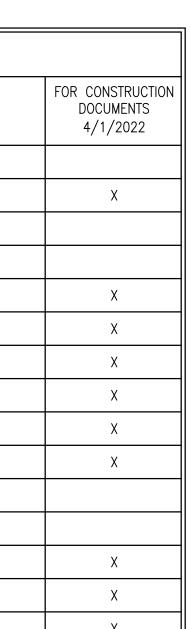

	DRAWING INDEX				
SHEET NUMBER	SHEET TITLE				
	GENERAL DRAWINGS				
COVER	COVER SHEET, MAP				
	MECHANICAL DRAWINGS				
M000	HVAC GENERAL NOTES, LEGEND, SCHEDULES, AND DESIGN INTENT				
M101	HVAC MECHANICAL ROOM PART PLAN – DEMOLITION				
M201	HVAC MECHANICAL ROOM PART PLAN – NEW WORK				
M301	HVAC SECTIONS				
M401	HVAC SCHEDULES				
M501	HVAC CONTROLS				
	ELECTRICAL DRAWINGS				
E000	DRAWING INDEX, GENERAL NOTES, & LEGENDS				
E021	MECHANICAL ROOM PART PLAN – POWER DEMO				
E201	MECHANICAL ROOM PART PLAN – POWER NEW				

Jackson County Government

Jackson County Courthouse Chiller Replacement

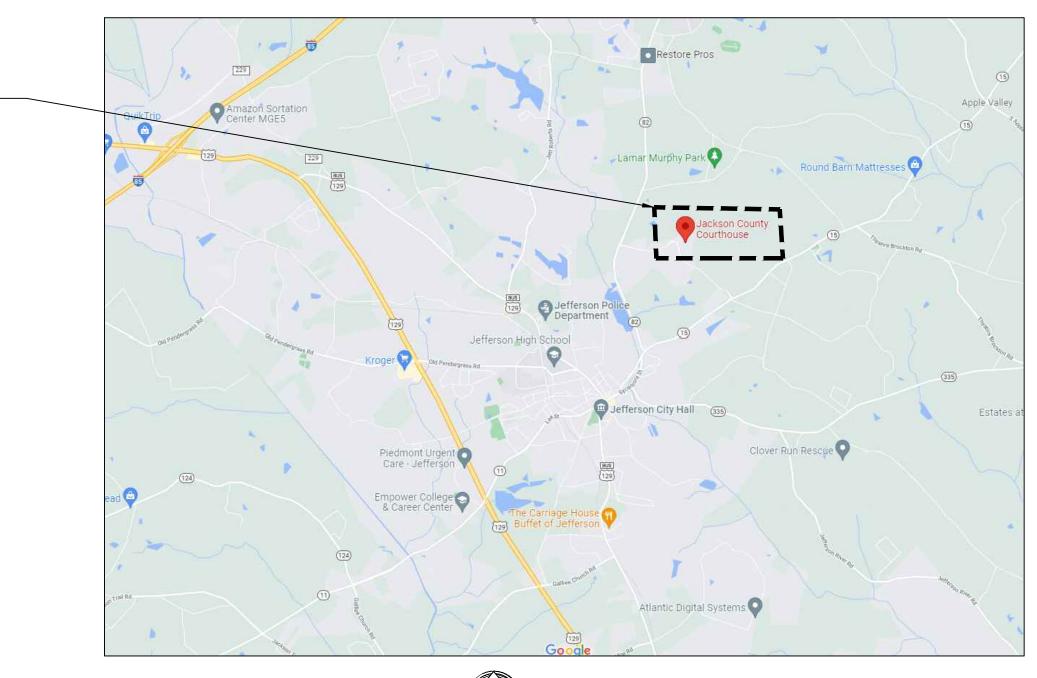

at The Jackson County Courthouse 5000 Jackson Parkway Jefferson, GA 30549

FOR CONSTRUCTION DOCUMENTS *April 1, 2022*

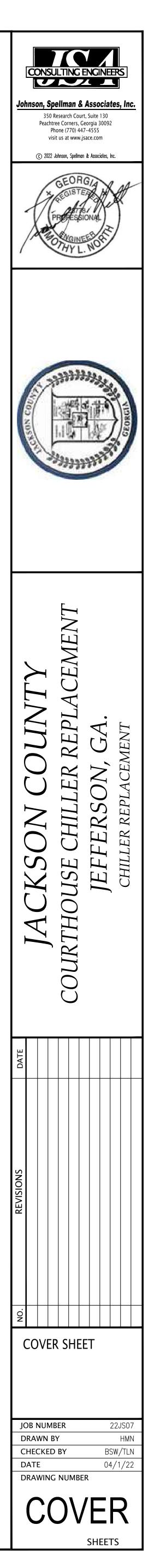
–JACKSON COUNTY JEFFERSON, GA

PROJECT SITE

VICINITY MAP


PRIME CONSULTANT / MECHANICAL ENGINEER

JOHNSON, SPELLMAN & ASSOCIATES, INC 350 RESEARCH COURT, SUITE 130 PEACHTREE CORNERS, GA 30092 CONTACT – TIM NORTH PHONE - 678-336-5412


PROJECT MANAGER – BRAD WAGES PHONE - 678-336-5419

ELECTRICAL ENGINEER

BARNETT CONSULTING ENGINEERS 655 ENGINEERING DRIVE, SUITE 150 NORCROSS, GA 30092 CONTACT – LEAH BENINCASA PHONE - 404-382-9554

SITE LOCATION MAP

	C LEGEND & ABBREVIATIONS
SYMBOL	DESCRIPTION ECCENTRIC REDUCER FLAT SIDE ON BOTTOM
	OR FLAT SIDE ON TOP
	CONCENTRIC REDUCER
·	PIPE UNION
0	PIPE RISE
€∋	PIPE DROP
	CAP ON END OF LINE
	GATE VALVE
·	BUTTERFLY VALVE
<u>، الم</u>	BALANCING VALVE
	TWO WAY MODULATING MOTORIZED CONTROL VALVE
، آپ	BALL VALVE
	RELIEF VALVE
	AUTOMATIC AIR VENT
<u> </u>	MANUAL AIR VENT
<u>ن حس</u> ب لک	TEST PLUG
<u> </u>	GAUGE COCK
ΨĨ	THERMOMETER
<u> </u>	PRESSURE GAUGE
<u>ц</u> ш	DRIP LEG
<u> </u>	THERMOMETER WELL
	PIPING OR EQUIPMENT TO BE REMOVED
	PIPE FLOW ARROW
	GRADE ARROW-INDICATES RISE OR DROP IN DUCT OR PIPE
	CHILLED WATER RETURN
	CHILLED WATER SUPPLY
⊱ CWR →	CONDENSER WATER RETURN
	CONDENSER WATER SUPPLY
⊱HWR₹	HOT WATER RETURN
<mark>≀</mark> HWS	HOT WATER SUPPLY
<u>ک</u>	CONDENSATE DRAIN
⊱RR	REFRIGERANT RELIEF
V	VENTILATION FAN STOP SWITCH
С	CHILLER STOP SWITCH
•	EXTENT OF DEMO / CONNECT TO EXISTING
AFF	ABOVE FINISHED FLOOR
BOS	BOTTOM OF STRUCTURE
\bigtriangledown	REFRIGERANT DETECTOR
\square	AUDIO.VISUAL REFRIGERANT ALARM

<u>JE</u>	NERAL NO
	EXISTING EQUIPMENT AND
	VERIFY LOCATIONS OF EXWORK.
	REMOVE ALL CHILLED WA
	ALL EXISTING EQUIPMENT PIPING SHOWN SOLID.
	ROUTE PIPING AS TIGHT NOTED,
	PROTECT ALL MATERIALS
	CONTRACTOR SHALL VER DEMOLISHING OR RELOCA
	CONTRACTOR SHALL PRO

GENERAL NOTES

1. EXISTING EQUIPMENT AND PIPING TO REMAIN, UNLESS NOTED TO BE REMOVED. 2. VERIFY LOCATIONS OF EXISTING PIPING AND EQUIPMENT PRIOR TO BEGINNING WORK.

3. REMOVE ALL CHILLED WATER, CONDENSER WATER, AND REFRIGERANT RELIEF PIPING TO EQUIPMENT AS NOTED.

4. ALL EXISTING EQUIPMENT AND PIPING IS SHOWN DASHED, NEW EQUIPMENT AND

5. ROUTE PIPING AS TIGHT TO STRUCTURE AS POSSIBLE, UNLESS OTHERWISE NOTED,

6. PROTECT ALL MATERIALS AND EQUIPMENT FROM DAMAGE.

7. CONTRACTOR SHALL VERIFY EQUIPMENT & PIPING'S AREA OF SERVICE PRIOR TO DEMOLISHING OR RELOCATING AND PIECE OF EQUIPMENT.

8. CONTRACTOR SHALL PROVIDE P/T PORTS AT ALL DP SENSORS, FLOW METERS AND/OR VALVES THAT REQUIRE TAB VERIFICATION. COORDINATE WITH TAB CONTRACTOR.

DESIGN INTENT

- A. <u>APPLICABLE CODES AND STANDARDS</u> INTERNATIONAL BUILDING CODE, 2018 EDITION, WITH GEORGIA AMENDMENTS (2020)(2022) INTERNATIONAL RESIDENTIAL CODE, 2018 EDITION, WITH GEORGIA AMENDMENTS (2020)
 - INTERNATIONAL FIRE CODE, 2018 EDITION, WITH GEORGIA AMENDMENTS (2020) INTERNATIONAL PLUMBING CODE, 2018 EDITION, WITH GEORGIA AMENDMENTS (2020)(2022)
- INTERNATIONAL MECHANICAL CODE, 2018 EDITION, WITH GEORGIA AMENDMENTS (2020) INTERNATIONAL FUEL GAS CODE, 2018 EDITION, WITH GEORGIA AMENDMENTS (2020)(2022)
- NATIONAL ELECTRICAL CODE, 2020 EDITION, WITH GEORGIA AMENDMENTS (2021) INTERNATIONAL ENERGY CONSERVATION CODE, 2015 EDITION, WITH GEORGIA SUPPLEMENTS AND 8. AMENDMENTS (2020)(2022) OR ASHRAE 90.1–2013 ENERGY STANDARD FOR BUILDINGS EXCEPT LOW-RISE

B. PROJECT DESIGN SCOPE

activation.

RESIDENTIAL BUILDINGS

. The intent of the project is to demolish and replace one of two existing water cooled chillers (<u>CHR-1</u>). The new chiller shall be of equal capacity as the existing chillers. The new chiller shall be variable speed to allow chiller to operate down to 20% of full load tonnage. Existing chiller, <u>CHR-2</u>, is to remain as is. Balancing valve on new chiller piping shall be tested and balanced to provide the same pressure drop as <u>CHR-2</u>. Existing pumps are to remain and be rebalanced to flows shown in schedules. The existing refrigerant monitoring system shall continue to monitor both chillers and operate as currently programmed. New ventilation switch associated with refrigerant monitoring system shall be interlocked with existing ventilation fan to operate upon

COOLING TOWER SCHEDULE										
MARKNOMINALNO. CELLSEWTLWTGPMWET BULB	FAN HP	VOLTAGE	DESIGN BASIS	R						
CT-1 500 2 95°F 85°F 600 78°F	10	480v/3ø	EVAPCO AT 29-221							

(1) EXISTING COOLING TOWER TO REMAIN AS IS.

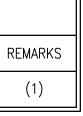
FAN SCHEDULE									
MARK	TYPE	SERVES	CFM	TSP	HP	FAN RPM	VOLTAGE	DESIGN BASIS	REMARKS
EF-1	INLINE CENTRIFUGAL	MECH ROOM	4300/2850	0.5"	2	1200		EXISTING	(1)

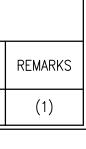
(1) EXISTING EXHAUST FAN TO REMAIN AS IS. (2) NEW VENTILATION SWITCH ASSOCIATED WITH REFRIGERANT MONITORING SYSTEM SHALL BE INTERLOCKED WITH EXISTING VENTILATION FAN, EF-1 TO OPERATE UPON ACTIVATION

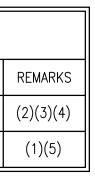
PUMP SCHEDULE										
MARK	TYPE	SERVES	GPM	DEV. HEAD	HP	RPM	VOLTAGE	DESIGN BASIS	REMARKS	
SP-1	HORIZONTAL SUNCTION	BUILDING CHILLED WATER	800	60	30	-	480v/3ø	B&G HSC3	(1)	
TP-1	END SUCTION	COOLING TOWER	600	65	10	_	480v/3ø	B&G 4BC	(1)	
TP-2	END SUCTION	COOLING TOWER	600	65	10	-	480v/3ø	B&G 4BC	(1)	
CP-1	END SUCTION	CHILLER	480	30	10	-	480v/3ø	B&G 4AC	(1)	
CP-2	END SUCTION	CHILLER	480	30	10	_	480v/3ø	B&G 4AC	(1)	

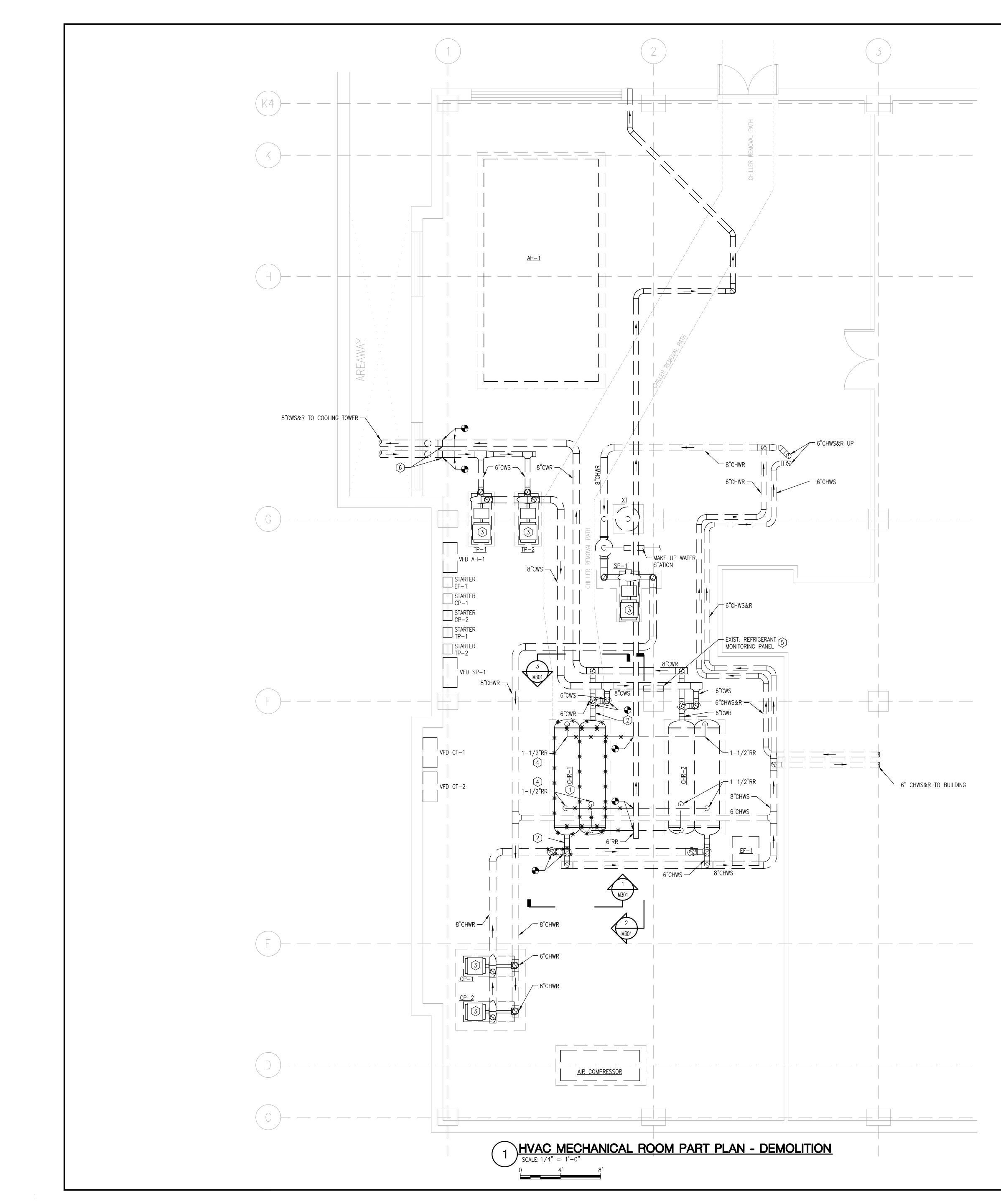
(1) EXISTING PUMP TO REMAIN, BE RE-USED, AND REBALANCED TO FLOWS SHOWN IN SCHEDULE.

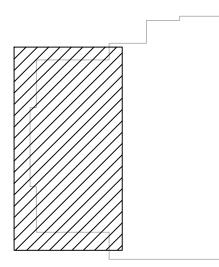
	WATER COOLED CHILLER SCHEDULE															
MARK	NOMINAL CAPACITY	EWT	LWT		OLER PRESS. LOSS	PASSES	EWT	LWT		DENSER PRESS. LOSS	PASSES	KW MAX	NPLV	VOLTAGE	DESIGN BASIS	
CHR-1	200	53.7°F	44°F		14.3 FT. W.G.			94.3°F		17.6 FT. W.G.		128.9	0.38	480v/3ø	YORK YVWACDCG	
CHR-2	200	54°F	44°F	480	19 FT. W.G.	2	85°F	95°F	600	11.8 FT. W.G.	2	127	_	480v/3ø	YORK YRTBTCTO	

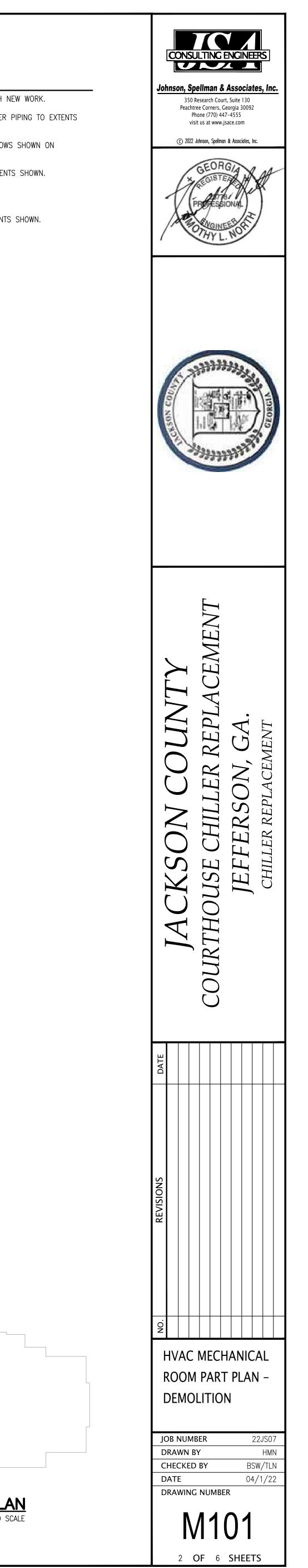

(1) EXISTING WATER COOLED CHILLER TO REMAIN AS IS.

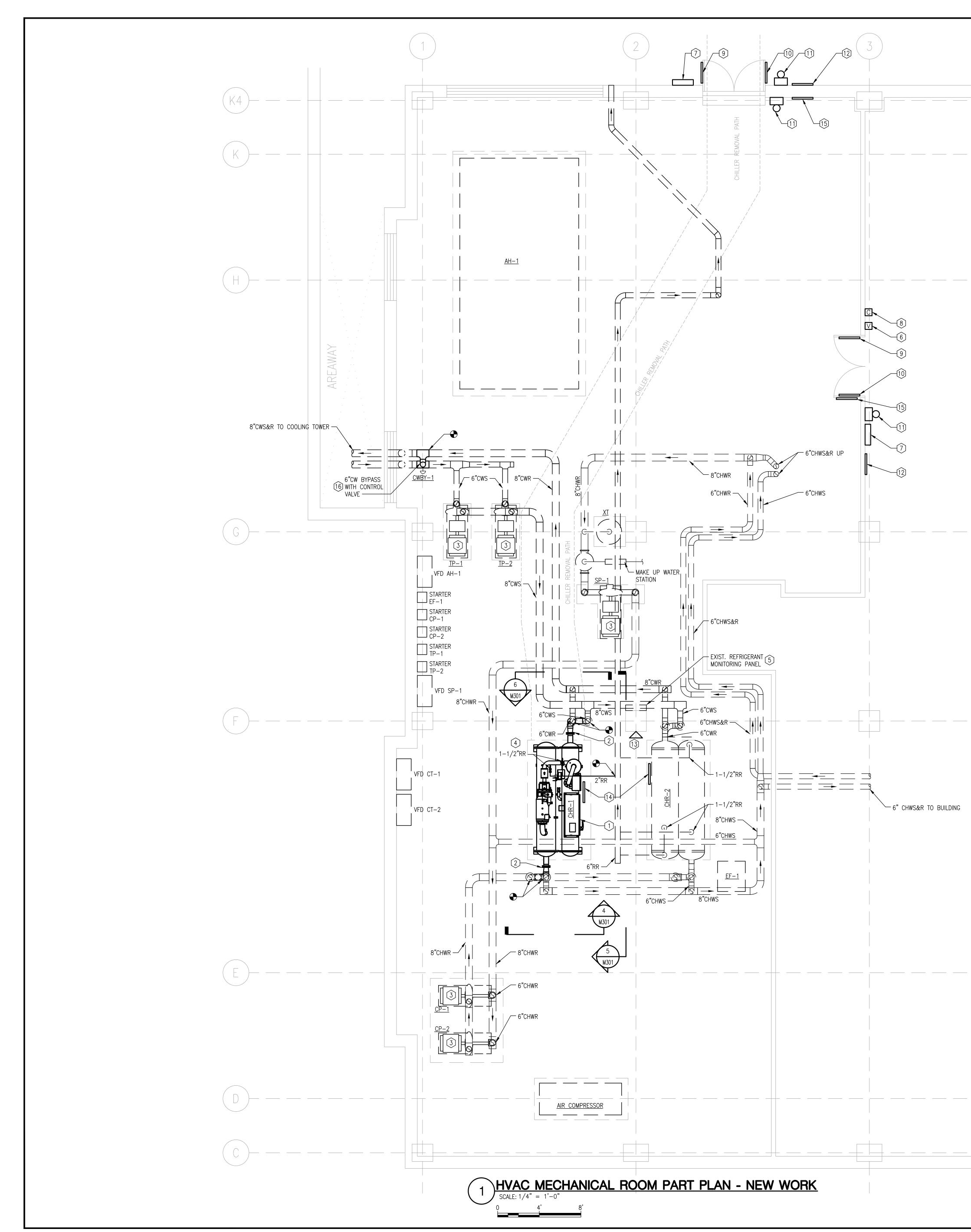

(2) CHILLER SHALL UTILIZE R134A. (3) SEE DRAWINGS FOR INLET/OUTLET LOCATIONS.


(4) SEE SPECIFICATIONS FOR ADDITIONAL OPTIONS.

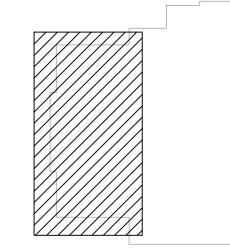

(5) BALANCE EXISTING CHILLER AS REQUIRED. EXISTING ISOLATION VALVES SHALL BE USED AS NEEDED.

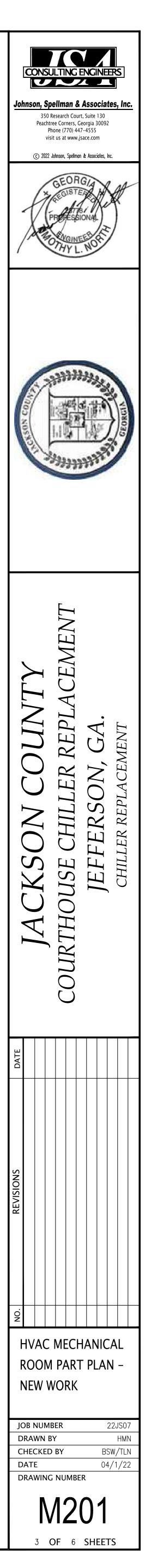


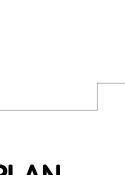


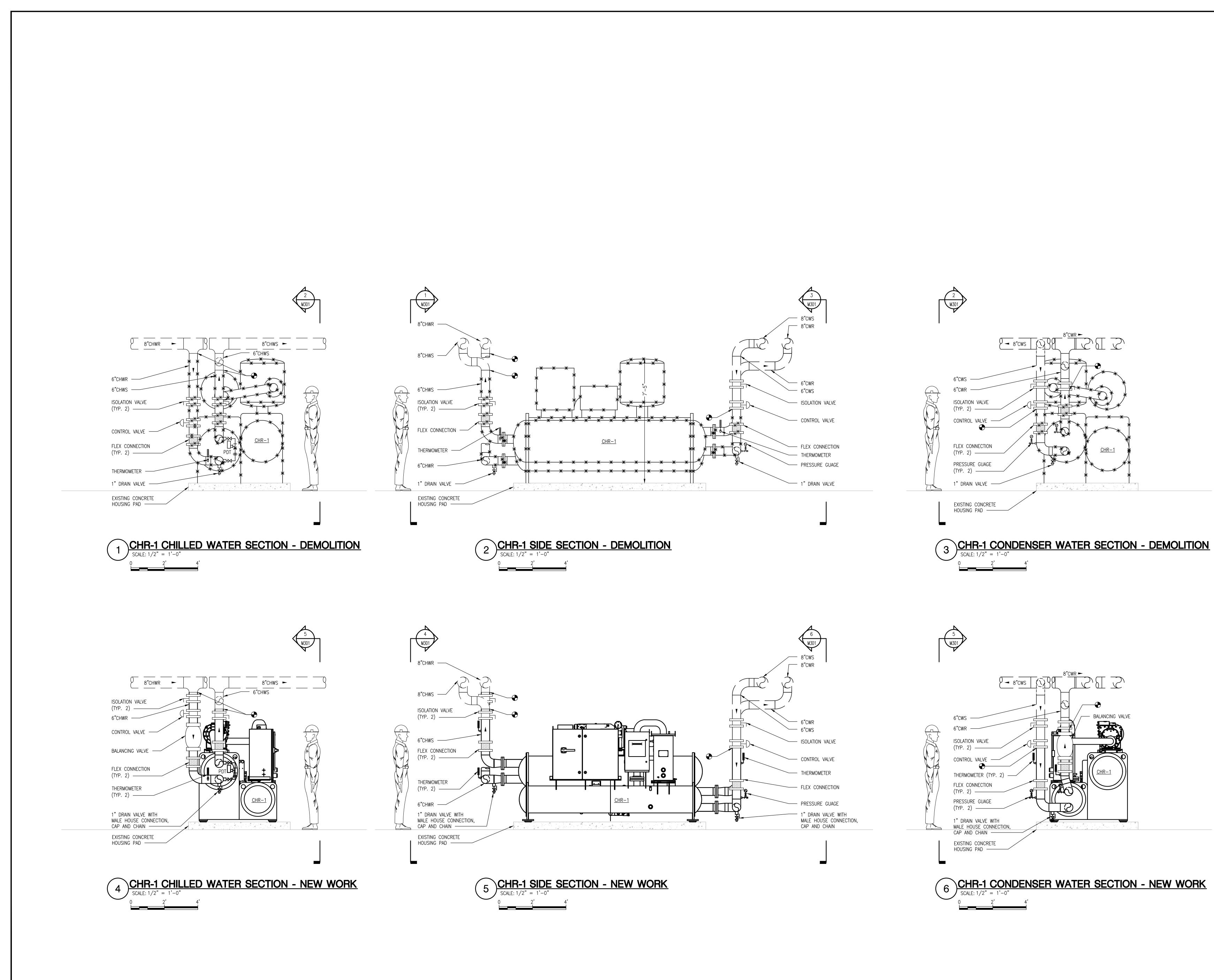

KEY NOTES

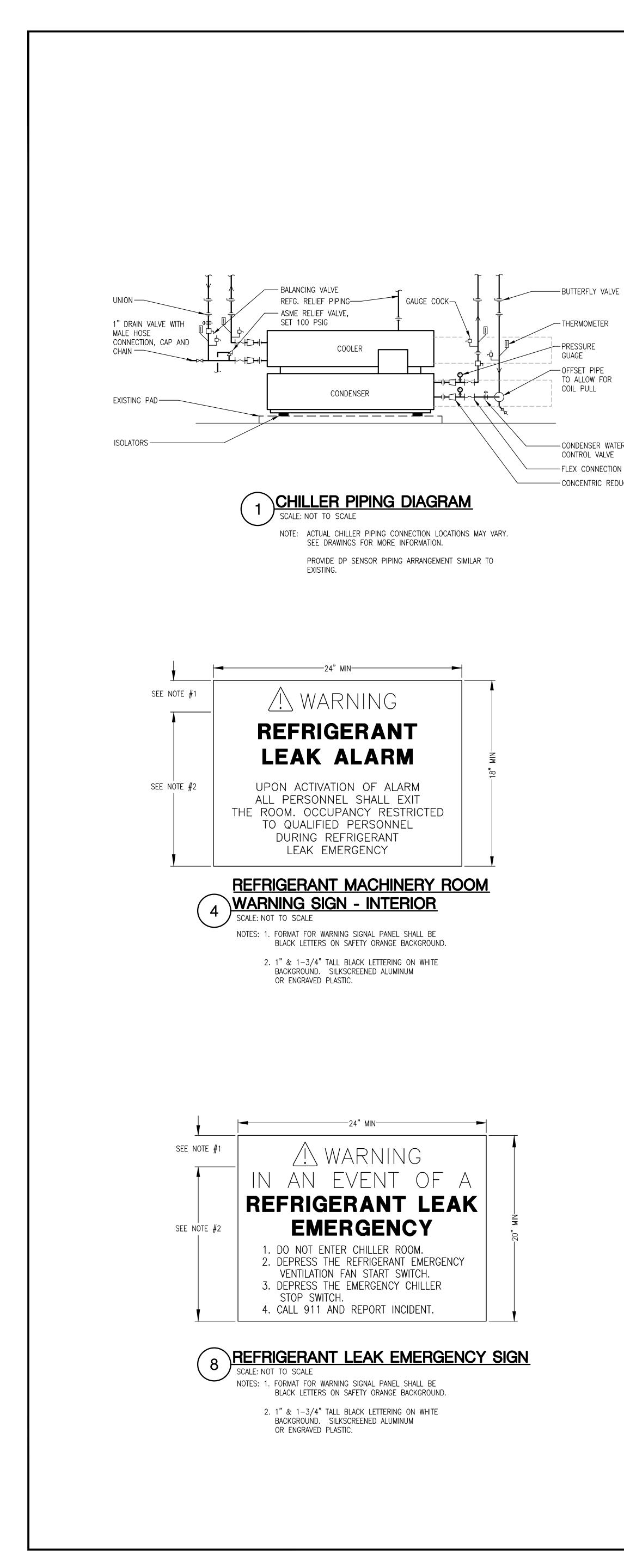
- EXISTING CHILLER TO BE DEMOLISHED. COORDINATE WITH NEW WORK.
 DEMOLISH EXISTING CHILLED WATER & CONDENSER WATER PIPING TO EXTENTS
- SHOWN. (3) EXISTING PUMP TO REMAIN AND BE REBALANCED TO FLOWS SHOWN ON SCHEDULES ON SHEET MOOO.
- (4) DEMOLISH EXISTING REFRIGERANT RELIEF PIPING TO EXTENTS SHOWN. COORDINATE WITH NEW WORK.
- 5) EXISTING REFRIGERANT MONITORING PANEL TO REMAIN.
- 6 DEMOLISH EXISTING CONDENSER WATER PIPING TO EXTENTS SHOWN.

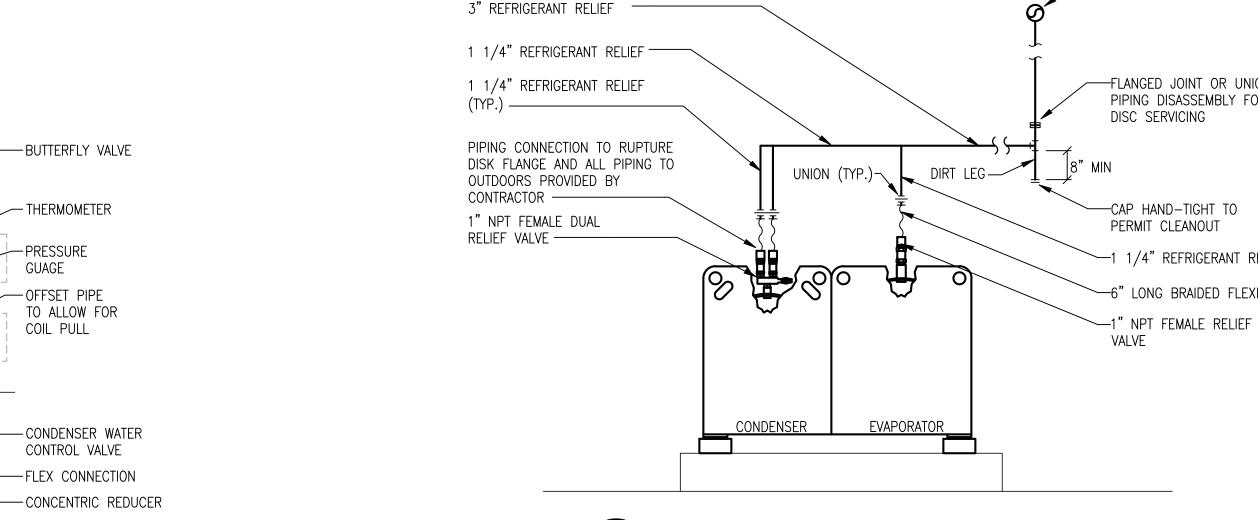


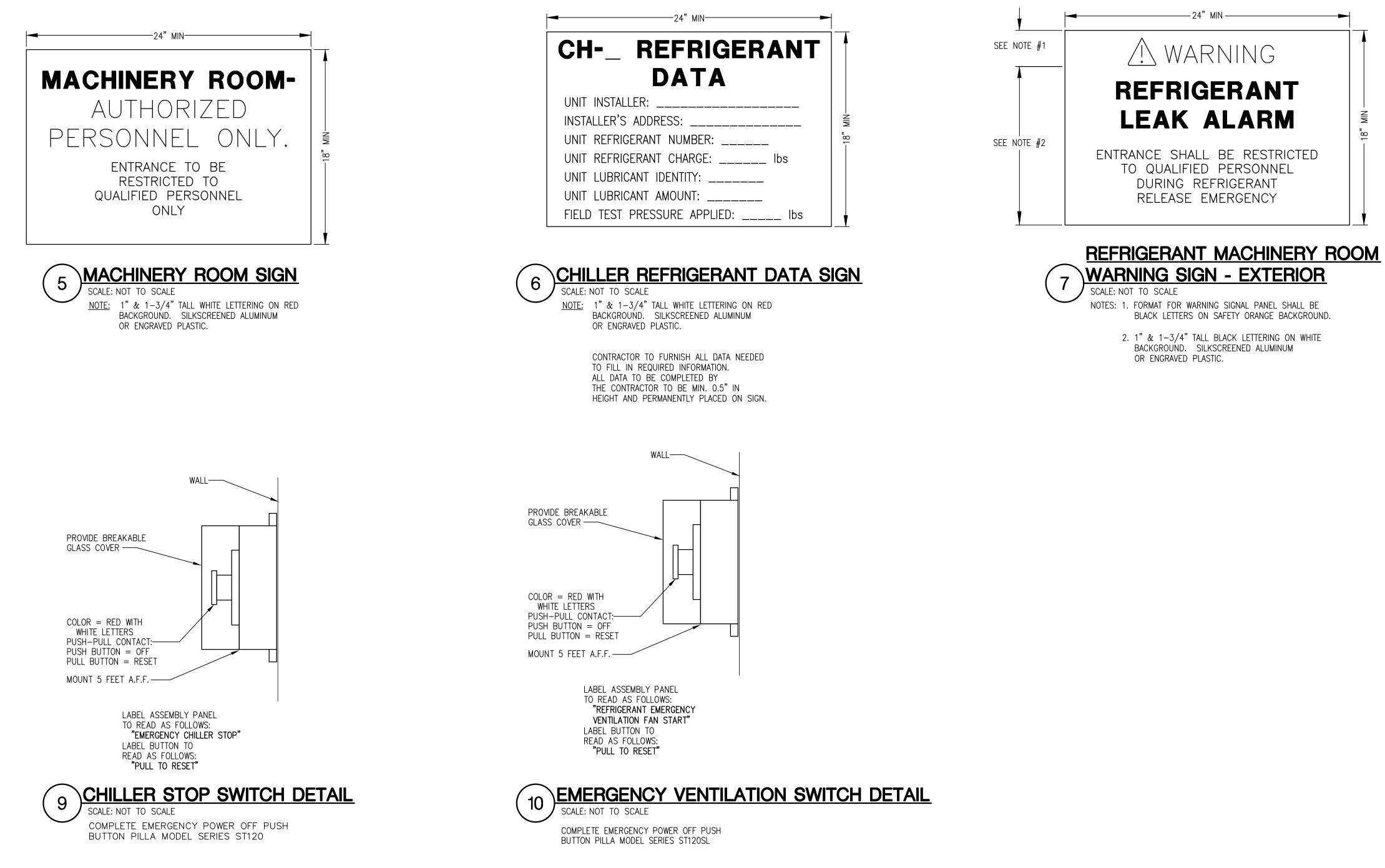


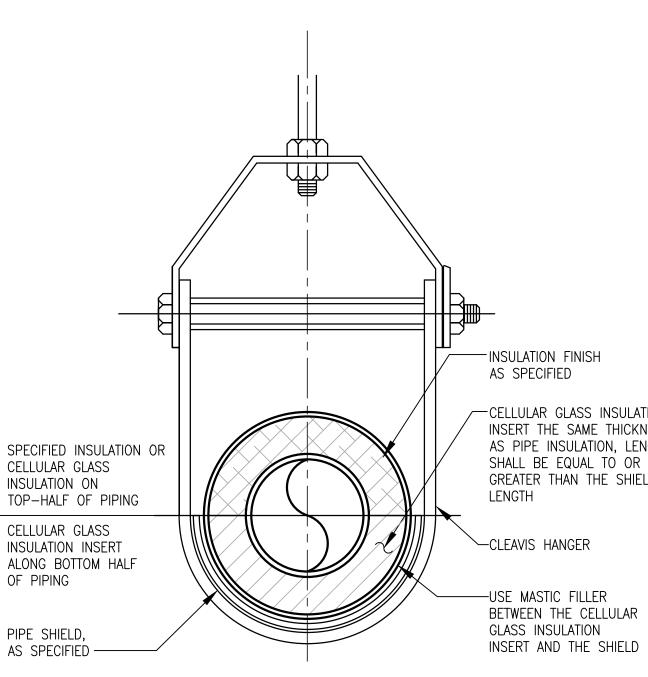

KEY NOTES


- 1 NEW CHILLER. SEE SCHEDULES AND DETAILS 1/M000 AND 3/M000 FOR MORE INFORMATION.
- 2 NEW CHILLED WATER AND CONDENSER WATER PIPING. CONNECT TO EXISTING AS SHOWN.
- $\overline{(3)}$ EXISTING PUMP TO REMAIN AND BE REBALANCED TO FLOWS SHOWN ON SCHEDULES ON SHEET MOOO.
- (4) NEW REFRIGERANT RELIEF PIPING TO BE CONNECTED TO EXISTING REFRIGERANT RELIEF MAIN AS SHOWN.
- (5) EXISTING REFRIGERANT MONITORING PANEL TO REMAIN.
- $\widehat{6}$ NEW VENTILATION FAN SWITCH. SEE DETAIL 10/M401. NEW VENTILATION SWITCH ASSOCIATED WITH REFRIGERANT MONITORING SYSTEM SHALL BE INTERLOCKED WITH EXISTING VENTILATION FAN EF-1 TO OPERATE UPON ACTIVATION
- (7) NEW REFRIGERANT MONITORING CONTROL PANEL EXTERIOR.
- 8 NEW CHILLER STOP SWITCH. SEE DETAIL 9/M401. 9 REFRIGERANT MACHINERY ROOM WARNING SIGN - EXTERIOR. SEE DETAIL 7/M401
- (10) MACHINERY ROOM SIGN. SEE DETAIL 5/M401.
- (1) NEW AUDIO/VISUAL REFRIGERANT ALARM. TYPICAL OF 3, INTERIOR AND EXTERIOR OF CHILLER ROOM.
- (12) REFRIGERANT LEAK EMERGENCY SIGN. SEE DETAIL 8/M401.
- 13 NEW REFRIGERANT DETECTOR, INSTALL 12" AFF.
- (14) CHILLER REFRIGERANT DATA SIGN. SEE DETAIL 6/M401.
- (15) REFRIGERANT MACHINERY ROOM WARNING SIGN INTERIOR. SEE DETAIL 4/M401.
- (16) INSTALL NEW CONDENSER WATER PIPING WITH NEW BYPASS CONTROL VALVE AS SHOWN.





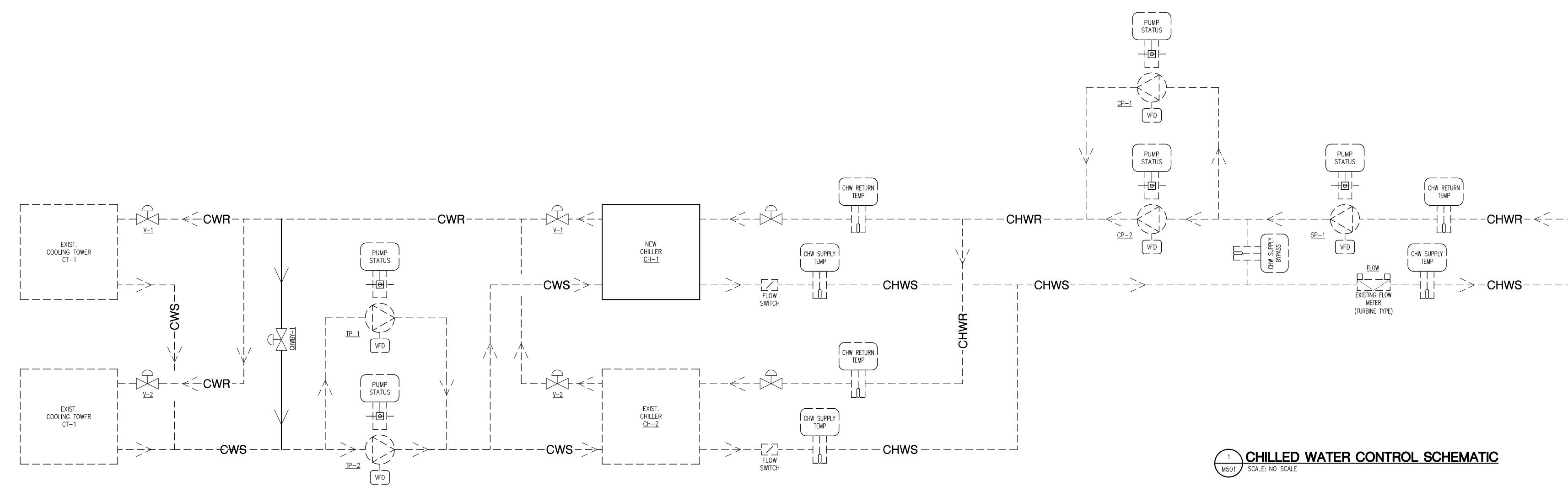

CONSULTING ENGINEER Johnson, Spellman & Associates, I 350 Research Court, Suite 130 Peachtree Corners, Georgia 30092 Phone (770) 447-4555 visit us at www.jsace.com © 2022 Johnson, Spellman & Associates, Inc. **AEN** EN \bigcirc REPL IUC A G ER \mathbf{Z} HIL R Γι٦ \bigcirc COURTHOUSE (JEFF CHILL KS Y HVAC SECTIONS JOB NUMBER 22JS07 DRAWN BY HMN CHECKED BY BSW/TLN DATE 04/1/22 DRAWING NUMBER M301 4 OF 6 SHEETS



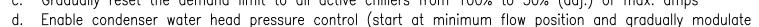
-EXISTING 6" REFRIGERANT RELIEF HEADER VENTED TO OUTDOORS

-----FLANGED JOINT OR UNION TO PERMIT PIPING DISASSEMBLY FOR BURSTING

-1 1/4" REFRIGERANT RELIEF -6" LONG BRAIDED FLEXIBLE HOSE (TYP.)


INSERT THE SAME THICKNESS AS PIPE INSULATION, LENGTH SHALL BE EQUAL TO OR GREATER THAN THE SHIELD

BETWEEN THE CELLULAR


CONTROL SEQUENCES

EXISTING CHILLER PLANT:

- A. Existing Chiller Plant control sequences as provided by the Nottingham Brook & Pennington 2003 design documents are noted below. All existing Chiller Plant control sequences are to remain as is other than the addition of a new Condens Water Bypass sequence as noted below.
- B. General: The DDC System shall fully control the chilled water systems and equipment and provide monitoring diagnostic information for management purposes.
- C. Cooling Enable: Cooling shall be enabled above 60°F or when any chilled water valve opens to more than 50% continuously for 15 min. (adj.) or whenever manually enabled by the operator at the operator interface.
- D. Chilled Water Load Determination 1. Chilled water load shall be calculated instantaneously from the flow and temperature difference of the following loops: a. Individual secondary circuits
- 2. Chilled water load for the purposes of the staging the chillers shall be calculated as the 10 min. average of the "average secondary chilled water supply temperature" (ASCHINST).
- E. Proof of Chiller Operation: The DDC System shall prove the operation of the chillers via chiller status and alarn points. When a chiller is assessed as failed, the run command shall be locked out and require manual acknowledgment at the operator interrace before it is restarted. The DDC system shall then start the next chille in rotation. The flowing conditions shall result in the assessment that the chiller has failed 1. Loss of chiller status for more than 15 secs (adj.) while it is requested
 - 2. Closure of chiller failure input
- 3. Leaving chilled water temperature exceeds chiller setpoint plus 8°F for 10 min. continuously 4. Chiller environment is unacceptable for 10 min. as specified below.
- F. Chiller Environment Monitoring: The DDC System shall monitor the environment of all active (not starting or stoppers) chillers and remove the run command when the environment is assessed as acceptable. An unacceptable environment will include any or the following:
 - 1. Loss of status on the associated primary pump (pump proof debounce time shall not apply).
 - Condenser water entering temperature below CHW supply plus 15°F or above 100°F.
 - Chiller head pressure below 70°F equivalent condensing temperature. 4. Condenser water flow below minimum required by the manufacturer.
 - 5. Chilled water flow to the chiller below a minimum setpoint value. 6. Chilled water entering temperature greater than 90°F.
- G. In the event that the environment is assessed as unacceptable, the DDC System shall enunciate an alarm, remove chiller run command (not the chiller request; all supporting equipment shall continue to operate) and start a timer. If the environment is still unacceptable after 10 min. (Adj.), fail the chiller.
- H. Chiller Failure Indicators: Any chiller system failure recognized by the control system software will be indicated a chiller failure light located on a control cabinet. The chiller system will remain off until reset by an operator by individual push button switches next to the failure indicators located on a control cabinet. Provide for each chiller.
- I. Chiller Request: A chiller request is the request for a chiller and the associated equipment. A chiller request issued before the actual run command to the chiller which is the closure of the physical point that enables chiller.
- J. Chiller Staging: The DDC System shall control the starting and stopping of chillers to meet the demands of th secondary chilled water systems. Chillers shall be started per the chiller start sequence and stopped per the chiller stop sequence specified below. Once the conditions merit starting or stopping a chiller, the DDC System shall complete the starting or stopping sequence regardless of temperature fluctuations during the sequence. Additional chillers shall be started based on secondary CHW supply temperature as follows:
- 1. For the purposes of chiller staging control, a virtual point called "average secondary chilled water supply temperature" (ASCHWST) shall be continuously calculated and displayed. This value shall be the 10 minute average of the instantaneously sensed secondary chilled water supply temperature.
- 2. An additional chiller shall be requested and started per the chiller start sequence specified below when: a. The ASCHWST rises more than 3°F above the secondary chilled water supply set point for 5 min. (ac continuously,
- b. AND when more than 30 min. (adj.) has elapsed since the start of the last chiller. c. Chillers shall be stopped, per the chiller stop sequence specified below, based on the averaged cooling
- load as follows: • One chiller shall be stopped when the load falls below (Total Nominal Capacity-(Nominal Capacity
- of Last Chiller), • AND when a minimum of 15 min. has elapsed since a chiller has been stopped
- AND when a minimum of 30 min. has elapsed since this chiller has been started.
- K. Chilled Water Temperature Control: 1. The DDC System shall reset the setpoint of the active chillers to maintain the secondary chilled water setpoint. Specifically, this shall be accomplished as follows: a. The DDC System shall reset the set point of active chillers unit mounted control 2°F below (adj.) the SCHW setpoint or to maintain the SCHW setpoint with a minimum of 42°F.

e nser	L.	Primary CHW Pump Control — CP—1/CP—2: Primary pumps shall be started to serve their respective chiller when it is requested to run per the chiller start and stop sequences specified. Pumps shall run continuously when the respective chiller is requested. The DDC System shall prove operation of the pump.		open to maintain head pr e. Request the start of the f. After condenser pump op water pump and prove op g. Wait a maximum of 5 mi
and %	М.	Secondary CHW Pump (with VFD) Control — SP—1: Lead secondary pump shall run continuously whenever any AH is ON and ODT is above 55. The DDC System shall vary the speed of the pumps to maintain the differential pressure setpoint across the remote differential pressure sensor. The differential pressure setpoint shall be initially 10 psi (adj.) with optimal value determined by the balancing and controls contractor. The DDC System shall prove operation of the pump.		environment as specified chiller start for head pres acceptable, continue the chiller and start the next h. Command the chiller to s
	N.	 Condenser Water Pump Control TP-1/TP-2: Pumps shall be started per the chiller start and stop sequences specified to serve their respective chiller when it is requested to run. Pumps shall run continuously when their chiller is requested. The DDC System shall prove operation of the pumps. 	ç	i. Regulate condenser water j. Monitor chiller status and command to start, enunc k. After status is proven, gr
ige rm ller	0.	 The N.C. butterfly isolation valve at each tower shall open prior to start of respective pump. Condenser Water Bypass: On a call for first stage cooling and the condenser water supply temperature is less than 75°F (adjustable), all existing cooling tower isolation valves shall close, and the new tower bypass valve, CWBY-1, shall remain open until condenser water supply temperature (flow to the chiller) reaches 7 degrees above ambient wet bulb. Bypass valve shall then begin to modulate closed, the lead tower inlet valve shall open 100%, and the lead tower outlet valve shall modulate proportionally open. The lag tower inlet and outlet valves shall remain closed during first stage cooling. Upon the lead tower return valve reaching the fully-open position, the DDC system shall enable the lead cooling tower fan to start. Cooling tower supply water shall be maintained at approximately 7 degrees above ambient wet bulb between the limits of 75°F and 85°F (as recommended by the chiller manufacturer). The lead cooling tower cell fan speed shall modulate via the associated variable frequency drive to maintain condenser water supply temperature. On a drop in fan speed below 30% of rated speed, fan shall stop. If cooling tower supply water temperature continues to drop after cooling tower fan has stopped, bypass and lead tower outlet valves shall modulate to maintain minimum temperature setpoint. Lead tower fan shall restart on a rise in condenser water supply temperature 2°F (adjustable) above set point. 	S. T. U.	 Chiller Stop Sequence 1. When a chiller is no longer not a. Remove chiller run comm b. Wait for status to clear of c. Wait 1 min. (adj.) then s d. Stop the condenser pump e. Close applicable condense Tower Basin Level Control: 1. Normal Levels: N.C. pneumatic controlled from the electronic 2. Blowdown: A conductivity mete water conductivity is reduced 3. Emergency Low Level Cutoff: I provided in control panel to p Control Panel: Mount in Chiller Mech 1. Alarms:
l by or is the	Ρ.	 Cooling Tower Control: 1. The DDC System shall enable, per the chiller start and stop sequence specified below, all towers that are not locked out in "Maintenance Mode" or failed whenever cooling is enabled. When enabled, the DDC System shall open the isolation valves to allow flow and control the fans as follows: a. The DDC System shall use a PID loop to maintain a leaving tower water temperature of 75°F. The output of this loop shall control the starting, stopping, and speed of the fans on all towers. This PID loop shall be set up with functionally a 16°F throttling range and only a small/slow integral gain. b. The output of the PID loop shall control the VSD's of all active cells at the same speed. c. On a PID output of greater than 90% for 1 min (adj.), the DDC System shall increment up one fan stage and start the respective stage fan. The new cell shall ramp to speed per adjustable acceleration rates. If the output remains above 60% for 5 min (adj.) after a stage has been started, the next stage shall be started. d. On a PID output of less than 10% for 1 min (adj.), the DDC System shall decrement down one fan stage and stop the respective stage fan. Once disabled the stage shall remain disabled for a minimum of 1 min. (adj.) e. The DDC System shall prove operation of each fan individually f. Program each tower for fan VFD to skip tower resonant frequencies and maintain minimum fan/drive RPM required by the tower manufacturers. Provide programming to cycle fan if VFD malfunctions. 	V. W.	 a. Chiller failure indication a b. Refrigerant monitor alarm c. Tower basin low level indi Refrigerant Monitors: Dry contact clospecified herein. Provide visual and ventilation sequences. New ventilation existing ventilation fan EF-1 to operat Tower Chemical Feed Pumps: Water cycling timer.
n e	Q.	 Chiller Priority Selection: 1. The DDC System shall automatically prioritize the chillers for starting order. One of the following methods shall be employed to rotate, and reprioritize the chillers. a. The chiller with the least run time shall be started first and the chiller with the greatest runtime shall be stopped first. b. The DDC System shall provide a graphic screen to support the manual selection of chiller priorities. c. The chiller priorities shall be rotated based on a predetermined schedule. Owner shall dictate a regular 		
ndj.) ing ity		schedule for the priorities to be switched. 2. Operators shall be able to lock out chillers in Maintenance Mode. This means that the requests for this chiller and associated appurtenances shall be bypassed. This shall be done through a graphic icon associated with a virtual point indicating whether the maintenance mode is active or via a property associated with the chiller icon.		IN OL SUN
ιιy	R.	 Chiller Start Sequence: 1. On a request for a chiller to start as specified above under "Chiller Staging", the following sequence shall occur: a. Wait one minute (adj.). b. Enable additional cooling towers as specified (if applicable). Command the tower isolation value to 		
		b. Enable additional cooling towers as specified (if applicable). Command the tower isolation valve to open. c. Gradually reset the demand limit to all active chillers from 100% to 50% (adi.) of max, amps		CHILLER CH-1

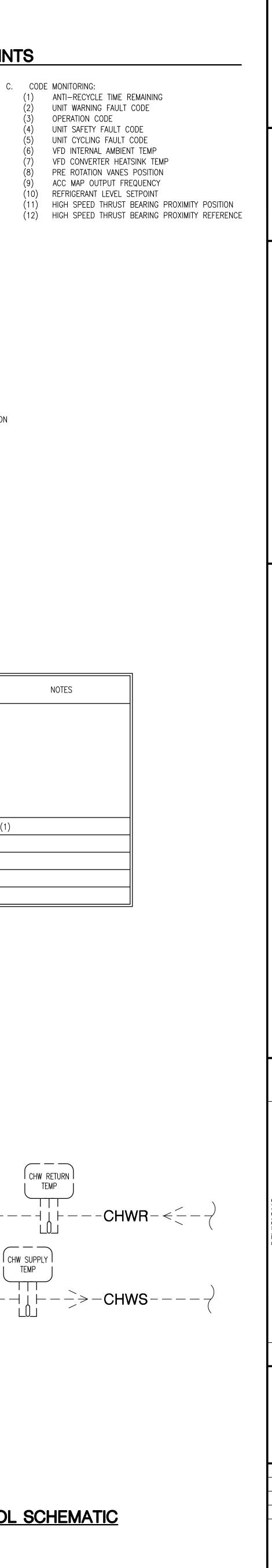
	CHILLER SERIAL INTERFACE POIN
naintain head pressure after chiller is started.)	
ne start of the applicable condenser water pump and prove operation.	A. ANALOG MONITORING: C.
lenser pump operation is proven, the DDC System shall start the applicable primary chilled	(1) LEAVING CHILLED WATER TEMP
np and prove operation.	(2) RETURN CHILLED WATER TEMP
aximum of 5 min. after the command to start the condenser pump for the chiller	(3) EVAPORATOR PRESSURE
nt as specified above (except for head pressure — allow an additional 5 minutes after	(4) CONDENSER PRESSURE
rt for head pressure control) to be acceptable. As soon as the environment is assessed as	(5) OIL PRESSURE DIFFERENTIAL
e, continue the start sequence. If after 5 min. the environment is not acceptable, fail the	(6) RETURN CONDENSER LIQUID TEMP
start the next chiller.	(7) LEAVING CONDENSER LIQUID TEMP
the chiller to start under its own control.	(8) MOTOR CURRENT PERCENT FLA
condenser water valve to maintain head pressure per the requirements above.	(9) VFD PHASE A CURRENT
niller status and prove operation. If status is not indicated within 3 minutes (adi.) of a	(10) VFD PHASE B CURRENT
to start, enunciate an alarm, disable and lock out chiller.	(11) VFD PHASE C CURRENT
us is proven, gradually reset current limit to all active chillers to 100%.	(12) LEAVING CHILLED LIQUID SETPOINT-SELECTED
	(13) MOTOR CURRENT LIMIT SETPOINT-SELECTED
be a second s	(14) EVAPORATOR SATURATION TEMP
is no longer needed as specified in chiller staging, the following sequence shall occur:	(15) CONDENSER SATURATION TEMP
hiller run command.	(16) DISCHARGE TEMP
tatus to clear and for the chiller to stop under control.	(17) OIL SUMP TEMP
n. (adj.) then stop associated chiller pump.	(18) REFRIGERANT LEVEL POSITION
condenser pump.	(19) UNIT OPERATING HOURS
licable condenser flow valves and tower isolation valves.	(20) UNIT SYSTEM STARTS
	(21) OIL SUMP PRESSURE
ontrol:	(22) OIL PUMP PRESSURE
N.C. pneumatic make—up water valve shall open at lower and close at upper levels as	(23) ACC MAP PRV POSITION
n the electronic level switch at the tower basin. Refer to now diagram.	(24) VFD OUTPUT VOLTAGE
onductivity meter shall, when cooling water is flowing, hold bleed water valve open until	(25) VFD INPUT POWER
vity is reduced to an acceptable level.	(26) VFD KILOWATT HOURS
v Level Cutoff: Pump TP shall stop when this level Is reached. A manual reset relay shall be	(27) VFD DC BUS VOLTAGE
ntrol panel to prevent automatic restarting.	(28) VFD INVERTER LINK CONTROL
	(29) ACC SURGE COUNT
t in Chiller Mechanical Room with the following items in the cover:	(30) VFD OUTPUT FREQUENCY
	(31) HARMONIC FILTER MAX VOLTAGE TOTAL HARMONIC DISTORTION
ure indication and reset switch.	
t monitor alarm indication and reset switch.	
in low level indication and reset switch.	(33) HARMONIC FILTER TOTAL SUPPLY KVA
Dry contact closure of refrigerant monitor shall initiate "ALARM" ventilation sequences	B. DIGITAL MONITORING:
wide visual and audible alarm annunciation with manual reset. Reset shall restore "normal"	(1) MOTOR RUN CONTACTS
s. New ventilation switch associated with refrigerant monitoring system shall be interlocked with	(2) LIQUID LINE SOLENOID
EF-1 to operate upon activation.	(3) CHILLED LIQUID PUMP
	(4) PANEL STOP SWITCH (START ENABLED/STOP)
d Pumps: Water meter in the makeup water line with electric contact cycles pump(s) thru	(5) CHILLED LIQUID FLOW SWITCH
\mathbf{x} i amps, match motor in the match me with electric contact cycles pump(s) that	(6) ADAPTIVE CAPACITY CONTROL VSM (TRUE/FALSE)
	(7) ADAPTIVE CAPACITY CONTROL NSP (TRUÉ/FALSE)

OUTPUTS INPUTS SOFTWARE NOTES DIGITAL ANALOG DIGITAL ANALOG ALARM SYSTEM MANAGEMENT INPUT/ OUTPUT SUMMARY X (1) COOLING TOWER CT-1 & CT-2 COOLING TOWER BYPASS VALVE CWBY-1

(9)

(1) NEW CHILLER CH-1 SHALL BE PROVIDED WITH AND INTERFACE MONITORING POINTS BASED UPON YORK, VIA BACNET. SEE LIST OF ANALOG, DIGITAL & CODE MONITORING POINTS ABOVE.

OLULIER SERIAL INTERFACE POINTS


VARIABLE SPEED DRIVE WATER PUMP RELAY

HARMONIC FILTER INSTALLED

(10) ACC SURGE TYPE

(10)

(11)

Johnson, Speliman & Associates, Inc. 350 Research Court, Suite 130 Peachtree Corners, Georgia 30092 Phone (770) 447-4555 visit us at www.isace.com									
visit us at www.jsace.com									
CONTRACTOR OF A									
JACKSON COUNTY	JACKSON COUNTY Courthouse chiller replacement Jefferson, Ga. Chiller replacement								
DATE									
REVISIONS									
ON									
HVAC CONTROLS									
JOB NUMBER 22JS07 DRAWN BY HMN									
	04 G NUMBER	W/TLN /1/22							
M501 6 OF 6 SHEETS									

SYMBOLS LEGEND

ONE-LI	NE SYMBOL SCHEDULE
Symbol	Description
@ -	ARC ENERGY REDUCING MAINTENANCE SWITCH
<u> </u>	AUTOMATIC TRANSFER SWITCH WITH BYPASS/ ISOLATION
~	AUTOMATIC TRANSFER SWITCH, CLOSED TRANSITION
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	AUTOMATIC TRANSFER SWITCH, OPEN TRANSITION
⊢	BATTERY
	CIRCUIT BREAKER, BOLT-ON, FUSED
- <b>I</b>	CIRCUIT BREAKER, BOLT-ON, STARTER
	CIRCUIT BREAKER, BOLT-ON, STARTER-DISCONNECT
~~^»>	CIRCUIT BREAKER, DRAW-OUT
~~⊡^>>	CIRCUIT BREAKER, DRAW-OUT, FUSED
<i></i>	CIRCUIT BREAKER, FULL PLUG-IN
_^>	CIRCUIT BREAKER, LINE SIDE PLUG-IN
	CIRCUIT BREAKER, MEDIUM VOLTAGE, DRAW-OUT
_^ <del>&gt;</del>	CIRCUIT BREAKER, PLUG-IN
⊡^≫	CIRCUIT BREAKER, PLUG-IN, FUSED
EQPM #/E#.#	CIRCUIT CONTINUES TO "EQPM", ON DRAWING "#/E#.#"
*	CONTACT, NORMALLY CLOSED
+	CONTACT, NORMALLY OPEN
< >	CRADLE FOR DRAW-OUT CIRCUIT BREAKER
	CURRENT TRANSFORMER
Z	DC TO DC CONVERTER
Δ	DELTA CONNECTION
_/_	DISCONNECT SWITCH
	DISCONNECT SWITCH WITH FUSE
	DISCONNECT SWITCH WITH FUSE AND STARTER
ID	FEEDER ID – REFER TO FEEDER SCHEDULE
	FUSE
- <b>~~</b> D>>-	FUSE, DRAW-OUT
$\Theta$	GENERATOR
Ļ	GROUND
	Ground GROUND FAULT
	INVERTER
 	KIRK KEY
	LIGHTNING SURGE ARRESTOR
	LUG
	REACTOR
	RECTIFIER
-wv-	RESISTOR
<del></del>	SHUNT TRIP
S S	STATIC SWITCH
	STATIC TRANSFER SWITCH
-x-	THERMAL OVERLOAD TRIP
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	TRANSFORMER
 	UNDER VOLTAGE DEVICE
	UTILITY METER
Y	WYE CONNECTION
T T	WYE CONNECTION WITH RESISTOR GROUNDED NEUTRAL
ř.	
<u></u> ∔'	WYE CONNECTION WITH SOLID GROUNDED NEUTRAL

DEVICE SYMBOL LEGEND

 FLOOR
 CEILING
 WALL
 WALL

 FLOOR
 CEILING
 STANDARD
 NON-STANDARD
 DESCRIPTION
 HEIGHT HEIGHT

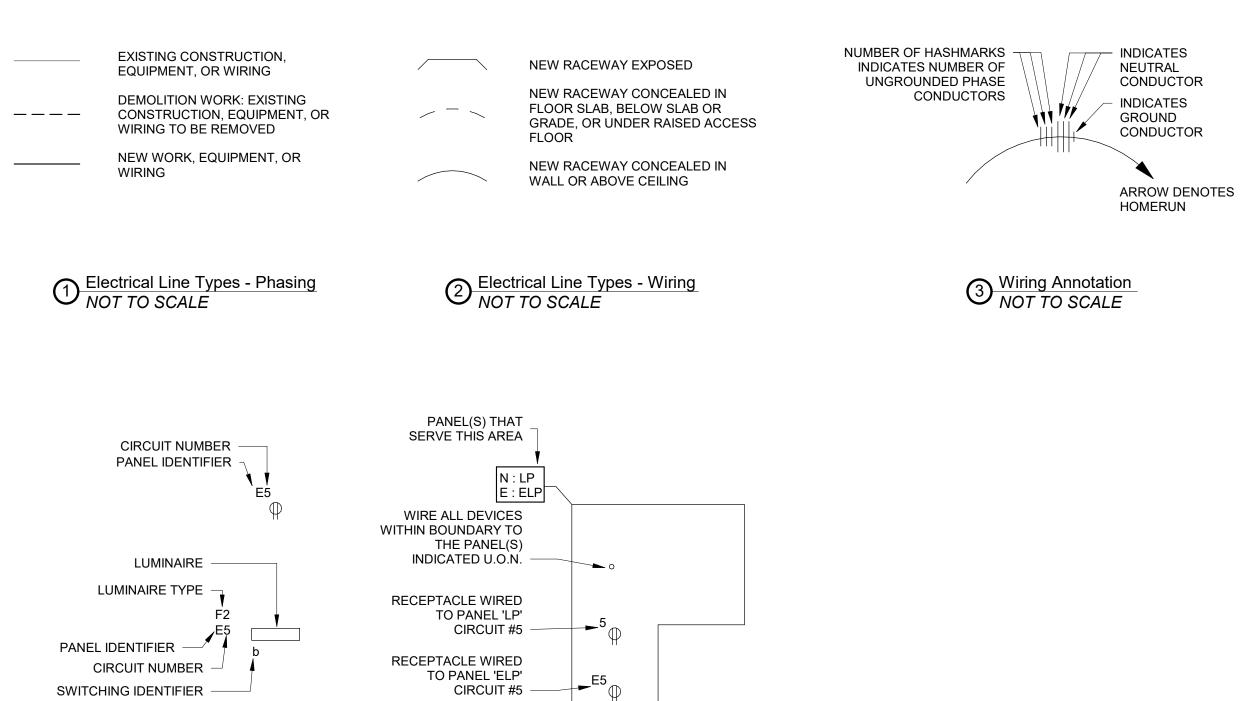
		HLIGHT	TILIGITI	
J	C	9		JUNCTION BOX
L		Ŷ		LOW VOLTAGE JUNCTION BOX
\square	\bigcirc	φ		SINGLE RECEPTACLE
\square	0	φ	P	DUPLEX RECEPTACLE
	0	Φ		DUPLEX RECEPTACLE, SPLIT-WIRED
\oplus	\oplus	₽	Ŧ	DOUBLE DUPLEX RECEPTACLE
lacksquare	\odot	•		DOUBLE DUPLEX RECEPTACLE, SPLIT-WIRED
		Ψ	P	GFCI DUPLEX RECEPTACLE
		Ŧ	Ŧ	GFCI DOUBLE DUPLEX RECEPTACLE
\bigcirc	\bigcirc	φ	φ	SPECIAL PURPOSE RECEPTACLE
				MULTI-SERVICE ASSEMBLY FLOOR OUTLET

POWER SYMBOL LEGEND

Symbol Description

COMBINATION STARTER					
DISCONNECT SWITCH. 30/3/F/WP INDICATES 30 AMP, 3-POLE, F=FUSED / NF=NOT-FUSED, WEATHERPROOF					
EQUIPMENT AS NOTED. DOUBLE LINE INDICATES FRONT OF EQUIPMENT					
MOTOR					
MOTOR RATED SWITCH					
MOTOR STARTER					
SURFACE MOUNTED PANELBOARD					
FLUSH MOUNTED PANELBOARD					
REVENUE METER					
SLEEVE THROUGH WALL					
PLYWOOD BACKBOARD					
SURFACE RACEWAY					
PUSHBUTTON					
BUSWAY RISER					
PULLBOX					
KNOX BOX					

MISCELLANEOUS SYMBOLS

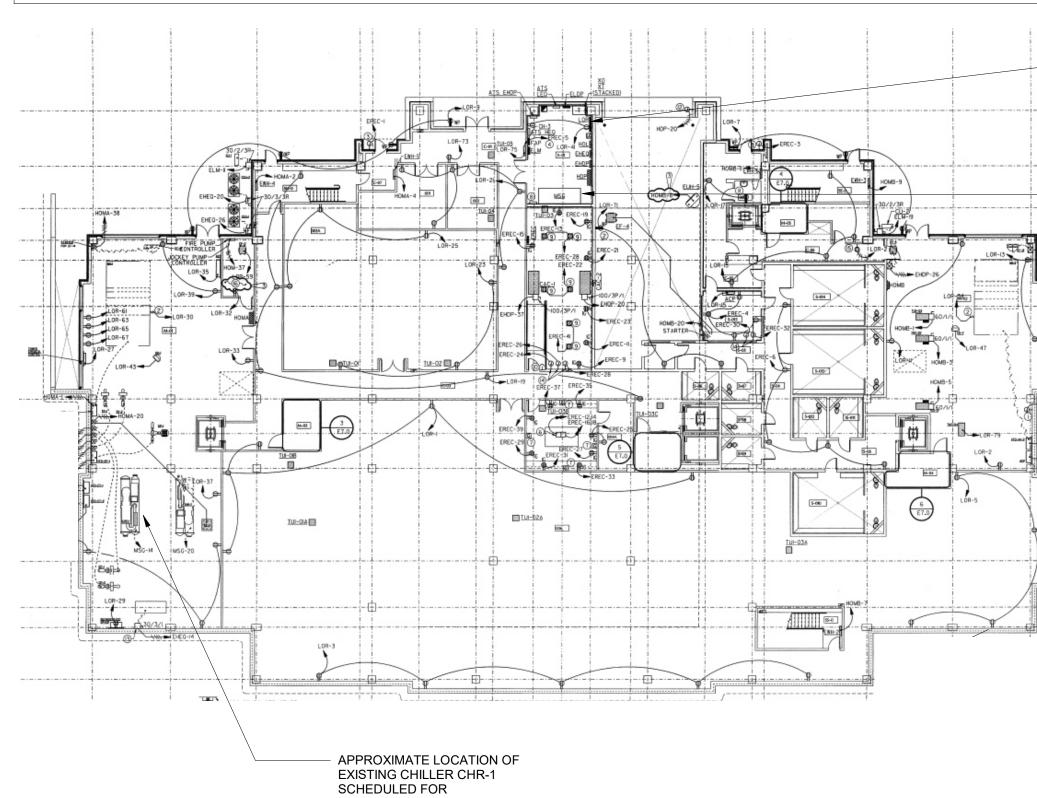

Symbol

Description

$\overline{\mathbf{x}}$	NOTE REFERENCE SYMBOL

ELECTRICAL ANNOTATION

Device/Eqpm Identification
 NOT TO SCALE



5 Electrical Plan Annotation NOT TO SCALE

ABBREVIATIONS

A	AMPERES	EXT	EXTERIOR	OL	OVERLOAD
AB		F	FUSE(D)	P	POLE(S)
AC AF	ALTERNATING CURRENT AMPERE FRAME	FA FACP	FIRE ALARM FIRE ALARM CONTROL PAEL	P/T/Z PB	PAN TILT ZOOM PUSHBUTTON
AFCI		FACP	FAN COIL UNIT	PB PB	PULLBOX
AFF	ABOVE FINISHED FLOOR	FIXT	FIXTURE	PC	PHOTOCELL
AFG	ABOVE FINISHED GRADE	FL	FLOOR	PF	POWER FACTOR
AHC	ABOVE HUNG CEILING	FLA	FULL LOAD AMPERES	PH	PHASE
AHU	AIR HANDLING UNIT	FLEX	FLEXIBLE	PL	PILOT LIGHT
AIC	AMPERE INTERRUPTING CAPACITY	FLR	FLOOR	PNL	PANEL
ANN	ANNUNCIATOR	FLUOR	FLUORESCENT	PR	PAIR
ASSD	AIR SAMPLING SMOKE DETECTION	FO	FIBER OPTIC FIRE ALARM REMOTE ANNUNCIATOR	PRI PVC	
ASTS AT	AUTOMATIC STATIC TRANSFER SWITCH AMPERE TRIP	FRA FURN	FURE ALARM REMOTE ANNUNCIATOR FURNISH	PVC PWR	POLYVINYL CHLORIDE POWER
ATS	AUTOMATIC TRANSFER SWITCH	FUT	FUTURE	REC	RECEPTACLE
AUTO	AUTOMATIC	FVNR	FULL VOLTAGE NON-REVERSING	RECT	RECTIFIER
AUX	AUXILIARY	G, GND	GROUND	REFR	REFRIGERATOR
AWG	AMERICAN WIRE GAUGE	GALV	GALVANIZE(D)	RGS	RIGID GALVANIZED STEEL CC
BAS	BUILDING AUTOMATION SYSTEM	GEN	GENERATOR	RHW	EPR INSULATED WIRE
BATT	BATTERY	GFCI		RM	ROOM
BB BC	BACKBOARD BARE COPPER	GFP HD	GROUND FAULT PROTECTION HEAVY DUTY	SB SCH	SWITCHBOARD SCHEDULE
BC/BF	DEVICES MOUNTED BELOW SUSPENDED	HGT, HT		SEC	SECONDARY
20,21	CEILING AND BELOW RAISED FLOOR	HH	HANDHOLE	SFL	SUB-FEED LUGS
BFF	BELOW FINISHED FLOOR	HID	HIGH INTENSITY DISCHARGE	SHT	SHEET
BKR	BREAKER	HO	HIGH OUTPUT	SPC	SPACE
BLDG		HOA	HAND-OFF-AUTOMATIC	SPKR	SPEAKER
BRF BTM	BELOW RAISED FLOOR BOTTOM	HP	HORSEPOWER	SPR	SPARE
BW	BOTH WAYS	HPF HPS	HIGH POWER FACTOR HIGH PRESSURE SODIUM	SQ SS	SQUARE STAINLESS STEEL
C	CONDUIT	HFS	HEATER	SSRVS	SOLID STATE REDUCED VOLT
CAB	CABINET	HV	HIGH VOLTAGE	001110	STARTER
CATV	CABLE TELEVISION	IC	INTERCOMMUNCATION	ST	SHUNT TRIP
CB	CIRCUIT BREAKER	ID	IDENTIFY, IDENTIFICATION	STP	SHIELDED TWISTED PAIR
CC		IMC	INTERMEDIATE METAL CONDUIT	STS	STATIC TRANSFER SWITCH
CKT CL	CIRCUIT CENTERLINE	INCAND	INCANDESCENT	SUSP SW	SUSPEND(ED) SWITCH
CLG	CEILING	INSUL IPS	INSULATION INTERRUPTIBLE POWER SUPPLY	SWBD	SWITCHBOARD
CO	COMPANY	IR	PASSIVE INFRARED	SWGR	SWITCHGEAR
COL	COLUMN	JB,	JUNCTION BOX	T, TEL,	TELEPHONE
COMM	COMMUNICATIONS	J-BOX		TELE	
CONC	CONCRETE	JCT	JUNCTION	T-STAT TB	THERMOSTAT TAP BOX
CONN CONTR	CONNECTION, CONNECT CONTRACTOR	KA KCMIL	KILAMPERES THOUSAND CIRCULAR MILS	TBB	TELECOMMUNICATIONS BACK
COORD	COORDINATE	KUMIL	THOUSAND CIRCULAR MILS THOUSAND	TBD	TO BE DETERMINED
CT	CURRENT TRANSFORMER	KV	KILOVOLTS	тс	TIME CLOCK
CUH	CABINET UNIT HEATER	KVA	KILOVOLT-AMPERES	TEMP	TEMPORARY
CW	COOL WHITE	KVAR	KILOVARS	TERM	TERMINAL, TERMINATE
D	DEEP	KW	KILOWATTS	THW	PVC INSULATED WIRE
DΔ	DELTA CONNECTION	LT(S)	LIGHT(S)	THWN/ THHN	PVC & NYLON INSULATED WIF
DB DC	DECIBEL DIRECT CURRENT	LTG MA	LIGHTING MILLIAMPERE	TSS	TWO SPEED STARTER
DET	DETECTOR	MAINT	MAINTAINED	TVSS	TRANSIENT VOLTAGE SURGE
DIA	DIAMETER	MAN	MANUAL		SUPPRESSOR
DISC	DISCONNECT	MAX	MAXIMUM	TWU	THROUGH-THE-WALL UNIT
DIST	DISTRIBUTION	MC	METAL CLAD CABLE	TYP U	TYPICAL ULTRASONIC
DIV	DIVISION	MCB	MAIN CIRCUIT BREAKER	UC	UNDER COUNTER
DN DP		MCC MCM	MOTOR CONTROL CETNER THOUSAND CIRCULAR MILS	UG	UNDERGROUND
DWG	DISTRIBUTION PANEL DRAWING	MDP	MAIN DISTRIBUTION PANEL	UH	UNIT HEATER
EA	EACH	MEGA	MILLION	UON,	UNLESS OTHERWISE NOTED
EF	EXHAUST FAN	MFR	MANUFACTURER	UNO UPS	UNINTERRUPTIBLE POWER S
EG	EQUIPMENT GROUND	MGB	MAIN GROUND BUS	UTIL	UTILITY
EL	ELEVATION	MH	METAL HALIDE	UTP	UNSHIELDED TWISTED PAIR
ELEC		MIN		V	VOLT(S)
ELU EMER	EMERGENCY LIGHT UNIT EMERGENCY	MLO MO	MAIN LUGS ONLY MANUALLY OPERATED	VA	VOLT-AMPERES
EMT	ELECTRICAL METALLIC TUBING	MTD	MOUNT(ED)	VAR	REACTIVE VOLT AMPS
ENCL	ENCLOSURE	MTR	MOTOR CONTROL CETNER	VAV VFD	
EO	ELECTRONICALLY OPERATED	MTS	MANUAL TRANSFER SWITCH	W	VARIABLE FREQUENCY DRIVE WIRE
EPO	EMERGENCY POWER OFF	MV	MEDIUM VOLTAGE	Ŵ	WATTS
EPR	ETHYLENE PROPYLENE RUBBER	MW	MEGAWATTS	W/	WITH
EQ	EQUAL	N		WP	WEATHERPROOF
EQUIP,	EQUIPMENT	NC NEC	NORMALLY CLOSED NATIONAL ELECTRIC CODE	WT	WATERTIGHT
EQPM		NEC	NON-FUSED	XFMR	
EUH		NIC	NOT IN CONTRACT	XHHW	CROSS LINKED POLYETHYLEI WIRE
EWC		NL	NIGHT LIGHT	XP	EXPLOSION PROOF
EWH EX,	ELECTRIC WALL HEATER EXISTING	NO	NORMALLY OPEN	Y	WYE CONNECTION
EX, EXIST	EXICTING	NTS	NOT TO SCALE		
EXR	EXISTING RELOCATED TO LOCATION ON	OH OHD	OVERHEAD OVERHEAD DOOR OPERATOR		
	PLAN				

KEY PLAN - PARTIAL BASEMENT

REPLACEMENT BY DIVISION 23.

DRAWING INDEX

DRAWING INDEX, GENERAL NOTES, & LEGENDS E000 MECHANICAL ROOM PART PLAN - POWER DEMO E021 E201 MECHANICAL ROOM PART PLAN - POWER NEW

CONDUIT

LTAGE

CKBOARD

VIRE

SUPPLY

RIVE

ENE INSULATED

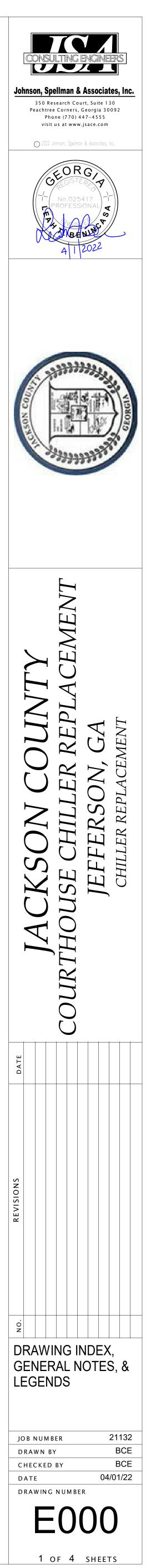
E7.0

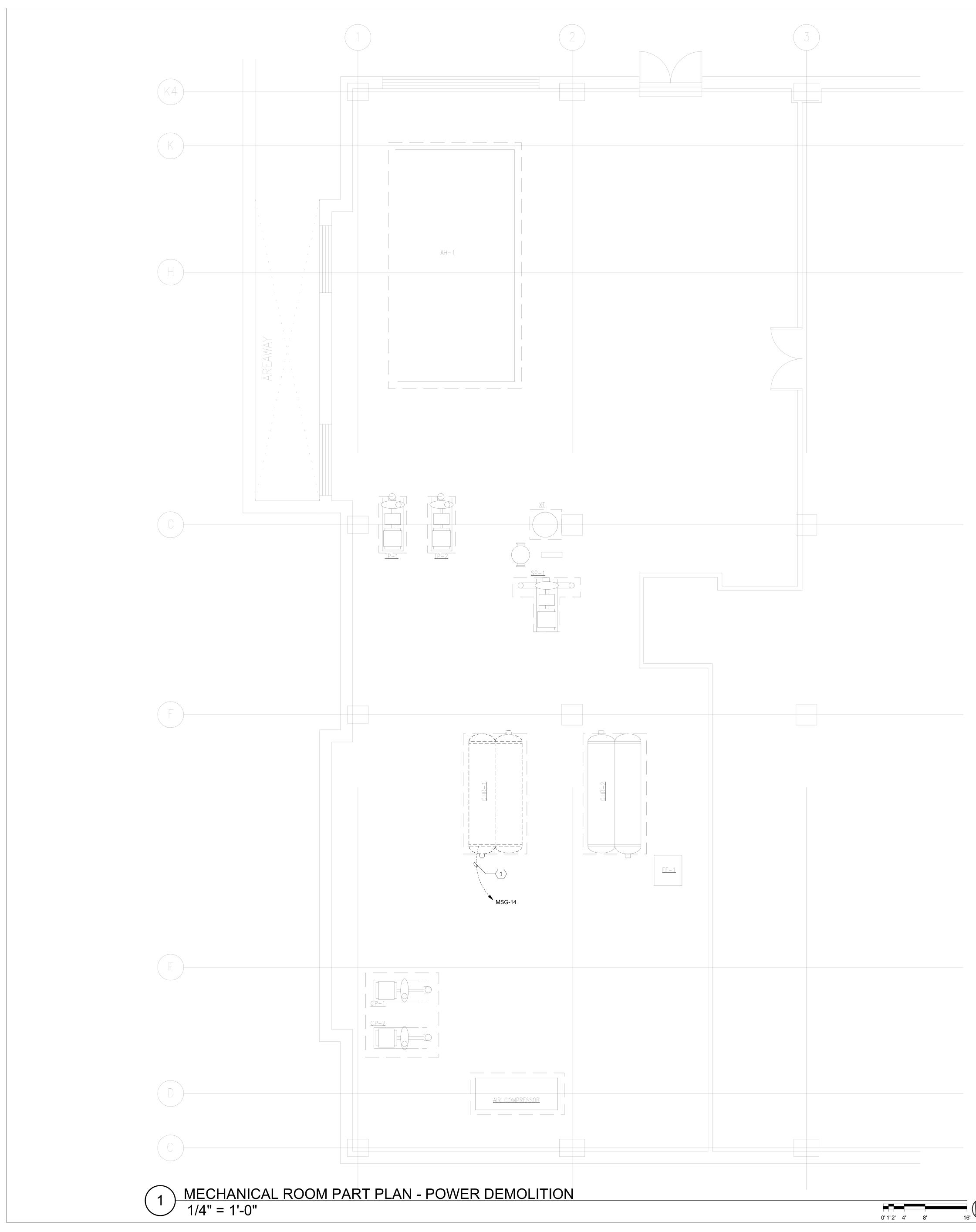
GENERAL NOTES

- A ELECTRICAL SCOPE OF WORK INCLUDES THE SUPPORT FOR EQUIPMENT REPLACED BY DIVISION 23.
- B MAINTAIN CONTINUITY OF WIRING NOT SCHEDULED FOR REMOVAL, WHICH SERVES EQUIPMENT AND DEVICES SCHEDULED TO REMAIN.
- C HOMERUN NUMBERS AND PANELBOARD SCHEDULES INDICATED ARE BASED ON FIELD OBSERVATION OF EXISTING PANELBOARDS AND EXISTING RECORD DRAWINGS. PRIOR TO BEGINNING WORK, THE CONTRACTOR SHALL FIELD VERIFY EXISTING CONDITIONS OF ELECTRICAL EQUIPMENT, DEVICES AND CIRCUITING TO BE IMPACTED BY PROJECT SCOPE. THE CONTRACTOR SHALL NOTIFY THE ENGINEER PRIOR TO PROCEEDING WITH WORK IF ANY DECREPANICIES OR ISSUES ARE DISCOVERED.
- D PROVIDE REVISED PANELBOARD SCHEDULES FOR ALL PANELBOARDS MODIFIED DURING THE PROJECT.
- E COORDINATE WITH OTHER TRADES TO DISCONNECT MOTORS HEATERS, OR OTHER EQUIPMENT AS REQUIRED FOR THE DEMOLITION OF OTHER TRADES WORK. CUT OFF ALL IN FLOOR CONDUITS, GRIND SMOOTH WITH FLOOR AND PREPARE FOR PATCHING BY OTHERS.

LOAD SUMMARY

JACKSON COUNTY COURTHOUSE LOAD SUMMARY


EXISTING MAIN SWITCHBOARD (MSG - 4000A MCB, 480Y/277V, 3ph, 4W+G) CONNECTED LOAD	2,244.46 kVA	2700 A
CHILLER REMOVAL CHR-1	-154.60 kVA	-186 A
REPLACEMENT CHILLER CHR-1	152.07 kVA	183 A
TOTAL CHANGE	-2.53 kVA	-3.00 A

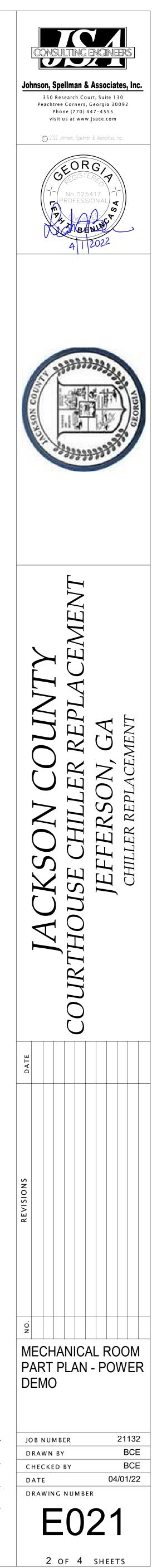

TOTAL: 2241.9 kVA 2697.0 A

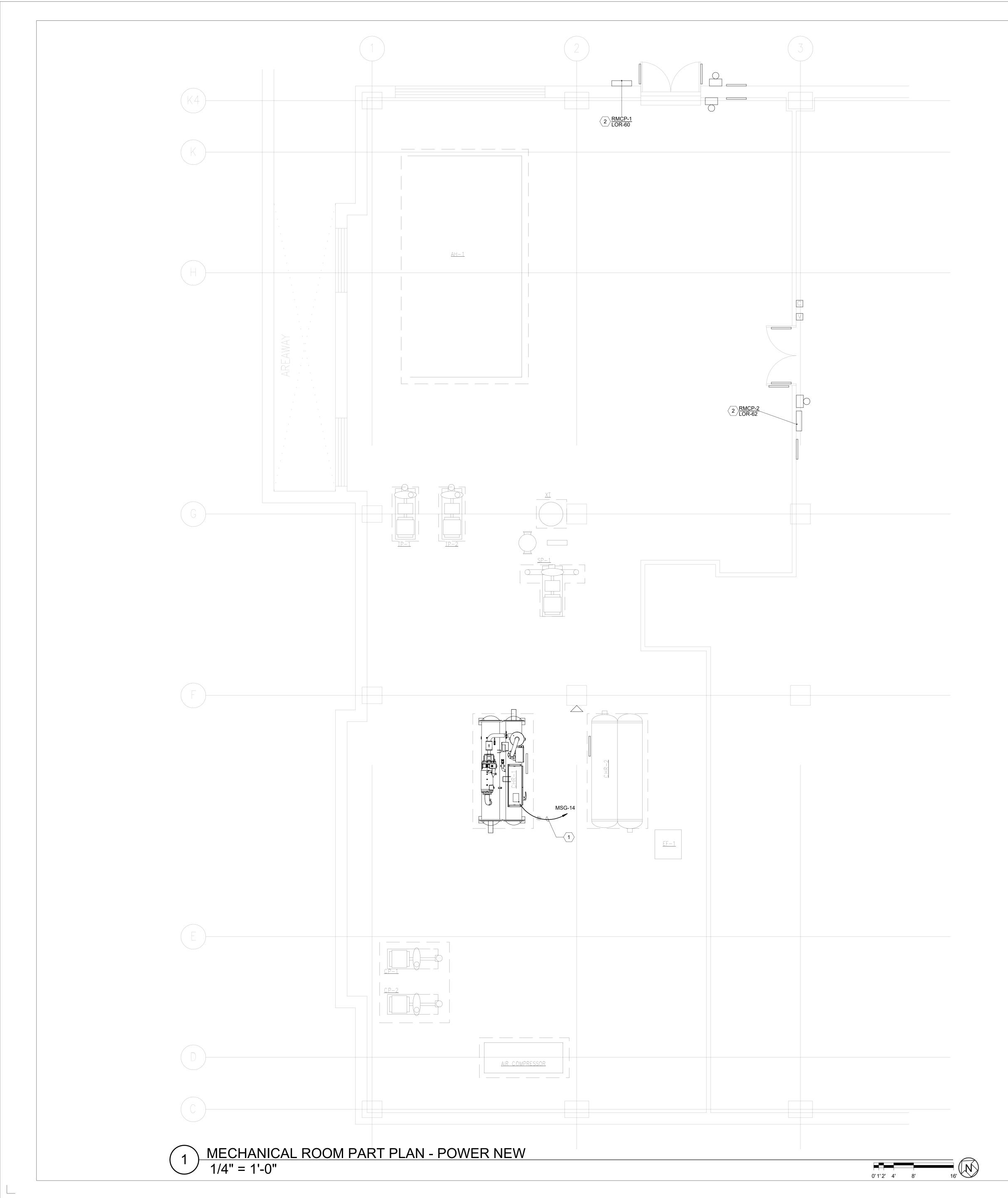
APPROXIMATE LOCATION OF EXISTING 208Y/120V PANELBOARD LOR.

APPROXIMATE LOCATION OF EXISTING 480Y/277V MAIN SERVICE SWITCHBOARD MSG.

GENERAL SHEET NOTES

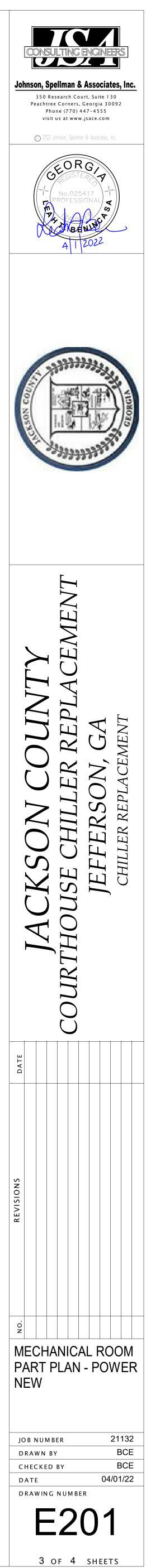
- A PROTECT EXISTING WORK INDICATED TO REMAIN.
- B PRIOR TO BEGINNING WORK, FIELD-VERIFY EXISTING EQUIPMENT CONFIGURATION AND RATINGS. WHERE DISCREPANCIES EXIST, NOTIFY THE OWNER PRIOR TO PROCEEDING WITH THE WORK.
- C COORDINATE WITH OTHER TRADES TO DISCONNECT MOTORS HEATERS, OR OTHER EQUIPMENT AS REQUIRED FOR THE DEMOLITION OF OTHER TRADES WORK. CUT OFF ALL IN FLOOR CONDUITS, GRIND SMOOTH WITH FLOOR AND PREPARE FOR PATCHING BY OTHERS.
- SHEET KEYNOTES
- 1 COORDINATE WITH DIVISION 23 TO DISCONNECT POWER TO MECHANICAL EQUIPMENT SCHEDULED FOR REMOVAL. REMOVE WIRING BACK TO SWITCHBOARD. CONDUIT MAY BE REUSED, IF APPROPRIATE.




EXISTING SWITCHBOARD MSG FRONT ELEVATION

EXISTING CHILLER CHR-1 BREAKER

GENERAL SHEET NOTES


A PROTECT EXISTING EQUIPMENT SCHEDULED TO REMAIN.

○ SHEET KEYNOTES

- 1 PROVIDE NEW 480V FEEDER FOR REPLACEMENT CHILLER CHR-1: (3-500kCMIL + #3G IN 3"C). REPLACE EXISTING 100% RATED 250A/3P BREAKER WITH 100% RATED, 350A/3P BREAKER. COORDINATE WITH SHOP DRAWINGS PRIOR TO ROUGH-IN. COORDINATE WITH DIVISION 23.
- 2 PROVIDE 120V BRANCH CIRCUIT FOR REFRIGERANT MONITORING CONTROL PANEL: (2#10, #10G IN 0.75"C). PROVIDE 20A/1P BREAKER IN EXISTING SPACE. COORDINATE WITH DIVISION 23.

HVAC EQUIPMENT - ELECTRICAL CONNECTION SCHEDULE								
				Mech	Mech	Mech		
			NUMBER OF	FLA	MCA	MOCP		
EQUIPMENT ID	FED FROM	VOLTAGE	POLES	BCE	BCE	BCE	DISCONNECTING MEANS	
REFRIGERANT MONITORIN								
RMCP-1	LOR - 60	120 V	1	5 A	16 A	20 A	DIVISION 23	
RMCP-2	LOR - 62	120 V	1	5 A	16 A	20 A	DIVISION 23	
REPLACEMENT CHILLER								
CHR-1	MSG - 14	480 V	3	183 A	217 A	350 A	DIVISION 23	

