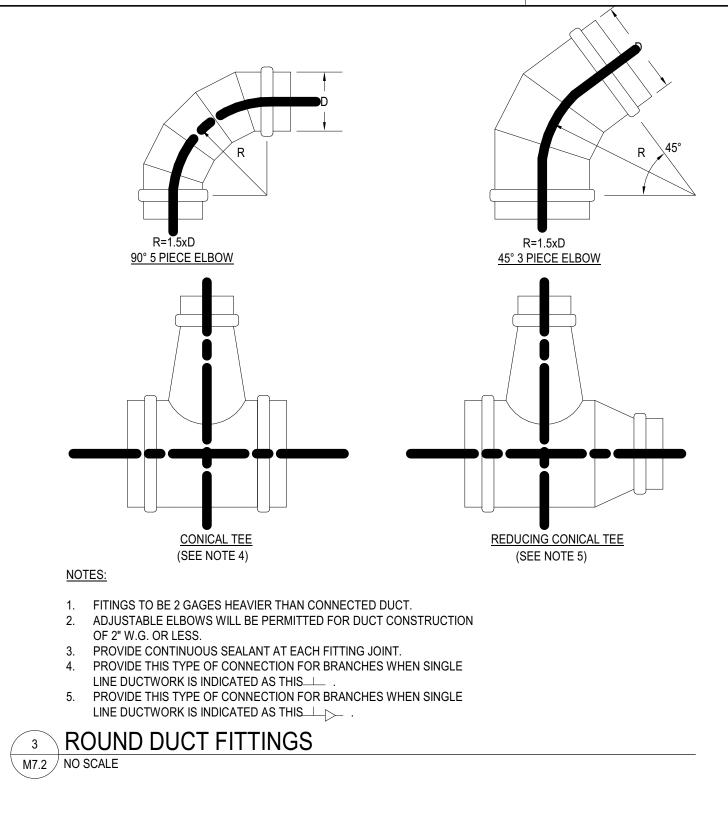

3 ROUND VOLUME DAMPER (LARGER THAN 14" DIA.) M7.1 NO SCALE




В

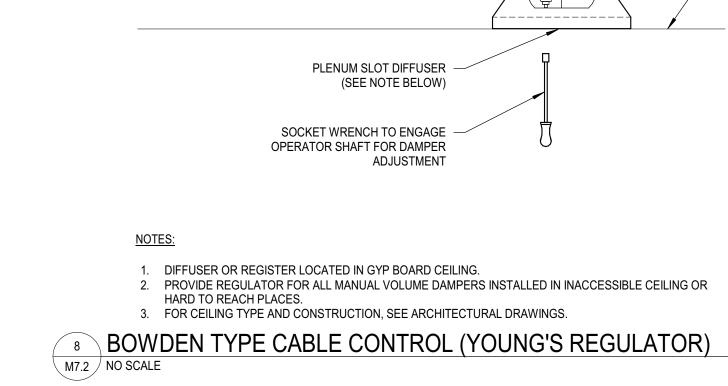
AIR FLOW NOTES: 1. FURNISH THIS TYPE CONNECTION WHEN SINGLE-LINE DUCTWORK IS INDICATED AS THIS ____ FOR BRANCHES WITH MORE THAN 25% OF TOTAL AIR FLOW 6 ROUND SUPPLY DUCT BRANCH TO RECTANGULAR DUCT


M7.2 NO SCALE



LESS THAN 25% OF THE TOTAL AIR FLOW, OR WHERE INDICATED ON DRAWINGS. 2. FOR MANUAL VOLUME DAMPER SEE DETAIL 22/M5.1. 3. SLIP-IN VOLUME DAMPER HOUSING WILL NOT BE ALLOWED. RECTANGULAR DUCT BRANCH TO RECTANGULAR DUCT M7.2 NO SCALE

NOTES: 1. FURNISH THIS TYPE OF CONNECTION WHEN SINGLE-LINE DUCTWORK IS INDICATED AS THIS FOR BRANCHES WITH



(E) BUILDING WALL & FTG $\,-\,$

CD

2' MIN.

└── 4" DIA. PVC PIPE WITH 1/4" DIA. HOLES, 3" O.C. AT 90°

1/4" DIA. SET SCREW

1/4" (MAX.) LESS THAN DUCT DIAMETER

SECTION A-A

PLAN

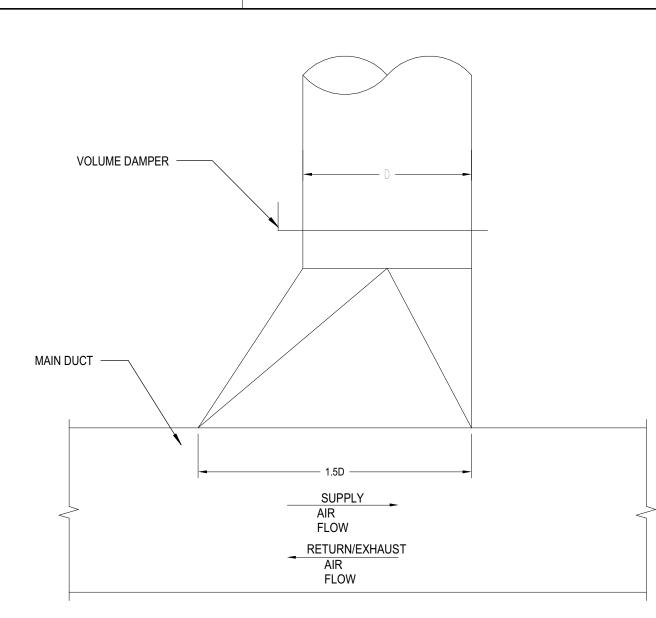
SPOT WELD

3/8" SQ. ROD —

REGULATOR —

LOCKNUT -

11 ROUND VOLUME DAMPER (UP TO 14") M7.2 NO SCALE


GASKET (TYP.)

3/8" CONTINUOUS SQ. ROD

RACK AND PINION OPERATOR. -CONVERTS ROTARY OF MOTION

SHAFT TO PUSH/PULL MOTION

OF WIRE

1. FURNISH THIS TYPE CONNECTION WHEN SINGLE-LINE DUCTWORK IS INDICATED AS

2. PROVIDE FLUORESCENT COLORED MARKERS ON CEILING AT ALL MANUAL VOLUME

4 ROUND DUCT BRANCH TO MAIN RECT. CONNECTION

THIS $__$ FOR BRANCHES WITH LESS THAN 25% OF TOTAL AIR FLOW.

- MANUAL VOLUME DAMPER

SHEATH WITH 0.050 STAINLESS

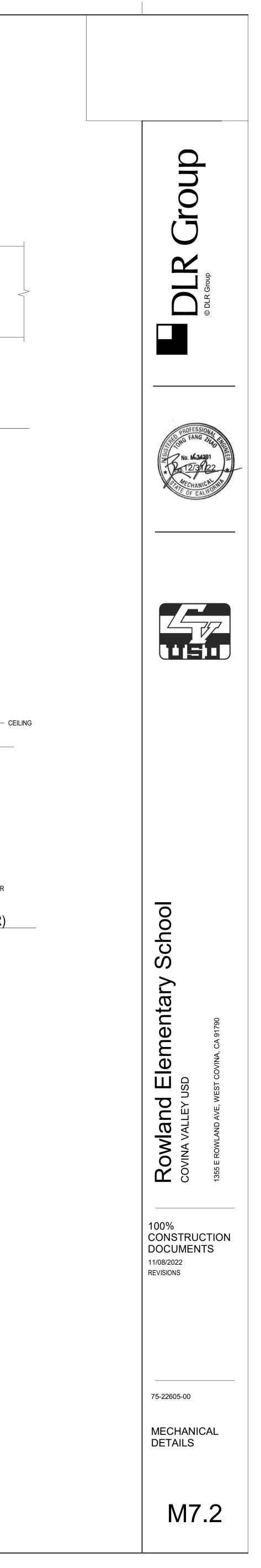
STEEL WIRE INSIDE

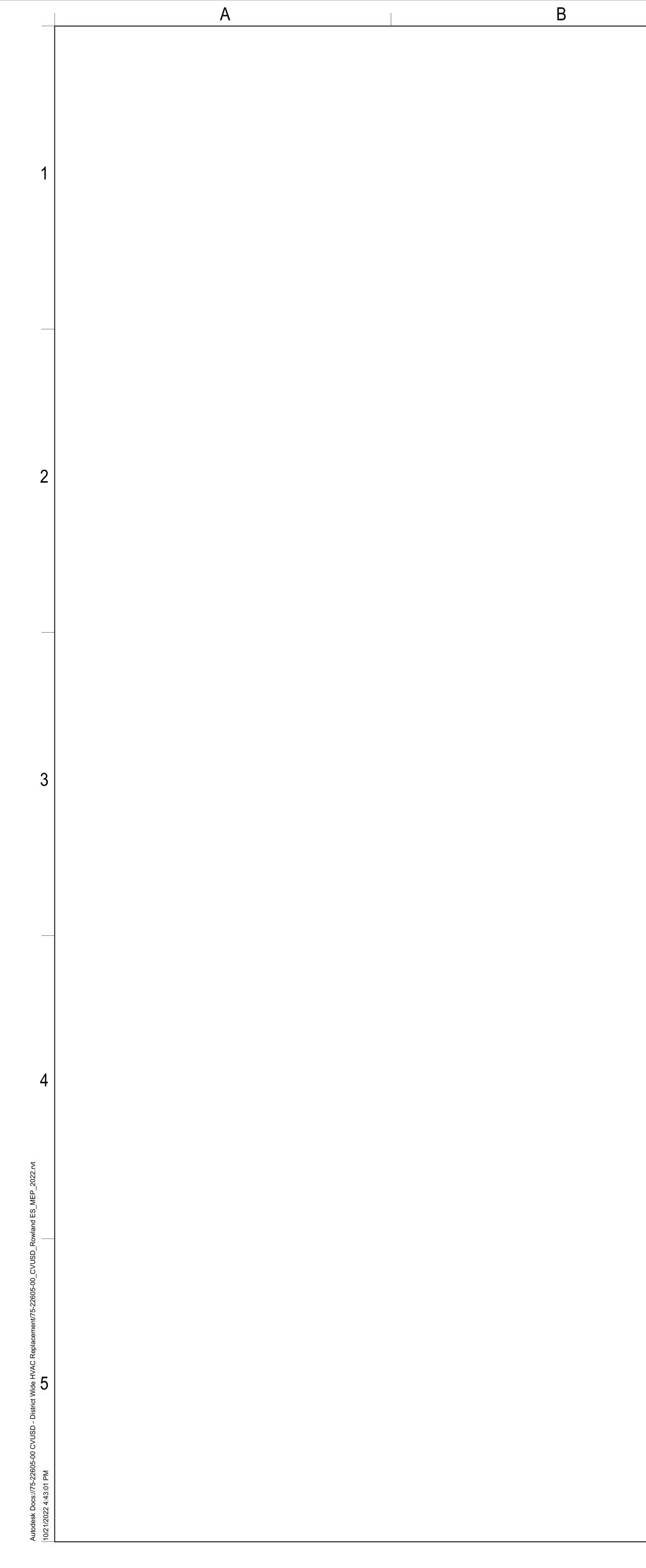
- 1"x1/8" GALVANIZED STRIP

16 GA GALVANIZED

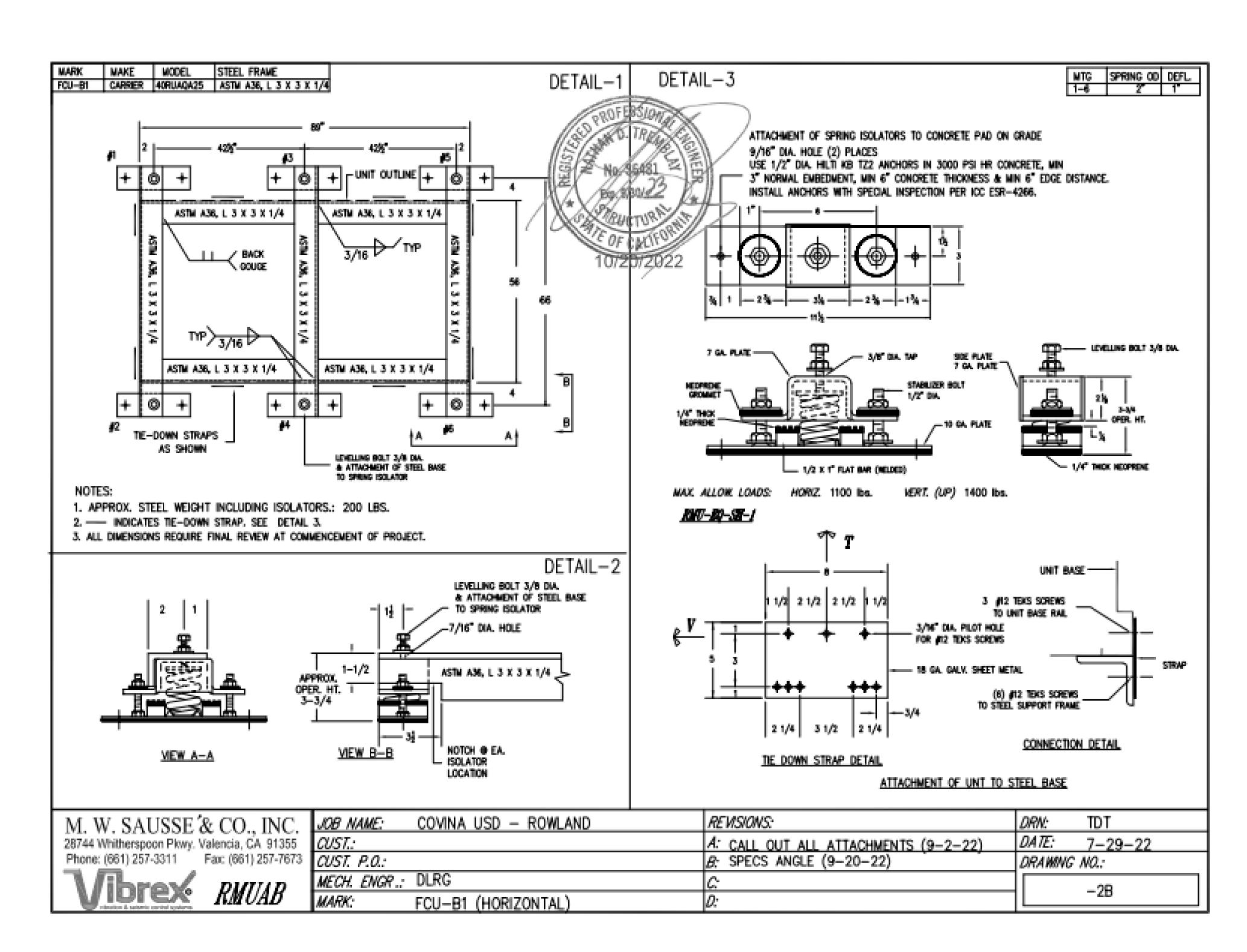
DAMPER BLADE

CLOSED END BEARING

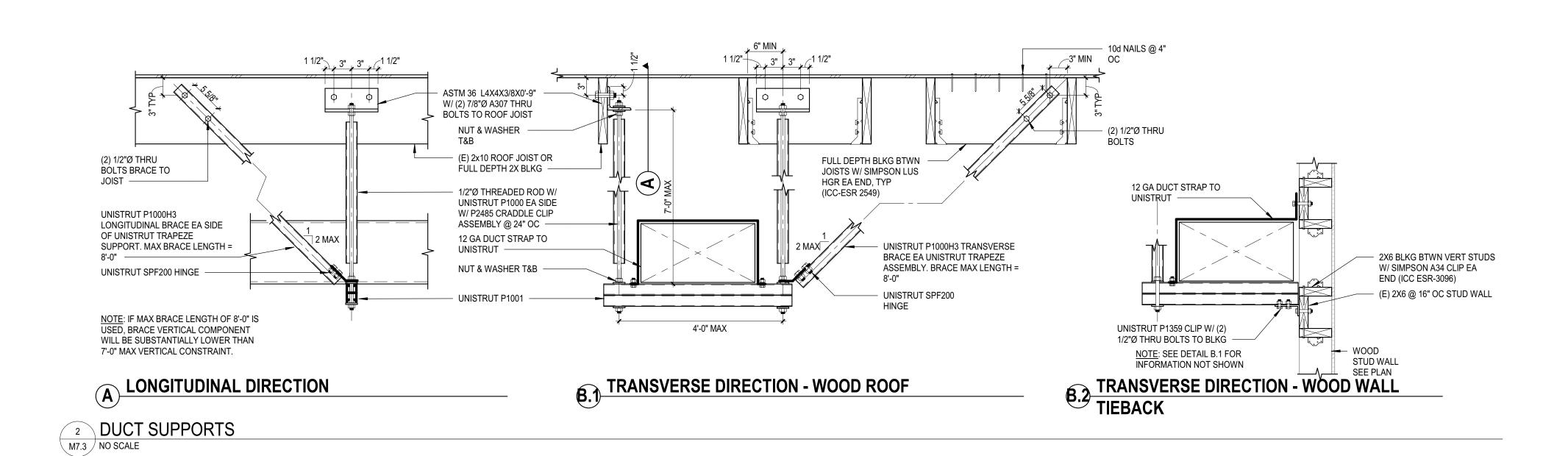

1"x1/8" GALVANIZED STRAP


INDICATING HANDLE

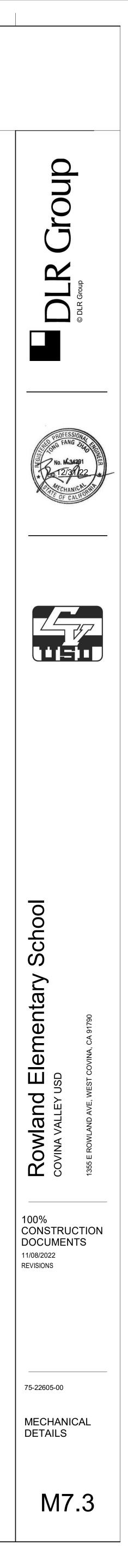
NOTES:

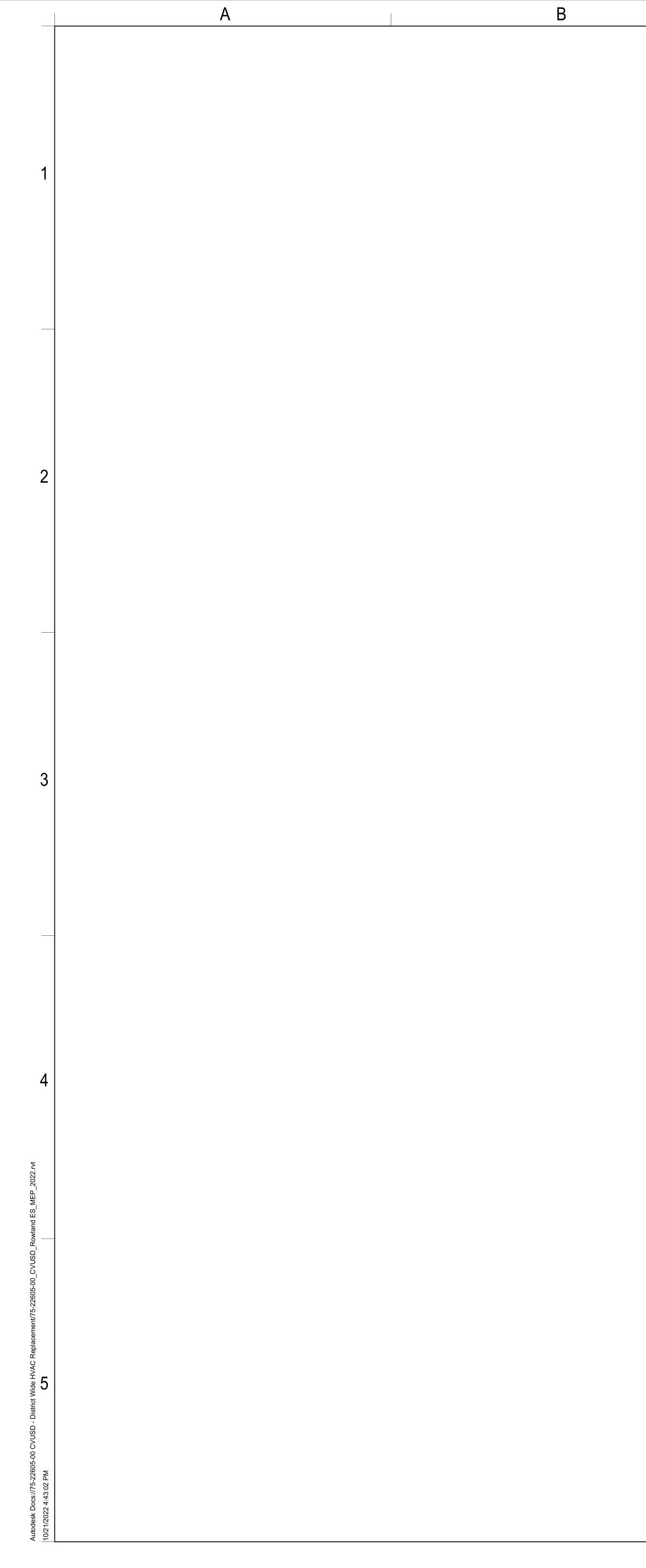

M7.2 NO SCALE

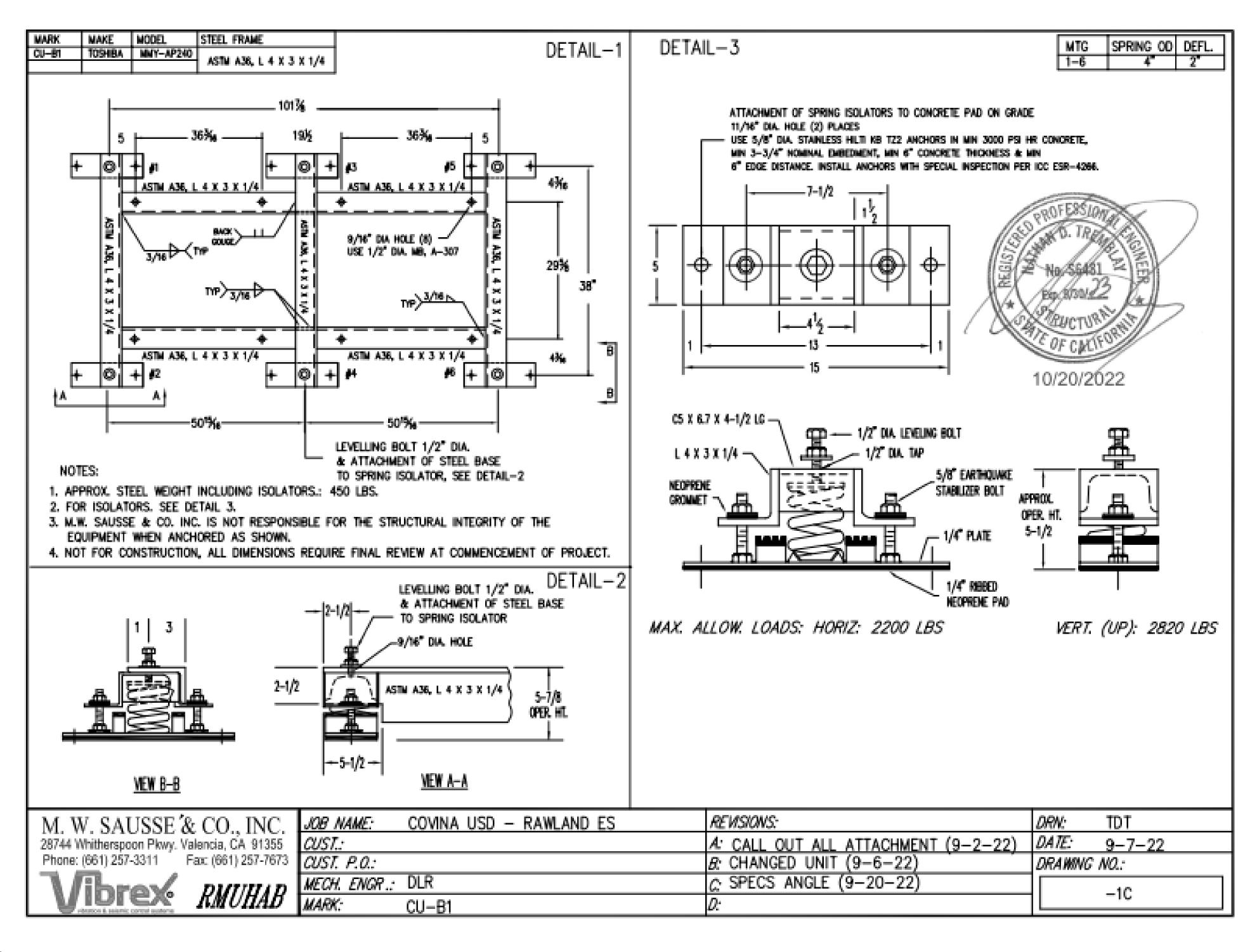
DAMPER LOCATION.



С

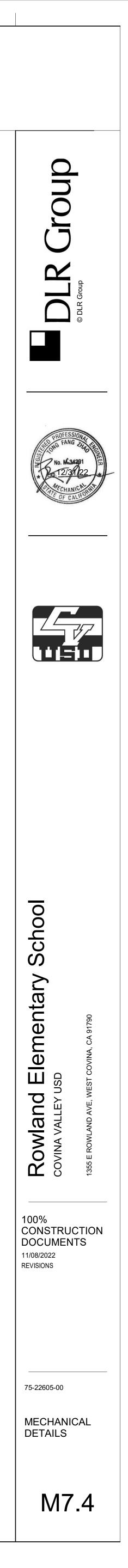

D

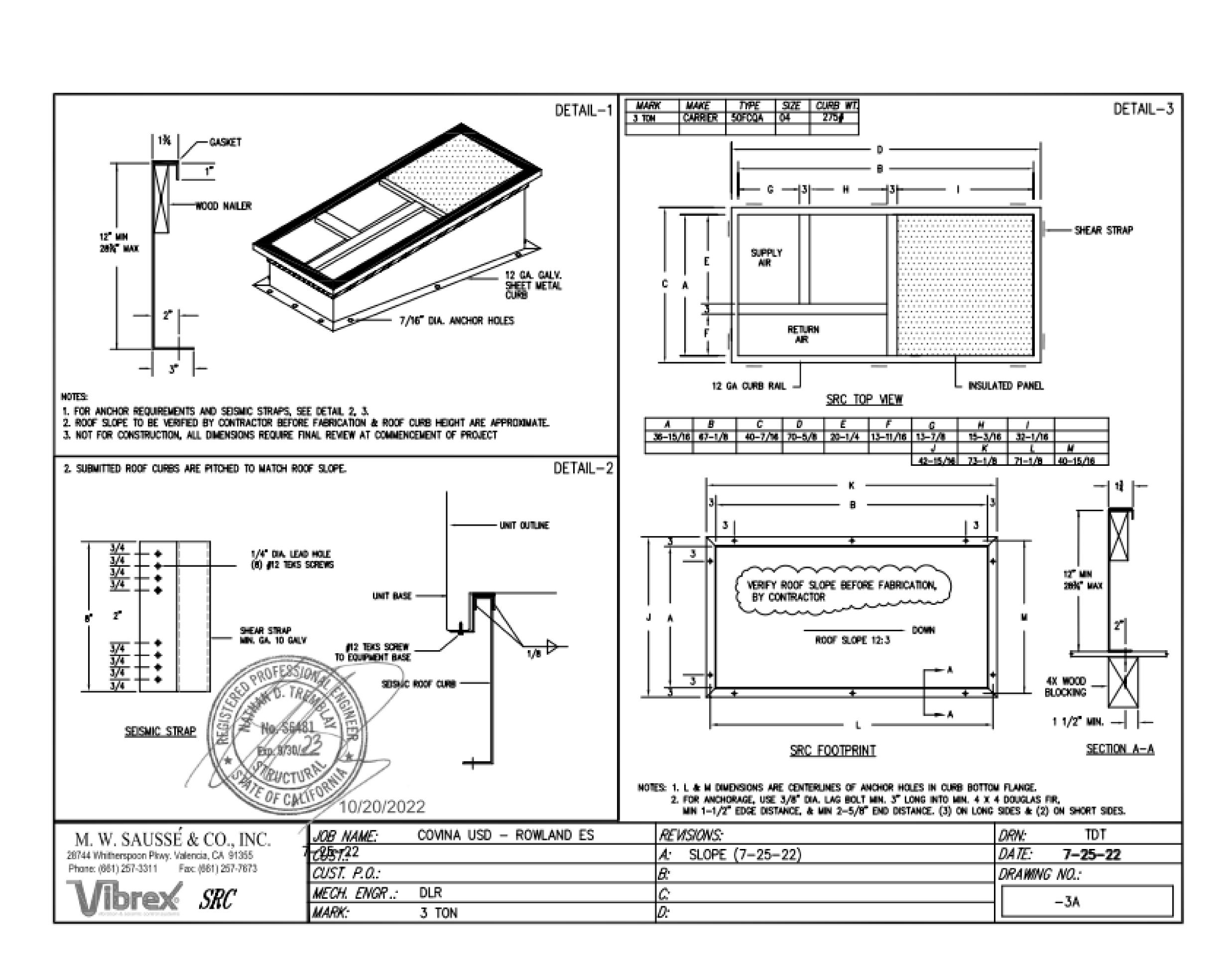

1 FCU-B1 M7.3 NO SCALE



F

Ε

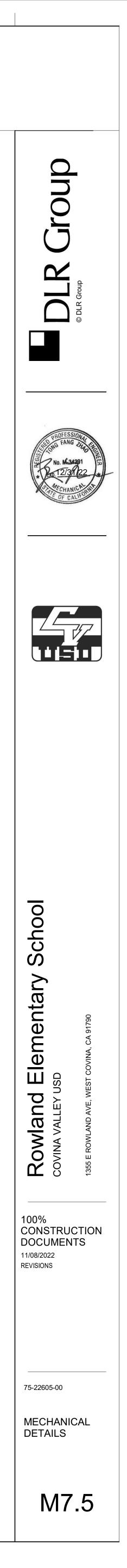



Ε

1 CU-B1 M7.4 NO SCALE

С

D



1 RTU ANCHORAGE DETAIL M7.5 NO SCALE

Α

С

D

Α

 RTU-I1 THRU RTU-I3 (BLDG. I)
 SANYO
 36THS22 (CHS3622)
 36000
 208/1
 50
 18.3
 218

RTU-F1 THRU RTU-F3 (BLDG. F) SANYO 36THS22 (CHS3622) 36000 208/1 50 18.3 218

RTU-D1 THRU RTU-D3 (BLDG. D) SANYO 36THS22 (CHS3622) 36000 208/1 50 18.3 218

ALL ROOFTOP UNITS ARE HORIZONTALLY DISCHARGED CONFIGURATION, UNO. FIELD VERIFY PRIOR TO ORDERING.

6. SCCR RATING OF UNITS SHALL BE MINIMUM OF 10KA FOR CLASSROOM RTUS & MPR FCU-B1 AND 25 KA FOR MPR CU-B1.

OVERALL

DIMENSIONS

24"x24"

RTU-H1 THRU RTU-H3 (BLDG. H) SANYO 36THS22 (CHS3622)

PROVIDE MECHANICAL UNIT WITH INTEGRAL CONVENIENCE RECEPTACLE.

. PROVIDE HINGED ACCESS PANEL FOR ALL ROOFTOP UNITS.

ALL ROOFTOP UNITS SHALL BE PROVIDED WITH UNPOWERED CONVENIENCE OUTLET.

. FINAL WEIGHT (LBS) IS SUMMATION OF RTU WEIGHT, AND OUTSIDE AIR HOOD, AS APPLICABLE.

CU-B1 (BLDG. B)

FCU-B1 (BLDG. B)

MARK MANUFACTURER NO. &

CD-1

MODEL NO.

TITUS PAS

NOTES:

В

0 218

0 218

0 218

0 218

NOTES

1,2,3

1,2,3

0 NO

0 NO

0 NO

0 NO

	ROWLAND AVE. E.S. EXISTING UNIT												
TAGS	MAKE	MODEL	GAS INPUT/OUTPUT (BTU/HR)		ECTRIC		WEIGHT (LBS)	ECONO	DMIZER	POWER E	XHAUST	OPERATING WEIGHT (LBS)	DIREC REPLACEN Y/N
			(210/11)	V/PH	MCA	FLA		EXISTING	WEIGHT	EXISTING	WEIGHT		REPLACEN
RTU-C1, RTU-C2 (BLDG. C)	SANYO	36THS22 (CHS3622)	36000	208/1	50	18.3	218	-	0	NO	0	218	Y
RTU-K1 THRU RTU-K3 (BLDG. K)	SANYO	36THS22 (CHS3622)	36000	208/1	50	18.3	218	-	0	NO	0	218	Y
RTU-J1 THRU RTU-J3 (BLDG. J)	SANYO	36THS22 (CHS3622)	36000	208/1	50	18.3	218	-	0	NO	0	218	Y

36000 208/1 50 18.3 218

DIFFUSER AND GRILLE SCHEDULE

6"Ø

14"Ø

16"Ø

NECK SIZE CFM RANGE MAX MAX NC SP

25 0.1

25 0.1

25 0.1

25 0.1

25 0.1

25 0.1

20 0.1

20 0.1

20 0.1

20 0.1

20 0.1

20 0.1

0 - 110

111 - 190

191 - 280

281 - 350

351 - 450

451 - 550

0 - 100

101 - 175

176 - 275

276 - 380

381 - 500

501 - 570

ROWI AND AVE ES EXISTING LINIT

	PAS	SUPPLY		8"Ø
				10"Ø
				12"Ø
				14Ø
				16"Ø
RG-1	TITUS	CEILING	24"x24"	6"Ø
	PAR	RETURN		8"Ø
				10"Ø
				12"Ø

TYPE

CEILING

NOTES: 1. OBTAIN ARCHITECT'S APPROVAL FOR COLOR AND FINISH. 2. MATCH THE BORDER TYPE TO THE CEILING. 3. PROVIDE FLAT BLACK INTERNAL FINISH.

D

С

ROWLAND AVE. E.S. AC UNIT REPLACEMENT

DIRECT PLACEMENT? Y/N	CARRIER MODEL #	NE	T COOLING CA	PACITY	AIRFLO	W (CFM)	ESP (IN WG)	SEER	EER	HEATING CAPACITY	NEW MERV RATING	FILTER QUANTITY & SIZE (W" X H" X D")	E		AL	WEIGHT	OUTSIDE AIR HOOD WEIGHT (LBS)	ECONC	MIZER		POWER EX	HAUST			ROOF CURB WEIGHT (LBS)	TOTAL WEIGHT (LBS)	UNIT DIMENSIONS (L" X W" X H")
		NOMINA	TOTAL (BTUH)	SENSIBLE	SUPPLY	MIN OSA				(MBH)			V-PH	MCA	MOCP	LBS		REQUIRED?	WEIGHT	REQUIRED?	MODEL #	MCA	МОСР	WEIGHT	ζ,		
Y	50FCQA04A2A3	3	35000	26150	1200	250	1	14.3	11.32	34.1	13	2 (16 X 25 X 2)	240-1	26	30	469	12	NO	NA	YES	PCD-SRT12CA	NA	NA	152	275	756	75 X 47 X 34
Y	50FCQA04A2A3	3	35000	26150	1200	250	1	14.3	11.32	34.1	13	2 (16 X 25 X 2)	240-1	26	30	469	12	NO	NA	YES	PCD-SRT12CA	NA	NA	152	275	756	75 X 47 X 34
Y	50FCQA04A2A3	3	35000	26150	1200	250	1	14.3	11.32	34.1	13	2 (16 X 25 X 2)	240-1	26	30	469	12	NO	NA	YES	PCD-SRT12CA	NA	NA	152	275	756	75 X 47 X 34
Y	50FCQA04A2A3	3	35000	26150	1200	250	1	14.3	11.32	34.1	13	2 (16 X 25 X 2)	240-1	26	30	469	12	NO	NA	YES	PCD-SRT12CA	NA	NA	152	275	756	75 X 47 X 34
Y	50FCQA04A2A3	3	35000	26150	1200	250	1	14.3	11.32	34.1	13	2 (16 X 25 X 2)	240-1	26	30	469	12	NO	NA	YES	PCD-SRT12CA	NA	NA	152	275	756	75 X 47 X 34
Y	50FCQA04A2A3	3	35000	26150	1200	250	1	14.3	11.32	34.1	13	2 (16 X 25 X 2)	240-1	26	30	469	12	NO	NA	YES	PCD-SRT12CA	NA	NA	152	275	756	75 X 47 X 34
Y	50FCQA04A2A3	3	35000	26150	1200	250	1	14.3	11.32	34.1	13	2 (16 X 25 X 2)	240-1	26	30	469	12	NO	NA	YES	PCD-SRT12CA	NA	NA	152	275	756	75 X 47 X 34
	MMY-AP240S6HT6P	20						22.7	11.95				460/3	23+23	30+30	1368		NO	NA	NO	NA	NA	NA	NA		1368	104 X 31 X 73
	40RUQA25T3A6-0A0A0		234500	166000	7440	2000	1.2			234.5	13		460/3	19	30	720		NO	NA	NO	NA	NA	NA	NA		720	89 X 29 X 57

DUCT SIZING SCHEDULE *** FOR LOW VELOCITY SUPPLY, RETURN AND EXHAUST										
CFM RANGE	ROUND DUCT DIAMETER OR EQUIVALENT RECTANGULAR DUCT	CFM RANGE	ROUND DUCT DIAMETER OR EQUIVALENT RECTANGULAR DUCT							
0-110	6" OR 8" X 4"	1400-1900	18" OR 24" X 12"							
101-180	8" OR 10" X 6"	1900-2500	20" OR 24" X 14"							
181-270	10" OR 10" X 8"	2500-3300	22" OR 32" X 14"							
271-400	10" OR 12" X 8"	3300-4100	24" OR 36" X 14"							

401-600	12" OR 12" X 10"	4100-5000	26" OR 40'
601-900	14" OR 16" X 10"	5000-6200	28" OR 48'
901-1400	16" OR 18" X 12"	6200-7500	30" OR 48'
REMARKS:			

DUCT SIZES INDICATED ARE INSIDE DIMENSIONS WHICH MAY BE ALTERED BY CONTRACTOR TO OTHER DIMENSIONS TO AVOID INTERFERENCES AND CLEARANCE REQUIREMENTS. USE EQUAL FRICTION METHOD, 0.1"WG PER 100FT. OF DUCT TO DETERMINE DUCT SIZES.

VERIFY ALL DIMENSIONS AT THE SITE, MAKE ALL FIELD MEASUREMENTS AND SHOP DRAWINGS NECESSARY FOR FABRICATION AND ERECTION OF SHEET METAL WORK. MAKE ALLOWANCES FOR BEAMS, PIPE OR OTHER OBSTRUCTION AND FOR WORK BY OTHER TRADES AND NOTIFY THE ARCHITECT IN THE EVENT OF ANY POTENTIAL INTERFERENCE. MAKE AN INITIAL VERIFICATION OF BEAM PENETRATIONS SHOWN ON STRUCTURAL DRAWINGS AND ADVISE OF ANY POTENTIAL INTERFERENCES.

AIR VELOCITY GUIDELINES (FPM)											
	NOISE CRITERIA (NC)										
LOCATION	40	35	30	25	20	15					
MAIN SUPPLY DUCT	1700	1500	1000	800	700	600					
MAIN RETURN DUCT	1200	1000	750	600	500	400					
DUCT TO GRILLE SUPPLY	600	500	400	300	250	200					
DUCT TO GRILLE RETURN	600	500	400	300	250	200					

NEW UNIT

	_
OUND DUCT	
DIAMETER	

QUIVALENT	
GULAR DUCT	

18"	" OR 24" X 12"	
20"	" OR 24" X 14"	

	_	-		-		
R	32	<u>"</u> >	(1	4"		

R 36" X 14"	

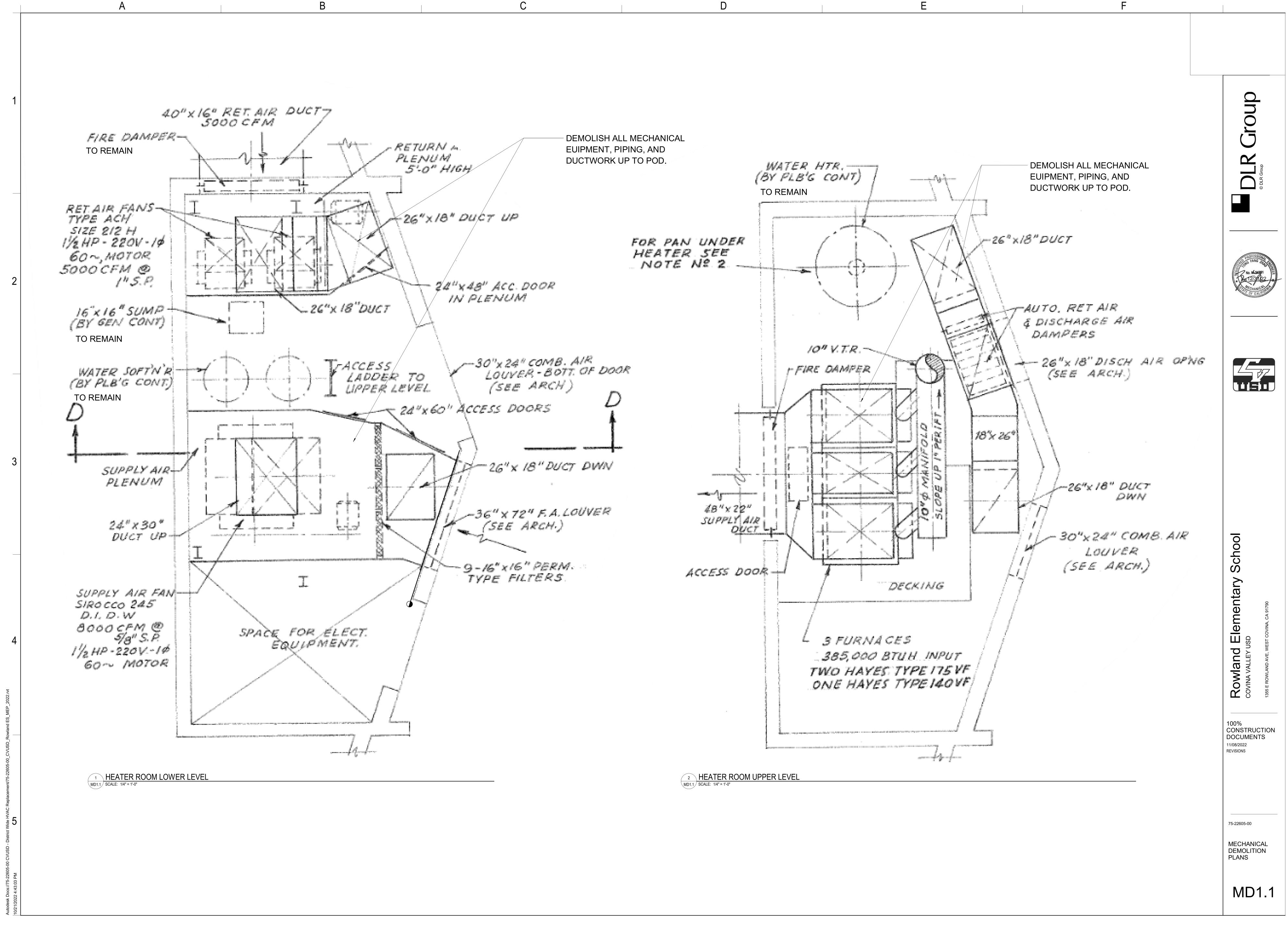
R 40" X 16"

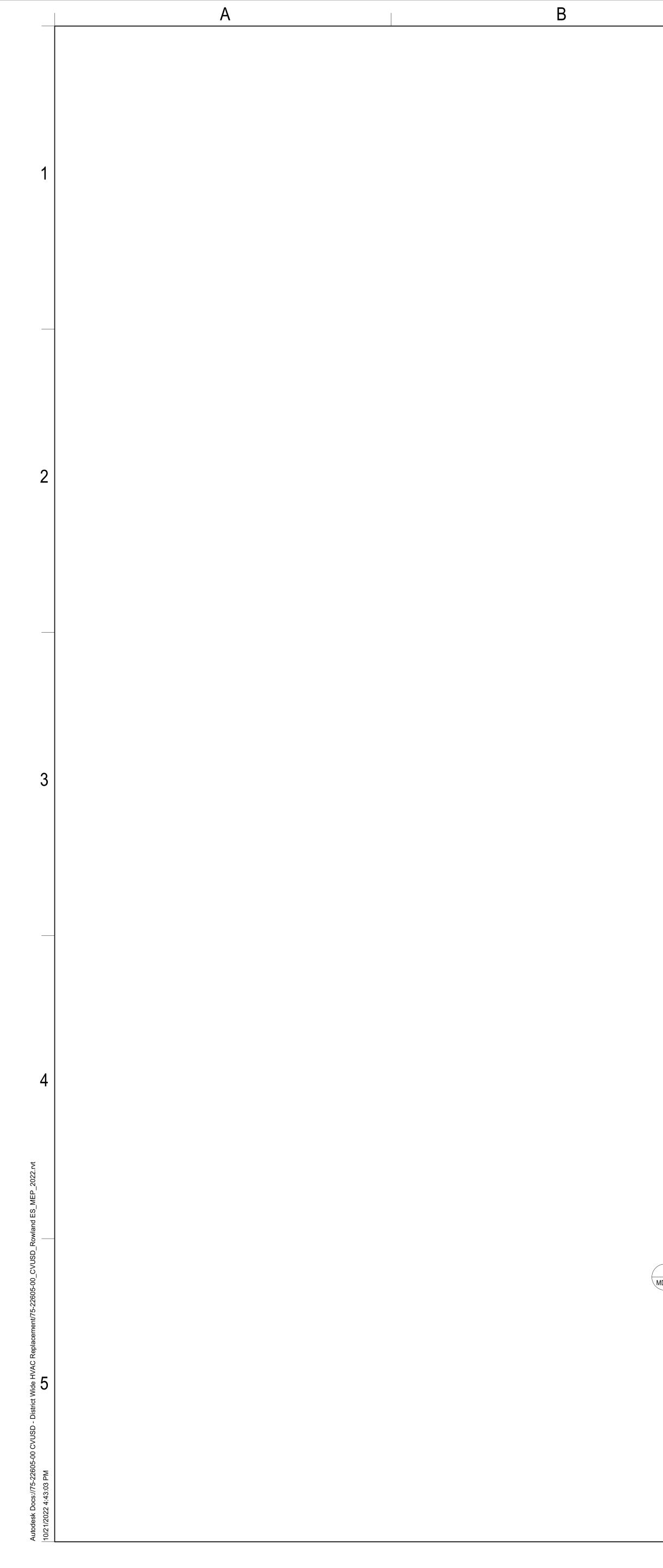
R 48" X 16"

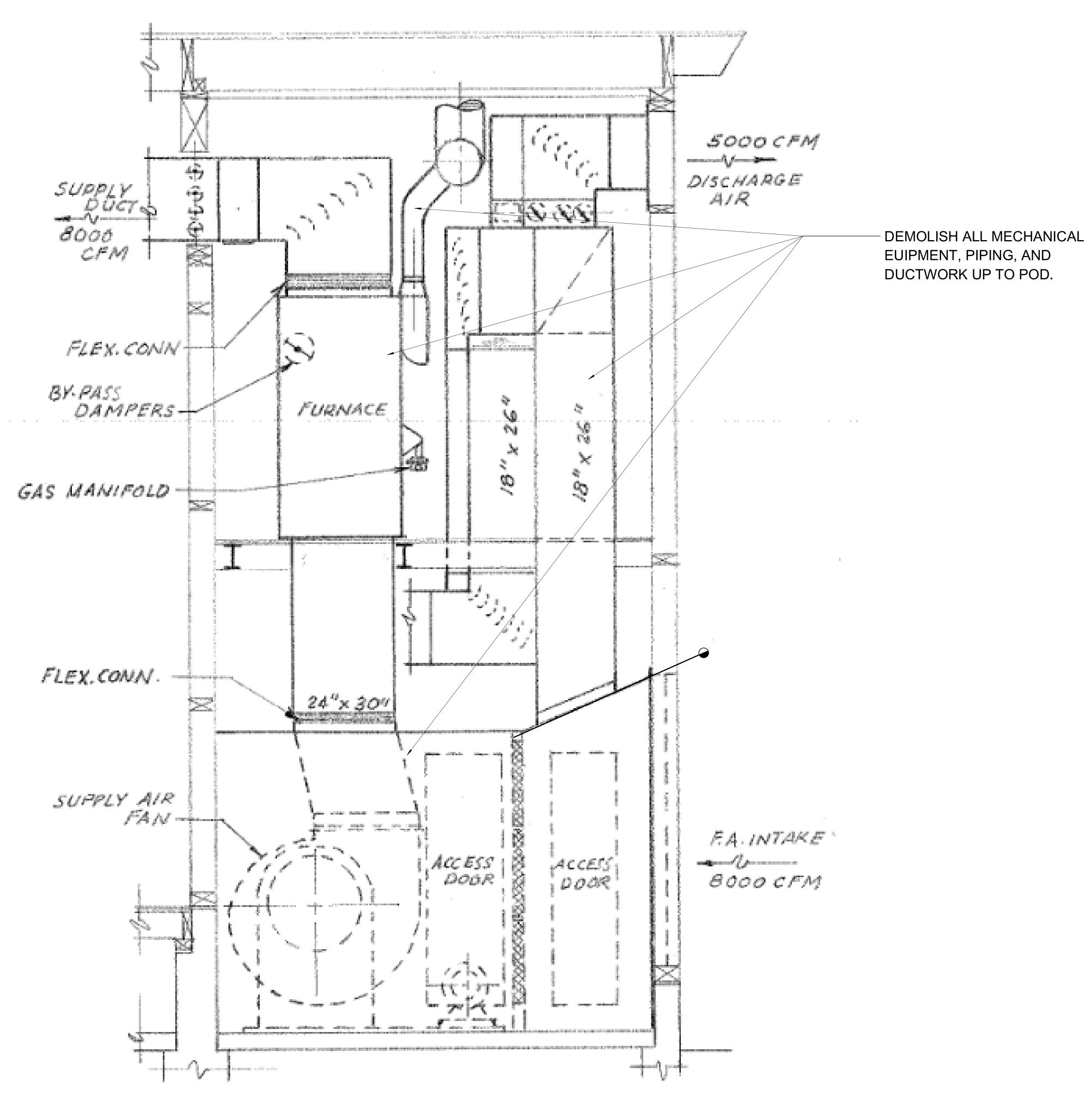
R 48" X 18"

DUCT SIZING *** MEDIUM PRESSURE DUCTWORK

CFM	ROUND DUCT (IN)	RECTANGULAR DUCT (IN) (W IS DUCT WIDTH)								
		WX4	WX6	WX8	WX10	WX12				
UP TO 150	6	8	6	х	х	х				
151-280	8	10	10	8	х	х				
281-500	10	х	16	12	10	х				
501-800	12	х	х	16	12	Х				
801-1200	14	Х	Х	22	16	14				

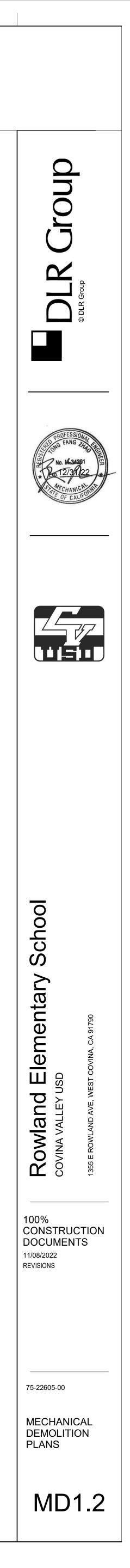

REMARKS:

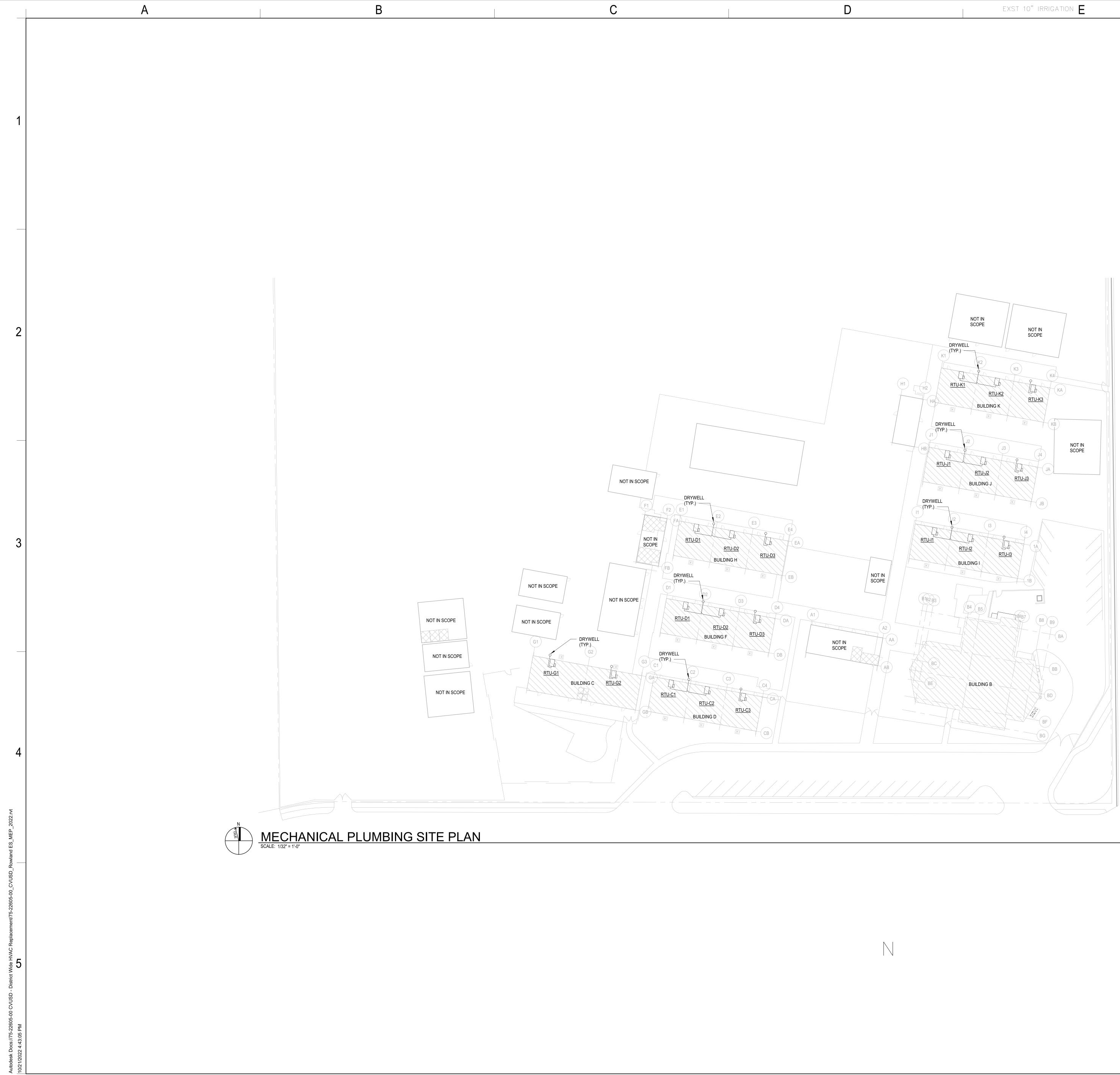

DUCT SIZES.


DUCT SIZES INDICATED ARE INSIDE DIMENSIONS WHICH MAY BE ALTERED BY CONTRACTOR TO OTHER DIMENSIONS TO AVOID INTERFERENCES AND CLEARANCE REQUIREMENTS. USE EQUAL FRICTION METHOD, 0.1"WG PER 100FT. OF DUCT TO DETERMINE

VERIFY ALL DIMENSIONS AT THE SITE, MAKE ALL FIELD MEASUREMENTS AND SHOP DRAWINGS NECESSARY FOR FABRICATION AND ERECTION OF SHEET METAL WORK. MAKE ALLOWANCES FOR BEAMS, PIPE OR OTHER OBSTRUCTION AND FOR WORK BY OTHER TRADES AND NOTIFY THE ARCHITECT IN THE EVENT OF ANY POTENTIAL INTERFERENCE. MAKE AN INITIAL VERIFICATION OF BEAM PENETRATIONS SHOWN ON STRUCTURAL DRAWINGS AND ADVISE OF ANY POTENTIAL INTERFERENCES.

dno.
D D
JLR Group
No. M.34291
* Pro. 12/3/122 *
School
_
Rowland Elementary covina valley usd 1355 e rowland ave, west covina, ca 91790
Rowland Elemen covina valley usd
Jd E EY USD VE, WEST O
NA VALL ROWLAND A
COVI 1355 E
100% CONSTRUCTION DOCUMENTS
DOCUMENTS 11/08/2022 REVISIONS
75-22605-00
MECHANICAL SCHEDULES
M8.1

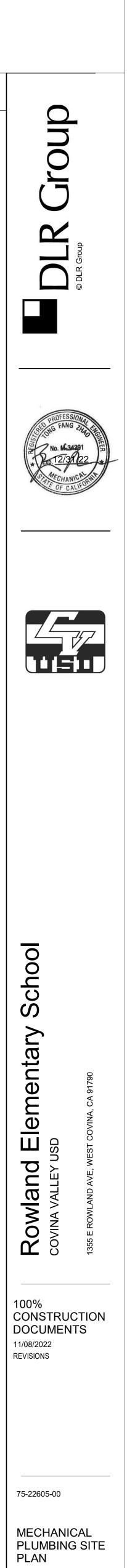



1 HEATER ROOM SECTION "D-D" MD1.2 SCALE: 1/4" = 1'-0" С

D

F

Ε



_____ (E) RESTROOMS - NOT IN SCOPE

EXISTING BUILDING NOT IN SCOPE

EXISTING BUILDING - SCOPE OF WORK UNDER THIS DSA APPLICATION

MP1.1

B

GENE	RAL SYMBOLS
	POINT OF DISCONNECT - DEMOLITION REMOVED FROM EXISTING
	POINT OF CONNECTION - NEW CONNECTS TO EXISTING
	AREA NOT IN CONTRACT

GENERAL NOTES

Α

- 1 PENETRATIONS IN WALLS REQUIRING PROTECTED OPENINGS MUST BE FIRESTOPPED WITH AN APPROVED MATERIAL.
- 2 UNLESS SPECIFICALLY SHOWN ON THESE DRAWINGS, NO STRUCTURAL MEMBER SHALL BE CUT, DRILLED, OR NOTCHED WITHOUT PRIOR AUTHORIZATION IN WRITING BY THE STRUCTURAL ENGINEER OF RECORD AND DSA.

SHEET INDEX

- ELECTRICAL SYMBOLS, ABBREVIATIONS & NOTES E0.1
- ROOF ELECTRICAL PLAN E2.1 E2.2 REFERENCE DRAWING
- E5.1 ELECTRICAL DIAGRAMS AND SCHEDULE
- E6.1 ELECTRICAL DETAILS

02/02/2020

REVISED: 02/14/2020

FROM	
STING	

ALL MECHANICAL, PLUMBING, AND ELECTRICAL COMPONENTS SHALL BE ANCHORED AND INSTALLED PER THE DETAILS ON THE DSA-APPROVED CONSTRUCTION DOCUMENTS. THE FOLLOWING COMPONENTS SHALL BE ANCHORED OR BRACED TO MEET THE FORCE AND DISPLACEMENT REQUIREMENTS PRESCRIBED IN THE 2019 CBC SECTIONS 1617A.1.18 THROUGH 1617A.1.26 AND ASCE 7-16 CHAPTERS 13, 26, AND 30: 1. ALL PERMANENT EQUIPMENT AND COMPONENTS. 2. TEMPORARY, MOVABLE OR MOBILE EQUIPMENT THAT IS PERMANENTLY ATTACHED (E.G. HARD WIRED) TO THE BUILDING UTILITY SERVICES SUCH AS ELECTRICITY, GAS OR WATER. "PERMANENTLY ATTACHED" SHALL INCLUDE ALL ELECTRICAL CONNECTIONS EXCEPT PLUGS FOR 110/ 220 VOLT RECEPTACLES HAVING A FLEXIBLE CABLE. 3. TEMPORARY, MOVABLE OR MOBILE EQUIPMENT WHICH IS HEAVIER THAN 400 POUNDS OR HAS A CENTER OF MASS LOCATED 4 FEET OR MORE ABOVE THE ADJACENT FLOOR OR ROOF LEVEL THAT DIRECTLY SUPPORT THE COMPONENT IS REQUIRED TO BE RESTRAINED IN A MANNER APPROVED BY DSA.

APPLICABLE CODE: 2019 CBC

MEP COMPONENT ANCHORAGE NOTE

THE FOLLOWING MECHANICAL AND ELECTRICAL COMPONENTS SHALL BE POSITIVELY ATTACHED TO THE STRUCTURE BUT NEED NOT DEMONSTRATE DESIGN COMPLIANCE WITH THE REFERENCES NOTED ABOVE. THESE COMPONENTS SHALL HAVE FLEXIBLE CONNECTIONS PROVIDED BETWEEN THE COMPONENT AND ASSOCIATED DUCTWORK, PIPING, AND CONDUIT. FLEXIBLE CONNECTIONS MUST ALLOW MOVEMENT IN BOTH TRANSVERSE AND LONGITUDINAL DIRECTIONS: A. COMPONENTS WEIGHING LESS THAN 400 POUNDS AND HAVING A CENTER OF MASS LOCATED 4 FEET OR LESS ABOVE THE ADJACENT FLOOR OR ROOF

LEVEL THAT DIRECTLY SUPPORT THE COMPONENT. B. COMPONENTS WEIGHING LESS THAN 20 POUNDS, OR IN THE CASE OF DISTRIBUTED SYSTEMS, LESS THAN 5 POUNDS PER FOOT, WHICH ARE SUSPENDED FROM A ROOF OR FLOOR OR HUND FROM A WALL.

THE ANCHORAGE OF ALL MECHANICAL, ELECTRICAL AND PLUMBING COMPONENTS SHALL BE SUBJECT TO THE APPROVAL OF THE DESIGN PROFESSIONAL IN GENERAL RESPONSIBLE CHARGE OR STRUCTURAL ENGINEER DELEGATED RESPONSIBILITY AND ACCEPTANCE BY DSA. THE PROJECT INSPECTOR WILL VERIFY THAT ALL COMPONENTS AND EQUIPMENT HAVE BEEN ANCHORED IN ACCORDANCE WITH THE ABOVE REQUIREMENTS. PIPING, DUCTWORK, AND ELECTRICAL DISTRIBUTION SYSTEM BRACING NOTE

PIPING, DUCTWORK, AND ELECTRICAL DISTRIBUTION SYSTEMS SHALL BE BRACED TO COMPLY WITH THE FORCES AND DISPLACEMENTS PRESCRIBED IN ASCE 7-16 SECTION 13.3 AS DEFINED IN ASCE 7-16 SECTIONS 13.6.5, 13.6.6, 13.6.7, 13.6.8; AND 2019 CBC, SECTIONS 1617A.1.24, 1617A.1.25 AND 1617A.1.26.

THE METHOD OF SHOWING BRACING AND ATTACHEMENTS TO THE STRUCTURE FOR THE IDENTIFIED DISTRIBUTION SYSTEM ARE AS NOTED BELOW. WHEN BRACING AND ATTACHMENTS ARE BASED ON A PREAPPROVED INSTALLATION GUIDE (E.G., OSHPD OPM FOR 2013 CBC OR LATER), COPIES OF THE BRACING SYSTEM INSTALLATION GUIDE OR MANUAL SHALL BE AVAILABLE ON THE JOBSITE PRIOR TO THE START OF AND DURING THE HANGING AND BRACING OF THE DISTRIBUTION SYSTEMS. THE STRUCTURAL ENGINEER OF RECORD SHALL VERIFY THE ADEQUACY OF THE STRUCTURE TO SUPPORT THE HANGER AND BRACE LOADS.

MECHANICAL PIPING (MP), MECHANICAL DUCTS (MD), PLUMBING PIPING (PP), ELECTRICAL DISTRIBUTION SYSTEMS (E):

OPTION 1: DETAILED ON THE APPROVED DRAWINGS WITH PROJECT SPECIFIC NOTES AND DETAILS. MP MD PP E E OPTION 2: SHALL COMPLY WITH THE APPLICABLE OSHPD PRE-APPROVAL (OPM#) MP MD PP # 00043-13

POWER

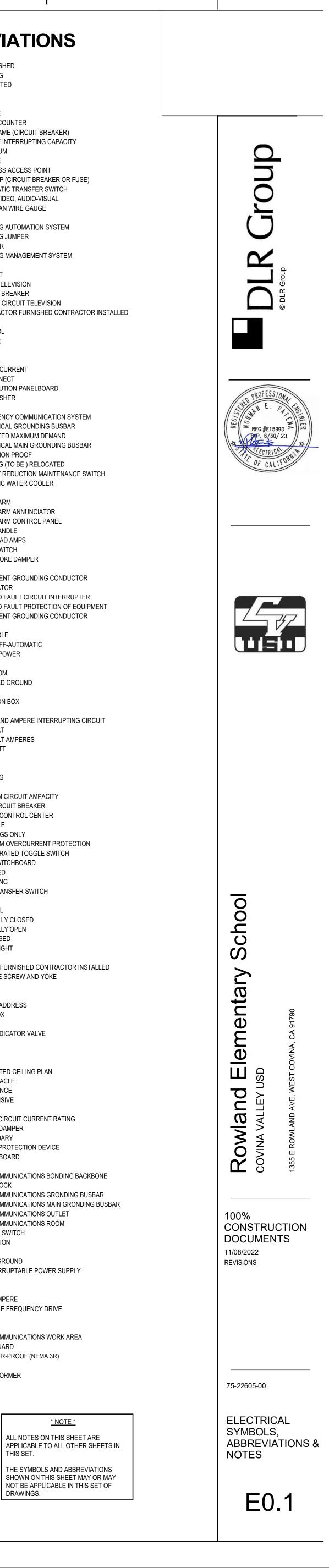
	POWER	<u>≺</u>	
	CIRCUIT HOME RUN	RECEPT	ACLES: MOUN
——————————————————————————————————————	CONDUIT TURNING UP	DIAGON	AL LINE THRO
Ø	CONDUIT TURNING DOWN	INDICATE	ES MOUNT DE
]	CONDUIT STUB-UP	BOTTOM	NDICATED AS
]	CONDUIT SLEEVE	OR 6-INC EXISTS.	HES ABOVE (
	CONDUIT SEAL		
\frown	CONDUIT CONCEALED IN CEILING OR WALLS, POWER		SHALL BE MA
*	CONDUIT CONCEALED IN CEILING OR WALLS, OTHER (* = SEE ABBREVIATIONS)	\Rightarrow	DUPLEX REC
\frown	CONDUIT CONCEALED IN FLOOR OR UNDERGROUND, POWER	₹	DUPLEX REC
*	CONDUIT CONCEALED IN FLOOR OR UNDERGROUND, OTHER (* = SEE ABBREVIATIONS)		DUPLEX REC COUNTER
	EXPOSED CONDUIT, POWER		FOURPLEX R
*	EXPOSED CONDUIT,	-∰ -∰	FOURPLEX R
FD	OTHER (* = SEE ABBREVIATIONS)		FOURPLEX R
FRS∃	FIRE RATED SLEEVE		MOUNT ABO
Т	TRANSFORMER	=⊖=	DUPLEX REC
<u>xxx</u>	BRANCH CIRCUIT PANELBOARD	\Rightarrow	FOURPLEX R
	MOUNT 72-INCHES TO TOP	$\vdash \bigcirc$	DUPLEX REC
	DISTRIBUTION PANELBOARD MOUNT 72-INCHES TO TOP	HⅢ H®	DUPLEX REC
	EQUIPMENT CABINET, AS NOTED		DUPLEX REC
XXX			MOUNT ABO
	SWITCHBOARD		WEATHER R
		[−] R	ROOF MOUN STRUCTURE
\boxtimes	MOTOR STARTER OR DRIVE	===	WEATHER RI MOUNT 18-IN
	DISCONNECT SWITCH	WP	IN-USE COVE
\boxtimes_{L}	COMBINATION STARTER / DISCONNECT SWITCH	⇒	STD DUPLEX WATER COO
CT	CURRENT TRANSFORMER ENCLOSURE	~ EWC	EQUIPMENT GUIDELINES
M	METER	⇒ _{TV}	DUPLEX REC MOUNT AT S
GEN	GENERATOR	IV	OF ADJACEN
ATS	AUTOMATIC TRANSFER SWITCH		
	SYSTEM GROUND ELECTRODE	-	DUPLEX REC
	THERMOSTAT		FOURPLEX R
-		\Rightarrow	DUPLEX REC
Î	MUSHROOM SWITCH		DUPLEX REC
МН	ELECTRICAL MANHOLE	\Rightarrow	RANGE RECI
HH	ELECTRICAL HAND HOLE	$\vdash $	SPECIAL REC
\mathbb{M}	MOTOR CONNECTION, HORSEPOWER AS INDICATED	۲	FLUSH FLOO
SF	FUSE AND SWITCH ASSEMBLY	•	FLUSH FLOO
st St	MANUAL CONTROLLER WITH THERMAL OVERLOAD	>•	MULTI-DEVIC RECEPTACLI
·	MANUAL CONTROLLER W/O THERMAL OVERLOAD		OUTLETS
S _M B		$\vdash \mathbb{O}$	USB ONLY I
В		⊐U)	RECEPTAC
PB	PULL BOX	J	FLUSH JUN
	EQUIPMENT CONNECTION		JUNCTION I
<u>F F F F F</u>	CABLE TRAY, LADDER TYPE OR RUNWAY	J _P	MOUNT 24-I
	CABLE TRAY		LABEL BOX
<u></u>	MULTI-OUTLET ASSEMBLIES	Ś	JUNCTION I
<u></u>	MOUNT 18-INCHES AFF, UNO WHERE DENOTED 'AC', MOUNT ABOVE COUNTER	$\vdash \mathbb{U}$	FLUSH JUN
	DIVIDED SURFACE RACEWAY	ΗJ	SURFACE J
	MOUNT 18-INCHES AFF, UNO WHERE DENOTED 'AC', MOUNT ABOVE COUNTER	J	SURFACE J
JSHBUTT	ON STATION: MOUNT 42-INCHES AFF UNO	$\vdash \oplus$	HAND DRYE
•	SWITCH, PUSH BUTTON, SINGLE		SPECIFIED
°	SWITCH, PUSH BUTTON, DOUBLE		
8	SWITCH. PUSH BUTTON. TRIPLE		

000	SWITCH, PUSH BUTTON, TRIPLE
	-))

ABBREVIATIONS

DEMOLISHED EXISTING

(E)

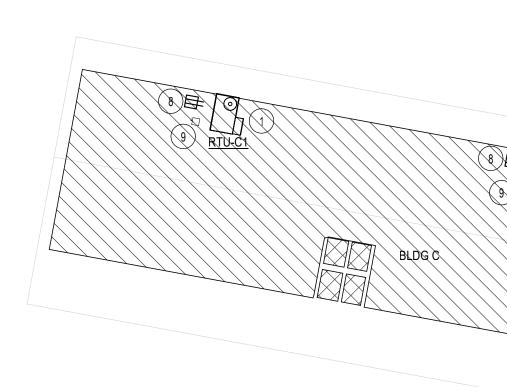

ECEPTA	ACLES: MOUNT 18-INCHES AFF, UNO
NDICATE VHERE I OTTOM	AL LINE THROUGH SYMBOL OR DENOTED 'AC' ES MOUNT DEVICE ABOVE COUNTER. NDICATED AS 'MOUNT ABOVE COUNTER' MOUNT OF BOX 2-INCHES ABOVE TOP OF BACKSPLASH HES ABOVE COUNTERTOP IF NO BACKSPLASH
ABELS S ⊖ ⊖ ⊟ ♥ ₩	SHALL BE MACHINE PRINTED, UNO SIMPLEX RECEPTACLE DUPLEX RECEPTACLE, GFI TYPE DUPLEX RECEPTACLE, GFI TYPE DUPLEX RECEPTACLE, MOUNT ABOVE COUNTER DUPLEX RECEPTACLE, GFI TYPE, MOUNT ABOVE COUNTER
毎 ⊕ ⊕	FOURPLEX RECEPTACLE FOURPLEX RECEPTACLE, GFI TYPE FOURPLEX RECEPTACLE, MOUNT ABOVE COUNTER FOURPLEX RECEPTACLE, GFI TYPE, MOUNT ABOVE COUNTER
€	DUPLEX RECEPTACLE, FLUSH IN CEILING FOURPLEX RECEPTACLE, FLUSH IN CEILING
₽ ₽ ₽ ₽	DUPLEX RECEPTACLE, HORIZONTALLY MOUNTED DUPLEX RECEPTACLE, HORIZ. MTD, GFI TYPE DUPLEX RECEPTACLE, HORIZ. MTD, ABOVE COUNTE DUPLEX RECEPTACLE, HORIZ. MTD, GFI TYPE, MOUNT ABOVE COUNTER
⊟ _R	WEATHER RESISTANT GFI DUPLEX RECEPTACLE, ROOF MOUNT 18-INCHES ABOVE ADJACENT STRUCTURE WITH A WEATHERPROOF, IN-USE COVE
⊟ _{WP}	WEATHER RESISTANT GFI DUPLEX RECEPTACLE, MOUNT 18-INCHES AFF WITH A WEATHERPROOF, IN-USE COVER
⇔ _{ewc}	STD DUPLEX RECEPTACLE TO SERVE ELECTRIC WATER COOLER, MOUNT AT HEIGHT PER EQUIPMENT MANUFACTURER'S INSTALLATION GUIDELINES. WIRE TO GFCI BKR IN PANELBOARD.
⊖ _{TV}	DUPLEX RECEPTACLE TO SERVE TELEVISION, MOUNT AT SAME HEIGHT AND WITHIN 8-INCHES OF ADJACENT TV OUTLET
	DUPLEX RECEPTACLE, EMERGENCY
\bullet	FOURPLEX RECEPTACLE, EMERGENCY
\ominus	DUPLEX RECEPTACLE, LOWER SWITCH
$ \bigcirc $	DUPLEX RECEPTACLE, SWITCHED
€	RANGE RECEPTACLE, MOUNT 8-INCHES AFF
	SPECIAL RECEPTACLE, DEEP WELL BOX
•	FLUSH FLOOR OUTLET BOX UNO
	FLUSH FLOOR BOX WITH DUPLEX RECEPTACLE UNO MULTI-DEVICE FLOOR BOX WITH DUPLEX RECEPTACLE AND TELECOMMUNICATIONS OUTLETS
⊢()) =()	USB ONLY RECEPTACLE RECEPTACLE WITH USB PORTS
J	FLUSH JUNCTION BOX, CEILING MOUNTED
J _P	JUNCTION BOX FOR FUTURE PROJECTOR POWER MOUNT 24-INCHES ABOVE SUSPENDED CEILING MOUNT TIGHT TO CEILING AT EXPOSED STRUCTUR LABEL BOX COVER 'PROJECTOR POWER'
6	JUNCTION BOX ABOVE SUSPENDED CEILING WITH FLEX CONNECTION
НĴ	FLUSH JUNCTION BOX, WALL MOUNTED
ΗJ	SURFACE JUNCTION BOX, WALL MOUNTED
J	SURFACE JUNCTION BOX, CEILING MOUNTED

YER, INSTALL HAND DRYER D IN DIV. 11

(R)	RELOCATED
Ø	PHASE
A AC AF AIC AL AMP AP AT AT ATS AV AWG	AMPERE ABOVE COUNTER AMP FRAME (CIRCUIT BREAKER) AMPERE INTERRUPTING CAPACITY ALUMINUM AMPERE WIRELESS ACCESS POINT AMP TRIP (CIRCUIT BREAKER OR FUSE) AUTOMATIC TRANSFER SWITCH AUDIO-VIDEO, AUDIO-VISUAL AMERICAN WIRE GAUGE
BAS	BUILDING AUTOMATION SYSTEM
BJ	BONDING JUMPER
BKR	BREAKER
BMS	BUILDING MANAGEMENT SYSTEM
C	CONDUIT
CATV	CABLE TELEVISION
CB	CIRCUIT BREAKER
CCTV	CLOSED CIRCUIT TELEVISION
CFCI	CONTRACTOR FURNISHED CONTRACTOR I
CKT	CIRCUIT
CTL	CONTROL
CU	COPPER
DB	DECIBEL
DC	DIRECT CURRENT
DISC	DISCONNECT
DP	DISTRIBUTION PANELBOARD
DW	DISHWASHER
ECS	EMERGENCY COMMUNICATION SYSTEM
EGB	ELECTRICAL GROUNDING BUSBAR
EMD	ESTIMATED MAXIMUM DEMAND
EMGB	ELECTRICAL MAIN GROUNDING BUSBAR
EP	EXPLOSION PROOF
ER	EXISTING (TO BE) RELOCATED
ERMS	ENERGY REDUCTION MAINTENANCE SWITC
EWC	ELECTRIC WATER COOLER
FA	FIRE ALARM
FAA	FIRE ALARM ANNUNCIATOR
FACP	FIRE ALARM CONTROL PANEL
FC	FOOT CANDLE
FLA	FULL LOAD AMPS
FS	FLOW SWITCH
FSD	FIRE SMOKE DAMPER
g	EQUIPMENT GROUNDING CONDUCTOR
gen	GENERATOR
gfi, gfci	GROUND FAULT CIRCUIT INTERRUPTER
gfpe	GROUND FAULT PROTECTION OF EQUIPME
gnd	EQUIPMENT GROUNDING CONDUCTOR
hh	HANDHOLE
Hoa	HAND-OFF-AUTOMATIC
Hp	HORSE POWER
IC	INTERCOM
IG	ISOLATED GROUND
JB	JUNCTION BOX
kaic	THOUSAND AMPERE INTERRUPTING CIRCL
KV	KILOVOLT
KVA	KILOVOLT AMPERES
KW	KILOWATT
LT	LIGHT
LTG	LIGHTING
MCA	MINIMUM CIRCUIT AMPACITY
MCB	MAIN CIRCUIT BREAKER
MCC	MOTOR CONTROL CENTER
MH	MANHOLE
MLO	MAIN LUGS ONLY
MOCP	MAXIMUM OVERCURRENT PROTECTION
MRTS	MOTOR RATED TOGGLE SWITCH
MSB	MAIN SWITCHBOARD
MTD	MOUNTED
MTG	MOUNTING
MTS	MAIN TRANSFER SWITCH
N	NEUTRAL
N.C.	NORMALLY CLOSED
N.O.	NORMALLY OPEN
NF	NON-FUSED
NL	NIGHT LIGHT
OFCI	OWNER FURNISHED CONTRACTOR INSTAL
OS&Y	OUTSIDE SCREW AND YOKE
P	POLE(S)
PA	PUBLIC ADDRESS
PB	PULL BOX
PH	PHASE
PIV	POST INDICATOR VALVE
PNL	PANEL
PWR	POWER
RCP	REFLECTED CEILING PLAN
RECPT	RECEPTACLE
REF	REFERENCE
RESP	RESPONSIVE
SCCR	SHORT CIRCUIT CURRENT RATING
SD	SMOKE DAMPER
SEC	SECONDARY
SPD	SURGE PROTECTION DEVICE
SWBD	SWITCHBOARD
TBB	TELECOMMUNICATIONS BONDING BACKBO
TC	TIME CLOCK
TGB	TELECOMMUNICATIONS GRONDING BUSBA
TMGB	TELECOMMUNICATIONS MAIN GRONDING E
TO	TELECOMMUNICATIONS OUTLET
TR	TELECOMMUNICATIONS ROOM
TS	TAMPER SWITCH
TV	TELEVISION
UG	UNDERGROUND
UPS	UNINTERRUPTABLE POWER SUPPLY
V	VOLT
VA	VOLT-AMPERE
VFD	VARIABLE FREQUENCY DRIVE
W	WIRE
WA	TELECOMMUNICATIONS WORK AREA
WG	WIRE GUARD
WP	WEATHER-PROOF (NEMA 3R)
XFMR	TRANSFORMER

* NOTE * ALL NOTES ON THIS SHEET ARE APPLICABLE TO ALL OTHER SHEETS IN THIS SET. THE SYMBOLS AND ABBREVIATIONS SHOWN ON THIS SHEET MAY OR MAY

DRAWINGS.


GENERAL NOTES

Α

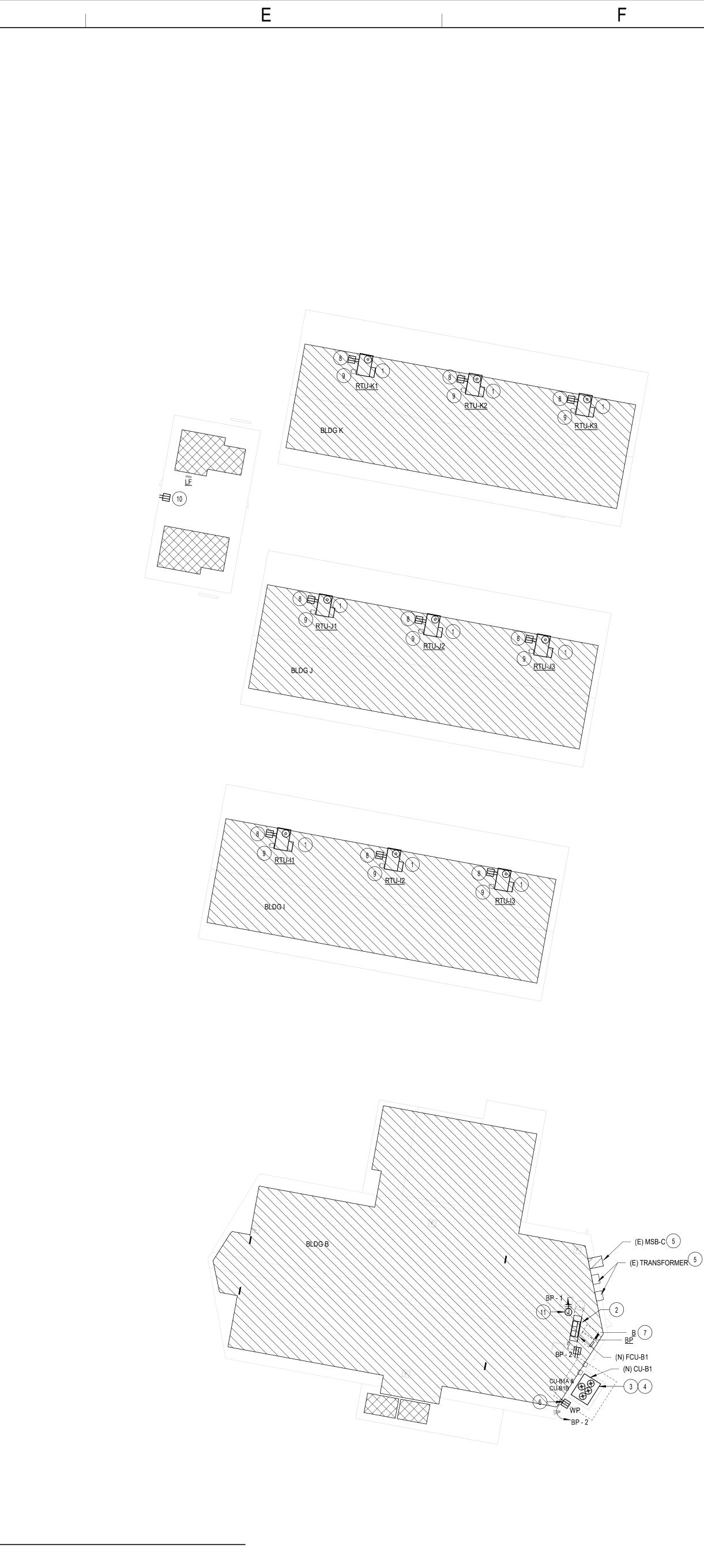
- A WORK TO INCLUDE REMOVAL OF EXISTING FEEDER TO EXISTING HVAC EQUIPMENT THAT ARE TO BE REMOVED AND REPLACED. FEEDER TO EXISTING INDOOR FAN COIL
- UNIT TO BE REMOVED IN ITS ENTIRETY. B DISCONNECTING MEANS TO BE NEMA 3R RATED,
- FURNISHED AND INSTALLED BY DIVISION 26. C CARBON MONOXIDE DETECTION SYSTEM NOT
- REQUIRED. ELECTRIC HEATING IS BEING PROVIDED. D SEE SCHEDULE ON SHEET E5.1 FOR ADDITIONAL
- INFORMATION. E FUSES SHALL BE PROVIDED PER EQUIPMENT
- NAMEPLATE RATING. F ELECTRICAL PANELS LOCATED AT GRADE LEVEL
- DIRECTLY BELOW WHERE SHOWN. G ENERGY MANGEMENT SYSTEM (EMS) / BUILDING AUTOMATION SYSTEM (BAS) IS À DELAGATED DESIGN SCOPE BY CONTRACTOR. CONTRACTOR TO FIELD COORDINATE WITH SCHOOL DISTRICT FOR LOCATIONS OF EMS ROUTER AND EMS PANEL AS WELL AS CONDUIT ROUTING.
- H CARBON MONOXIDE DETECTION SYSTEM WILL NOT BE PROVIDED AT THIS TIME UNDER CEBC 503.15.1: EXCEPTION 2: THE GROUP BUILDING WAS CONSTRUCTED BEFORE THE ADOPTION OF THE 2016
- CALIFORNIA BUILDING STANDARDS CODE. EXISTING HVAC UNITS ARE BEING REPLACED IN KIND THROUGHOUT.
- J CONTRACTOR TO PROVIDE CONNECTION FROM LOAD SIDE OF HVAC EQUIPMENT DISCONNECT SWITCH TO FEED POWER EXHAUST DISCONNECT SWITCH. PROVIDE SAME SIZE FEEDER. PROVIDE FUSES PER EQUIPMENT NAMEPLATE RATING.

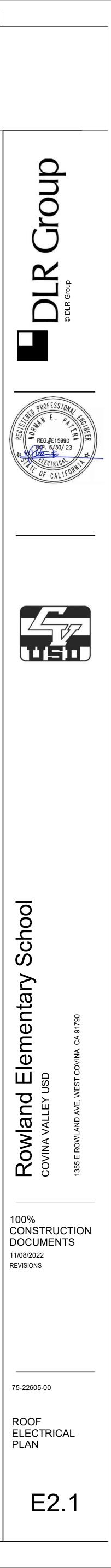
	KEYNOTES
No.	DESCRIPTION
1	EXISTING HVAC EQUIPMENT AT GRADE TO BE DISCONNECTED AND REPLACED AS PART OF THIS SCOPE OF WORK WITH ROOF TOP EQUIPMENT. EXTEND EXISTING FEEDER AS REQUIRED. SEE TABLE ON SHEET E5.1 FOR OTHER INFORMATION. PROVIDE ALL REQUIRED CONNECTION.
2	EXISTING HVAC EQUIPMENT AT GRADE TO BE DISCONNECTED AND REPLACED AS PART OF THIS SCOPE OF WORK. PROVIDE NEW FEEDER PER TABLE ON SHEET E5.1. PROVIDE ALL REQUIRED CONNECTION.
3	NEW HVAC EQUIPMENT AT GRADE. PROVIDE NEW FEEDER PER TABLE ON SHEET E5.1. PROVIDE ALL REQUIRED CONNECTION.
4	DUCT SMOKE DETECTOR FOR COMPLIANCE TO CALIFORNIA MECHANICAL CODE SECTION 608 IS NOT REQUIRED PER CODE EXCEPTION NO.2. ROOM HAVE DIRECT EXIT TO EXTERIOR AND TRAVEL DISTANCE DOES NOT EXCEED 100 FEET.
5	EXISTING ELECTRICAL EQUIPMENT TO REMAIN AND TO BE PROTECTED IN PLACE.
6	PROVIDE GFCI OUTLET WITH WEATHERPROOF-IN USE COVER
7	(N) PANELBOARD B. 277/480 VOLTS, 3-PHASE, W-WIRE, 225 AMP BUS AT GRADE LEVEL.
8	GFCI TYPE RECEPTACLE PROVIDED BY HVAC EQUIPMENT MANUFACTURER. SEE TABLE PROVIDED ON SHEET E5.1, GENERAL NOTE NO.2 FOR CIRCUITING OF OUTLETS. PROVIDE WEATHERPROOF COVER.
9	FUSED DISCONNECT SIZE PER TABLE SHOWN ON E5.1.
10	PROVIDE 120V CIRCUIT FOR EMS ROUTER AND EMS PANEL. FIELD VERIFY EXACT LOCATION OF EMS ROUTER AND EMS PANEL.
11	JUNCTION BOX WITH TOGGLE TYPE DISCONNECT SWITCH FOR COMBINATION FIRE SMOKE DAMPER. PROVIDE REQUIRED CONNECTION TO EXISTING FIRE ALARM SYSTEM FOR CONTROL. SEE SHEET E2.2 FOR

REFERENCE. PROVIDE ALL REQUIRED PARTS AND LABOR FOR A FULLY OPERATIONAL SYSTEM.

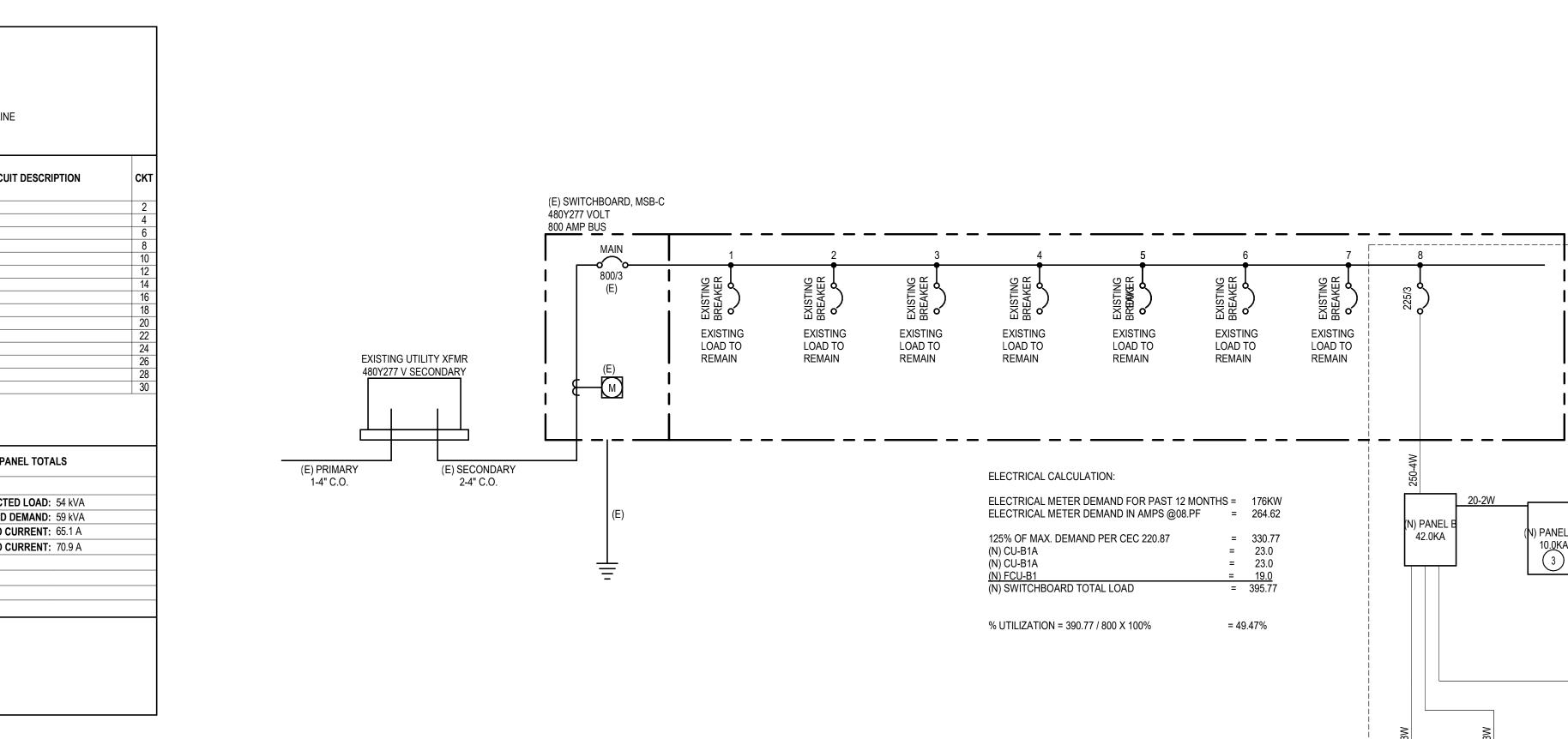
SITE LEGEND

 \Box


EXISTING BUILDING NOT IN SCOPE


EXISTING BUILDING - SCOPE OF WORK UNDER THIS DSA APPLICATION / / /

(E) RESTROOMS - NOT IN SCOPE


Α

В

															PANEL: B					
ING: SURFACE OM: SPD: Type 1 IES: SEE ONE-LINE	FED FRO TEGRAL SI		L			,	: 4	VOLTS: PHASES: WIRES: SCCR:			LOCATION: MECHANICAL B113 BUS RATING: 225.0 A MAIN BREAKER: 225									
CIRCUIT	BKR TRIP	Р	BKR TYPE	LOAD TYPE	E C (VA)	PHASE	B (VA)	PHASE	A (VA)	PHASE	LOAI TYPI	BKR TYPE		BKR TRIP	ESCRIPTION			CIRCUIT DESCRIPTION		
										6,374							1			
								6,374			М		3	30		J-B1A				
						6,374				0.074							5			
				-				6,374		6,374	М		3	30		J-B1B	7 9 Cl			
						6,374		0,374			IVI		5	50		J-D1D	<u>9</u> 00			
						0,011				5,265							13			
								5,265			М		3	30		CU-B1	15 FC			
				_		5,265				400							17			
				-				0		100	R; N		2	15	R)	NL BP (MINI LOAD CTR	19 21 PN			
								0							•		23			
																	25			
																	27			
																	29			
					13 VA .0 A			1801 65.			il loa Al amf									
PAN		Ξ	BKR TYPI			;	OR NOTES	ND FACTO	DEMA			STIMATED MAND (VA		DEMAN D	CONNECTED LOAD (VA)	LOAD DESCRIPTION	load Type			
			(5mA)	G = GFC				125%	LOAD @						0 VA	LIGHTING	L			
										NTINUOUS	C	0 VA	1	0.00%	0 VA					
CONNECTE			CI (30mA)	GP = GFC			R @ 50%	REMAINDER				0 VA 0 VA		0.00%	0 VA	RECEPTACLES	R			
CONNECTE ESTIMATED D			. ,	GP = GFC ST = SHU		. 220	-		@ 100%, F	NTINUOUS ST 10KVA (N-DWELLIN	FI)			RECEPTACLES KITCHEN	K			
			JNT TRIP			220	-	en loads,	@ 100%, F g Kitche	ST 10KVA (FI N(0 VA		0.00%	0 VA					
ESTIMATED D			JNT TRIP	ST = SHU		220	-	en loads,	@ 100%, F g Kitche	ST 10KVA (N-DWELLIN	FI N(0 VA 0 VA))	0.00%	0 VA 0 VA	KITCHEN	Κ			
ESTIMATED D CONNECTED CL			JNT TRIP	ST = SHU		. 220	-	en loads,	@ 100%, F g Kitche	ST 10KVA (N-DWELLIN	FI NO	0 VA 0 VA 0 VA	5 5 5 %	0.00% 0.00% 0.00%	0 VA 0 VA 0 VA	KITCHEN LARGEST MOTOR	K LM			
ESTIMATED D CONNECTED CL			JNT TRIP	ST = SHU		220	-	en loads,	@ 100%, F g Kitche	ST 10KVA (N-DWELLIN	FI NO	0 VA 0 VA 0 VA 58921 VA	0 0 0 0 0 0	0.00% 0.00% 0.00% 108.83%	0 VA 0 VA 0 VA 54140 VA	KITCHEN LARGEST MOTOR MOTOR	K LM M			
ESTIMATED D CONNECTED CL			JNT TRIP	ST = SHU		220	-	en loads,	@ 100%, F g Kitche	ST 10KVA (N-DWELLIN		0 VA 0 VA 0 VA 58921 VA 0 VA	> - > - > - > - > -	0.00% 0.00% 0.00% 108.83% 0.00%	0 VA 0 VA 0 VA 54140 VA 0 VA	KITCHEN LARGEST MOTOR MOTOR COOLING	K LM M C			

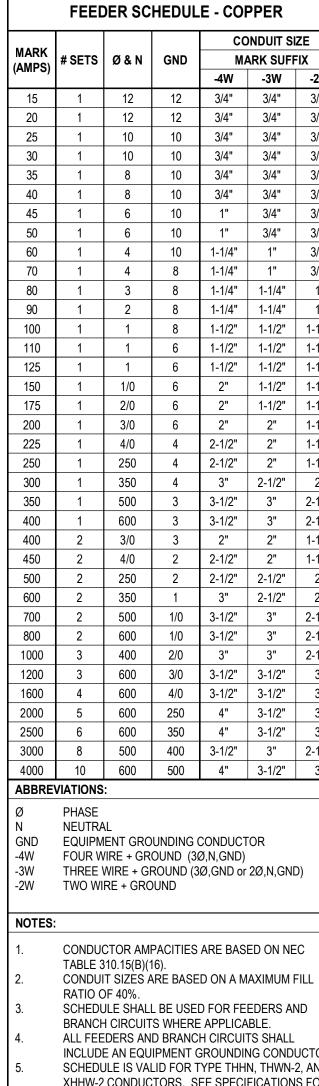
	D	ISTF	RIBU	TION	PANE	L: BP	
		LO	CATION:	MECHANIC	CAL B113	VOLTAGE: 120/240V.1Ø	3W.
		MAIN	DEVICE:	40.0 A		AIC RATING:	
		BUS	S AMPS:			SPECIAL: 40	
					MAIN [DEVICE	
	FRAME	POLES	FUSE	S	PECIAL	DESCRIPTION/NAMEPLATE	
			40.0 A				
	1	11	I		SECTIC	N NO. 1	
СКТ	FRAME	POLES	FUSE	LOAD		DESCRIPTION/NAMEPLATE	NOTES
1	10.0 A	1	10.0 A	100 VA	FIRE SMO	KE DAMPER	
2	400.0 A	1	20.0 A	0 VA	R		
3							
4							
5							
6							
7							
8							
9							
10							

EXISTING UNIT								NEW UNIT																	
TAGS	ELECTRICAL								DIRECT	DIDECT			DIRECT			ELE	CTRICAL				PC	WER EXHA	AUST		NOT
	V/PH	МСА	FLA	МОСР	PANEL/ CKT#	FEEDER SIZE	DISCONNECT	TAGS	REPLACEMENT? Y/N	CFM	V-PH	MCA	МОСР	PANEL/ CKT#	DISCONNECT	REQUIRED?	Model#	MCA	МОСР	FEEDER SIZE	DISCONNECT				
NA	NA	NA	NA	NA	NA	NA	NA	CU-B1A (BLDG. B)	N		460/3	23	30	B-1,3,5	30A (30A FUSE)	NO				NA					
NA	NA	NA	NA	NA	NA	NA	NA	CU-B1B (BLDG. B)	N		460/3	23	30	B-7,9,11	30A (30A FUSE)	NO				NA					
NA	NA	NA	NA	NA	NA	NA	NA	FCU-B1 (BLDG. B)	N	8,000	460/3	19	30	B-13,15,17	30A (30A FUSE)	NO				NA					
CU/FCU-C1 (BLDG C)	240/1	22.875	18.3	30	LH-14,16	2#10, 1#10GND-0.75"C	30	RTU-C1 (BLDG C)	Y	1,200	240/1	26	30	LH-14,16	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	1			
CU/FCU-C2 (BLDG C)	240/1	22.875	18.3	30	LH-18,20	2#10, 1#10GND-0.75"C	30	RTU-C2 (BLDG C)	Y	1,200	240/1	26	30	LH-18,20	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	1			
CU/FCU-D1 (BLDG D)	240/1	22.875	18.3	30	LH-2,4	2#10, 1#10GND-0.75"C	30	RTU-D1 (BLDG D)	Y	1,200	240/1	26	30	LH-2,4	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	1			
CU/FCU-D2 (BLDG D)	240/1	22.875	18.3	30	LH-6,8	2#10, 1#10GND-0.75"C	30	RTU-D2 (BLDG D)	Y	1,200	240/1	26	30	LH-6,8	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	1			
CU/FCU-D3 (BLDG D)	240/1	22.875	18.3	30	LH-10,12	2#10, 1#10GND-0.75"C	30	RTU-D3 (BLDG D)	Y	1,200	240/1	26	30	LH-10,12	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	1			
CU/FCU-F1 (BLDG F)	240/1	22.875	18.3	30	LH-13,15	2#10, 1#10GND-0.75"C	30	RTU-F1 (BLDG F)	Y	1,200	240/1	26	30	LH-13,15	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	1			
CU/FCU-F2 (BLDG F)	240/1	22.875	18.3	30	LH-17,19	2#10, 1#10GND-0.75"C	30	RTU-F2 (BLDG F)	Y	1,200	240/1	26	30	LH-17,19	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	1			
CU/FCU-F3 (BLDG F)	240/1	22.875	18.3	30	LH-21,23	2#10, 1#10GND-0.75"C	30	RTU-F3 (BLDG F)	Y	1,200	240/1	26	30	LH-21,23	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	1			
CU/FCU-H1 (BLDG H)	240/1	22.875	18.3	30	LH-1,3	2#10, 1#10GND-0.75"C	30	RTU-H1 (BLDG H)	Y	1,200	240/1	26	30	LH-1,3	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	<u>ا</u> ر			
U/FCU-H2 (BLDG H)	240/1	22.875	18.3	30	LH-5,7	2#10, 1#10GND-0.75"C	30	RTU-H2 (BLDG H)	Y	1,200	240/1	26	30	LH-5,7	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	,			
CU/FCU-H3 (BLDG H)	240/1	22.875	18.3	30	LH-9,11	2#10, 1#10GND-0.75"C	30	RTU-H3 (BLDG H)	Y	1,200	240/1	26	30	LH-9,11	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	1			
CU/FCU-I1 (BLDG I)	240/1	22.875	18.3	30	LF-1,3	2#10, 1#10GND-0.75"C	30	RTU-I1 (BLDG I)	Y	1,200	240/1	26	30	LF-1,3	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	<u>ا</u> ر			
CU/FCU-I2 (BLDG I)	240/1	22.875	18.3	30	LF-5,7	2#10, 1#10GND-0.75"C	30	RTU-I2 (BLDG I)	Y	1,200	240/1	26	30	LF-5,7	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	1			
CU/FCU-I3 (BLDG I)	240/1	22.875	18.3	30	LF-9,11	2#10, 1#10GND-0.75"C	30	RTU-I3 (BLDG I)	Y	1,200	240/1	26	30	LF-9,11	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	,			
CU/FCU-J1 (BLDG J)	240/1	22.875	18.3	30	LF-13,15	2#10, 1#10GND-0.75"C	30	RTU-J1 (BLDG J)	Y	1,200	240/1	26	30	LF-13,15	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	<u>ا</u> ر			
CU/FCU-J2 (BLDG J)	240/1	22.875	18.3	30	LF-17,19	2#10, 1#10GND-0.75"C	30	RTU-J2 (BLDG J)	Y	1,200	240/1	26	30	LF-17,19	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	,			
CU/FCU-J3 (BLDG J)	240/1	22.875	18.3	30	LF-21,23	2#10, 1#10GND-0.75"C	30	RTU-J3 (BLDG J)	Y	1,200	240/1	26	30	LF-21,23	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	,			
CU/FCU-K1 (BLDG K)	240/1	22.875	18.3	30	LF-2,4	2#10, 1#10GND-0.75"C	30	RTU-K1 (BLDG K)	Y	1,200	240/1	26	30	LF-2,4	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	,			
CU/FCU-K2 (BLDG K)	240/1	22.875	18.3	30	LF-6,8	2#10, 1#10GND-0.75"C	30	RTU-K2 (BLDG K)	Y	1,200	240/1	26	30	LF-6,8	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	,			
CU/FCU-K3 (BLDG K)	208/1	22.875	18.3	30	LF-10,12	2#10, 1#10GND-0.75"C	30	RTU-K3 (BLDG K)	Y	1,200	240/1	26	30	LF-10,12	30A (30A FUSE)	YES	PCD-SRT12CA	7.1	12.8	2#10, 1#10GND-0.75"C	30A (20A FUSE)	,			
IERAL NOTES: 1 2 3	PROVIDE N POWER NC	/IECHANICA D MORE TH FOR TO DEM	L UNIT WI AN 10 REC	TH INTEGRA	AL CONVENIENCE F DN ONE CIRCUIT. FI	RMATION PRIOR TO EQUI RECEPTACLE. FEED FROM S IELD VERIFY EXACT LOCAT NDENSING UNITS, FAN CO	SPARE 20A/1P BR ON OF NEAREST	EAKER IN NEAREST PAN	EL. ROUTE 2#12+1#12G	GND IN 1/2 NEL TO UN	2" EMT CONI	CLE.			JIT BACK TO SOURC	CE UNLESS NOT	ED OTHERWISE.								

С

One-Line Diagram

D


ROWI AND AVE ES ACTINIT REPLACEMENT

GENERAL SINGLE LINE NOTES

- 1 OVERCURRENT DEVICES OF ENTIRE DISTRIBUTION SYSTEM SHALL MEET STATED FAULT CURRENT VALUES WITH FULLY RATED EQUIPMENT.
- 2 CONDUCTOR LENGTHS INDICATED ON THE SINGLE LINE DIAGRAM ARE FOR FAULT CURRENT CALCULATIONS ONLY. ACTUAL LENGTH SHALL BE DETERMINED
- BY FIELD CONDITIONS AND ACTUAL ROUTES OF FEEDERS. 3 REFER TO SWITCHBOARD SCHEDULES AND DISTRIBUTION PANEL SCHEDULES FOR ADDITIONAL REQUIREMENTS. WHERE A DISCREPANCY EXISTS BETWEEN EQUIPMENT ON THE SINGLE LINE DIAGRAM AND THE DETAILED SCHEDULES, THE
- ITEM OR ARRANGEMENT WITH BETTER QUALITY, GREATER QUANTITY, OR HIGHER COST SHALL BE USED.
- 4 ALL DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER. 5 REFER TO THE MOTOR AND SPECIAL CONNECTION SCHEDULE FOR ALL FEEDERS DESIGNATED "EQ".
- 6 GROUNDING ELECTRODE CONDUCTORS SIZES ARE NOT INDICATED ON THE SINGLE LINE DIAGRAM ARE. REFER TO THE GROUNDING RISER DIAGRAM FOR CONNECTIONS AND CONDUCTOR SIZES.

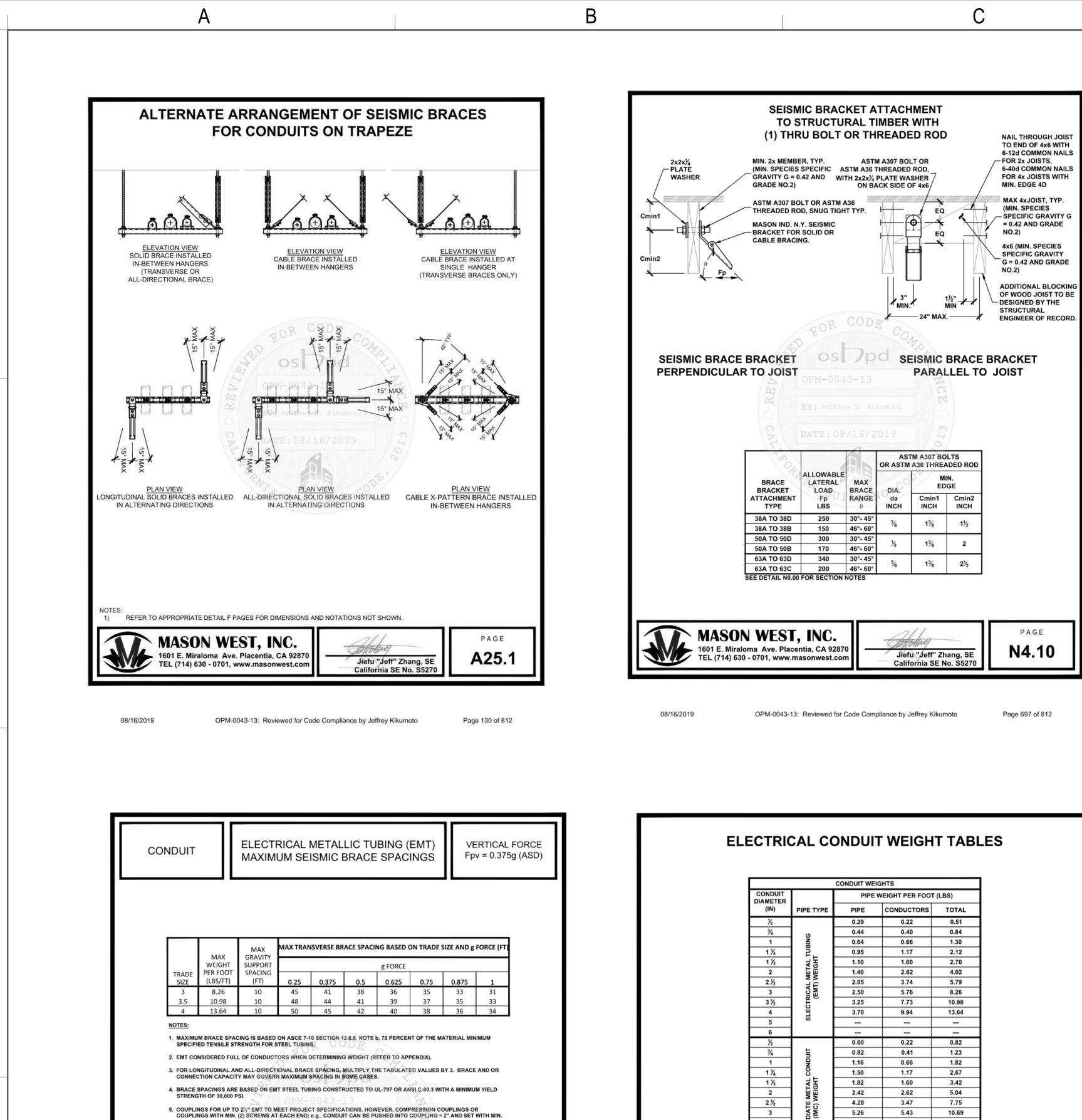
	KEYNOTES	
No.	DESCRIPTION	

NU.	DESCRIPTION		
1	FUSED DISCONNECT AND FUSES TO BE PROVIDED UNDER DIVISION 26.		
2	VARIABLE FREQUENCY DRIVE WITH ON/OFF SWITCH TO BE PROVIDED UNDER DIVISION 23.		
3	MINI LOAD CENTER PANELBOARD WITH 5KVA TRANSFORMER. EQUAL TO EATON P48G11S0518CUB OR APPROVED EQUAL.		

L CALCULATION: L CALCULATION: L METER DEMAND FOR PAST 12 MONTHS = 176KW L METER DEMAND FOR PAST 12 MONTHS =		5	_ ·	7	8			
REMAIN REMAIN REMAIN L CALCULATION:	}				225/3			
L METER DEMAND FOR PAST 12 MONTHS = 176KW L METER DEMAND IN AMPS @08.PF = 264.62 AX. DEMAND PER CEC 220.87 = 330.77 = 23.0 = 19.0 BOARD TOTAL LOAD = 335.77 ION = 390.77 / 800 X 100% = 49.47% ION = 390.77 / 800 X 100% = 49.47% ION = 390.77 / 800 X 100% = 49.47% ION = 100 X 100% = 49.47% ION = 100 X 100% = 49.47% ION = 100 X 100% = 49.47% ION = 100 X 100% = 49.47% ION = 100 X 100% = 49.47% ION = 100 X 100% = 49.47% ION = 100 X 100% = 49.47% ION = 100 X 100% = 49.47% ION = 100 X 100% = 49	G)	LOAD TO	LOAD TO	LOAD TO				
L METER DEMAND FOR PAST 12 MONTHS = 176KW L METER DEMAND IN AMPS @08.PF = 264.62 AX. DEMAND PER CEC 220.87 = 330.77 = 23.0 = 19.0 BOARD TOTAL LOAD = 335.77 ION = 390.77 / 800 X 100% = 49.47% ION = 390.77 / 800 X 100% = 49.47% ION = 390.77 / 800 X 100% = 49.47% ION = 100 X 100% = 49.47% ION = 100 X 100% = 49.47% ION = 100 X 100% = 49.47% ION = 100 X 100% = 49.47% ION = 100 X 100% = 49.47% ION = 100 X 100% = 49.47% ION = 100 X 100% = 49.47% ION = 100 X 100% = 49.47% ION = 100 X 100% = 49	L CALCULAT				50-4W			
AX. DEMAND PER CEC 220.87 = 330.77 = 23.0 = 19.0 BOARD TOTAL LOAD = 395.77 ION = 390.77 / 800 X 100% = 49.47%	L METER DE L METER DE	MAND FOR PAST 12 M MAND IN AMPS @08.F	MONTHS = 176KW PF = 264.62			в		
BOARD TOTAL LOAD = 395.77 ION = 390.77 / 800 X 100% = 49.47% I I 30AS/ 30AF I J 30AS/ 30AF I J 30AS/ I	AX. DEMAND	PER CEC 220.87	= 23.0 = 23.0		42.0KA	(N)	10.0KA	
1 30AS/ 30AF 30A	BOARD TOT	AL LOAD	= <u>19.0</u> = 395.77					
Image: Scope of New 30AF 30AF 30AF Image: Scope of New 30AF Image: Scope of New	ON = 390.77	/ 800 X 100%	= 49.47%		30-3W	30-3W	30-3W	
Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints Image: Second constraints						AS/ 30/ AF 30/		80AS 80AF
<u>CU-B1A</u> <u>CU-B1B</u> <u>FCU-B1</u> SCOPE OF NEW					30-3W	30-3W	\smile	
SCOPE OF NEW					M	M	M	
SCOPE OF NEW WORK					<u>CU-B1A</u>	<u>CU-B1B</u>	FCU-B1	
					L	SCOPE OF NEV WORK	 V	

EDULE - COPPER					
	cc	NDUIT SI	ZE		
GND	MARK SUFFIX				
	-4W	-3W	-2W		
12	3/4"	3/4"	3/4"		
12	3/4"	3/4"	3/4" 3/4"		
10	3/4" 3/4" 3/4" 3/4" 3/4" 3/4" 1"	3/4" 3/4" 3/4" 3/4"	3/4" 3/4"		
10	3/4"	3/4"	3/4"		
10	3/4"	3/4" 3/4" 3/4"	3/4" 3/4" 3/4"		
10	3/4"	3/4"	3/4"		
10	1"	3/4"	3/4"		
10	1"	3/4"	3/4"		
10	1-1/4"	1"	3/4"		
8	1-1/4" 1-1/4" 1-1/4" 1-1/4"	1"	3/4" 3/4" 3/4"		
8	1-1/4"	1-1/4"	1"		
8	1-1/4"	1-1/4"	1"		
8	1-1/2"	1-1/4" 1-1/2"	1-1/4" 1-1/4" 1-1/4"		
6	1-1/2"	1-1/2"	1-1/4"		
6	1-1/2"	1-1/2"	1-1/4"		
6	2"	1-1/2"	1-1/4"		
6	2"	1-1/2"	1-1/4"		
6	2"	2"	1-1/2"		
4	2-1/2"	2"	1-1/2"		
4	2-1/2"	2" 2"	1-1/2"		
4	3"	2-1/2"	2"		
3	3-1/2"	3"	2-1/2"		
3	3-1/2"	3" 3" 2" 2"	2-1/2"		
3	2"	2"	1-1/2"		
2	2-1/2"	2"	1-1/2"		
2	2-1/2"	2-1/2"	2"		
1	3"	2-1/2"	2"		
1/0	3-1/2"	3"	2-1/2"		
1/0	3-1/2"	3"	2-1/2"		
2/0	3"	3"	2-1/2"		
3/0	3-1/2"	3-1/2"	3"		
4/0	3-1/2"	3-1/2"	3"		
250	4"	3-1/2"	3"		
350		3-1/2"	3"		
400	3-1/2"	3"	2-1/2"		
500	4" 3-1/2" 4"	3" 3-1/2"	2-1/2" 3"		

CONDUCTOR AMPACITIES ARE BASED ON NEC CONDUIT SIZES ARE BASED ON A MAXIMUM FILL


SCHEDULE SHALL BE USED FOR FEEDERS AND BRANCH CIRCUITS WHERE APPLICABLE. ALL FEEDERS AND BRANCH CIRCUITS SHALL INCLUDE AN EQUIPMENT GROUNDING CONDUCTOR. SCHEDULE IS VALID FOR TYPE THHN, THWN-2, AND XHHW-2 CONDUCTORS. SEE SPECIFICATIONS FOR CONDUCTOR TYPES REQUIRED. SCHEDULE IS VALID FOR TYPE EMT, IMC, FMC, LFMC, HDPE, AND RNC-40 RACEWAYS. SEE SPECIFICATIONS FOR RACEWAY APPLICATIONS. OPTIONAL CONFIGURATIONS (1 OR 2 SETS) ARE GIVEN FOR SOME SIZES. NOT ALL SIZES USED.

75-22605-00

ELECTRICAL DIAGRAMS AND SCHEDULE

E5.1

PAGE

S2.0

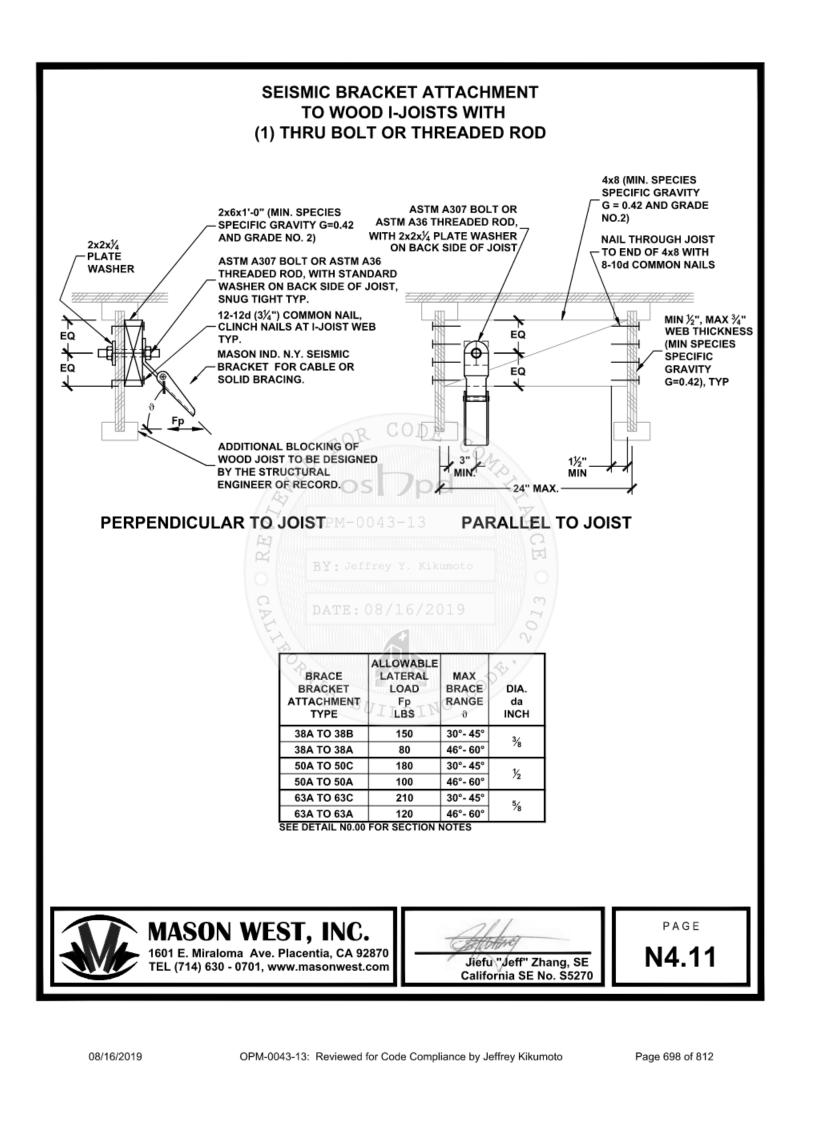
Page 715 of 812

Jiefu "Jeff" Zhang, SE

California SE No. S5270

OPM-0043-13: Reviewed for Code Compliance by Jeffrey Kikumoto

(2) SCREWS, SHALL BE USED FOR 3", 31/2", AND 4" EMT.

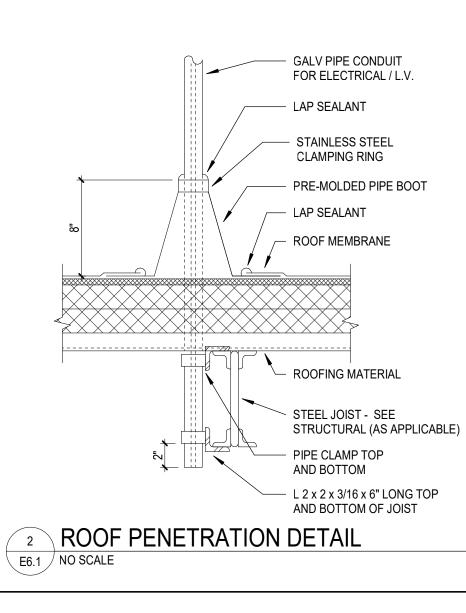

MASON WEST, INC.

08/16/2019

1601 E. Miraloma Ave. Placentia, CA 92870

EL (714) 630 - 0701, www.masonwest.com

08/16/2019

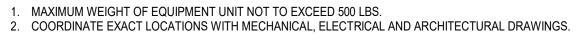


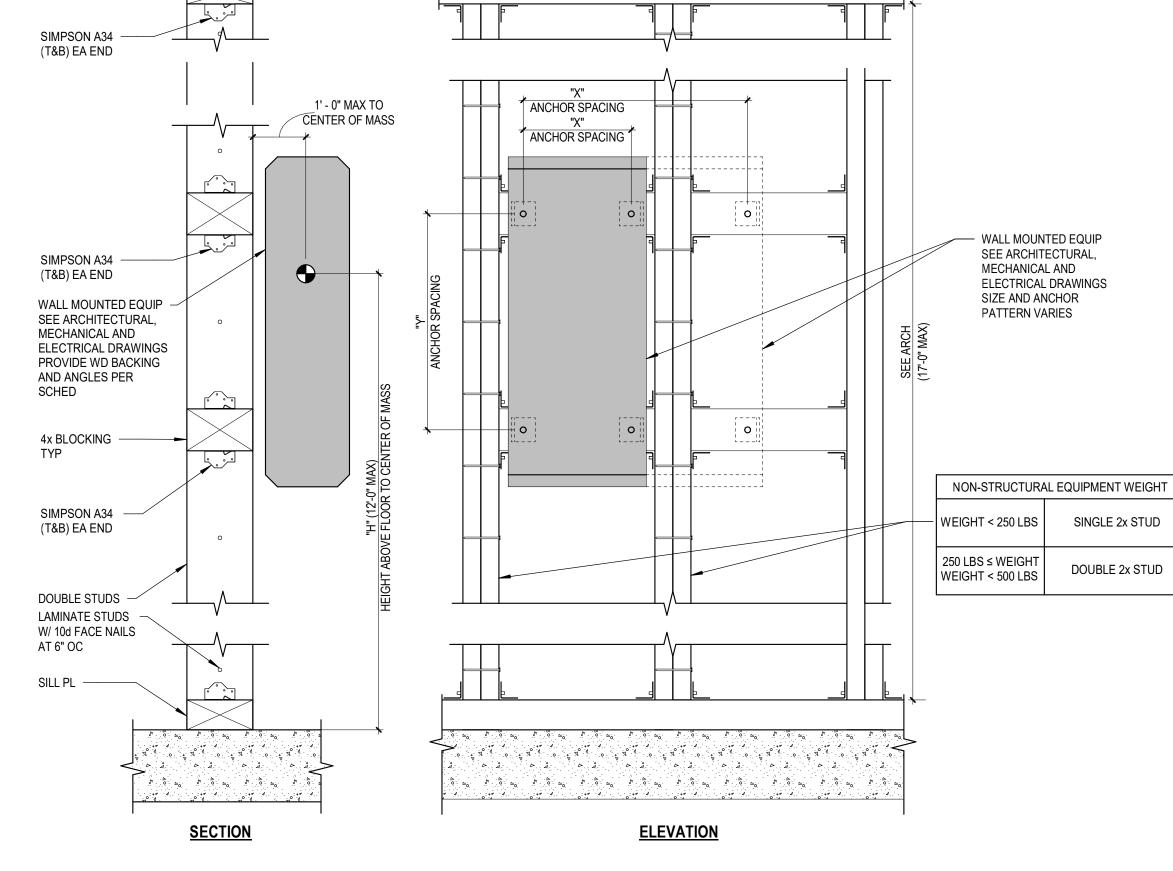
D

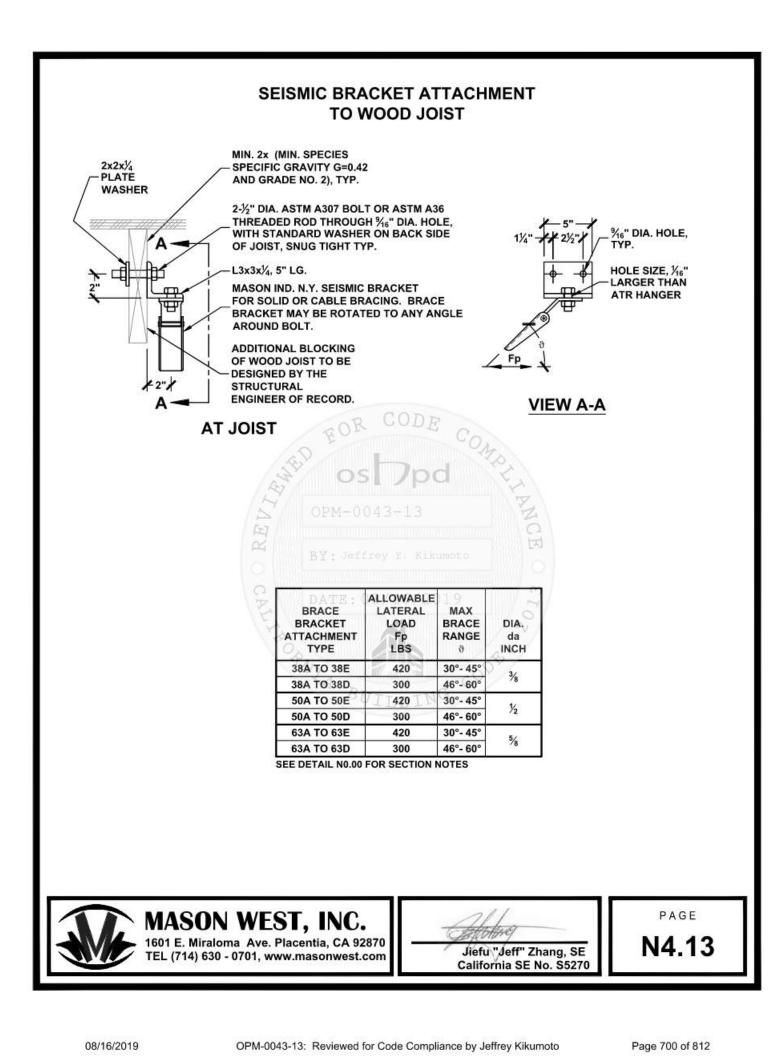
		CONDUIT WEIG	HTS	
CONDUIT DIAMETER		PIPE W	EIGHT PER FOOT	(LBS)
(IN)	PIPE TYPE	PIPE	CONDUCTORS	TOTAL
1/2		0.29	0.22	0.51
3/4		0.44	0.40	0.84
1	BING	0.64	0.66	1.30
1 1⁄4	2.	0.95	1.17	2.12
1½	RICAL METAL '	1.10	1.60	2.70
2	NEI L	1.40	2.62	4.02
2 1/2	1 2 2	2.05	3.74	5.79
3	EM	2.50	5.76	8.26
3 1/2	CTR C	3.25	7.73	10.98
4	ELECTRICAL METAL TUBING (EMT) WEIGHT	3.70	9.94	13.64
5	"			
6				
1∕₂		0.60	0.22	0.82
3⁄4	L.	0.82	0.41	1.23
1	<u>N</u>	1.16	0.66	1.82
1 1/4	8	1.50	1.17	2.67
1 1/2	INTERMEDIATE METAL CONDUIT (IMC) WEIGHT	1.82	1.60	3.42
2	VEI VEI	2.42	2.62	5.04
2 1/2	E N	4.28	3.47	7.75
3	.VIU	5.26	5.43	10.69
3 1/2	MEI	6.12	7.34	13.46
4	ER	6.82	9.50	16.32
5	IN			
6				
Y2		0.79	0.22	1.01
3⁄4		1.05	0.41	1.46
1	E	1.53	0.66	2.19
1 1⁄4	<u>a</u> ⊢	2.01	1.17	3.18
1 ½	NO.H5	2.48	1.61	4.09
2		3.32	2.62	5.94
2 1/2	RIGID METAL CONDUIT (RMC) WEIGHT	5.27	3.74	9.01
3	MM	6.82	5.77	12.59
3 1/2) (IGIL	8.31	7.73	16.04
4	R	9.72	9.95	19.67
5		13.14	15.62	28.76
6		17.45	22.58	40.03

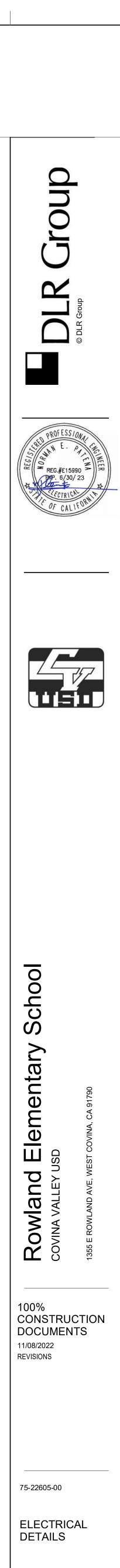
MASON WEST, INC.	Alla	PAGE
 1601 E. Miraloma Ave. Placentia, CA 92870 TEL (714) 630 - 0701, www.masonwest.com 		APP3.0
(, ,	California SE No. S5270	

Page 811 of 812








NOTES:

DOUBLE TOP PL

E6.1

SINGLE 2x STUD DOUBLE 2x STUD