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Limitations 
 
The geotechnical parameter output was prepared specifically for the site and project named in the accompanying 
report subject to objectives, site conditions and criteria provided to ConeTec by the client.  The output may not 
be relied upon by any other party or for any other site without the express written permission of ConeTec Group 
(ConeTec) or any of its affiliates.  For this project, ConeTec has provided site investigation services, prepared 
factual data reporting and produced geotechnical parameter calculations consistent with current best practices.  
No other warranty, expressed or implied, is made. 
 
To understand the calculations that have been performed and to be able to reproduce the calculated parameters 
the user is directed to the basic descriptions for the methods in this document and the detailed descriptions and 
their associated limitations and appropriateness in the technical references cited for each parameter. 
 



 

 

 

ConeTec’s Calculated CPT Geotechnical Parameters as of November 26, 2019 
 

ConeTec’s CPT parameter calculation and plotting routine provides a tabular output of geotechnical parameters 
based on current published CPT correlations and is subject to change to reflect the current state of practice.   
Due to drainage conditions and the basic assumptions and limitations of the correlations, not all geotechnical 
parameters provided are considered applicable for all soil types. The results are presented only as a guide for 
geotechnical use and should be carefully examined for consideration in any geotechnical design.  Reference to 
current literature is strongly recommended.  ConeTec does not warranty the correctness or the applicability of any 
of the geotechnical parameters calculated by the program and does not assume liability for any use of the results in 
any design or review.  For verification purposes we recommend that representative hand calculations be done for 
any parameter that is critical for design purposes.  The end user of the parameter output should also be fully aware 
of the techniques and the limitations of any method used by the program.  The purpose of this document is to inform 
the user as to which methods were used and to direct the end user to the appropriate technical papers and/or 
publications for further reference. 
 
The geotechnical parameter output was prepared specifically for the site and project named in the accompanying 
report subject to objectives, site conditions and criteria provided to ConeTec by the client.  The output may not be 
relied upon by any other party or for any other site without the express written permission of ConeTec Group 
(ConeTec) or any of its affiliates.   
 
The CPT calculations are based on values of tip resistance, sleeve friction and pore pressures considered at each data 
point or averaged over a user specified layer thickness (e.g. 0.20 m).  Note that qt is the tip resistance corrected for 
pore pressure effects and qc is the recorded tip resistance.  The corrected tip resistance (corrected using u2 pore 
pressure values) is used for all of the calculations.  Since all ConeTec cones have equal end area friction sleeves pore 
pressure corrections to sleeve friction, fs, are not required. 
 
The tip correction is:  q

t
 = q

c
 + (1-a) • u

2   
  (consistent units are implied) 

where: q
t
 is the corrected tip resistance 

q
c
 is the recorded tip resistance 

u
2
 is the recorded dynamic pore pressure behind the tip (u

2
 position) 

a is the Net Area Ratio for the cone (typically 0.80 for ConeTec cones) 
  

The total stress calculations are based on soil unit weight values that have been assigned to the Soil Behavior Type 
(SBT) zones, from a user defined unit weight profile, by using a single uniform value throughout the profile, through 
unit weight estimation techniques described in various technical papers or from a combination of these methods.  
The parameter output files indicate the method(s) used. 
 
Effective vertical overburden stresses are calculated based on a hydrostatic distribution of equilibrium pore 
pressures below the water table or from a user defined equilibrium pore pressure profile (typically obtained from 
CPT dissipation tests) or a combination of the two.  For over water projects the stress effects of the column of water 
above the mudline have been taken into account as has the appropriate unit weight of water.  How this is done 
depends on where the instruments were zeroed (i.e. on deck or at the mudline).  The parameter output files indicate 
the method(s) used. 
 
A majority of parameter calculations are derived or driven by results based on material types as determined by the 
various soil behavior type charts depicted in Figures 1 through 5.   The parameter output files indicate the method(s) 
used.   
 
The Soil Behavior Type classification chart shown in Figure 1 is the classic non-normalized SBT Chart developed at 
the University of British Columbia and reported in Robertson, Campanella, Gillespie and Greig (1986).  Figure 2 shows 
the original normalized (linear method) SBT chart developed by Robertson (1990).  The Bq classification charts shown 
in Figures 3a and 3b incorporate pore pressures into the SBT classification and are based on the methods described 
in Robertson (1990).  Many of these charts have been summarized in Lunne, Robertson and Powell (1997).  The 
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Jefferies and Davies SBT chart shown in Figure 3c is based on the techniques discussed in Jefferies and Davies (1993) 
which introduced the concept of the Soil Behavior Type Index parameter, Ic.  Please note that the Ic parameter 
developed by Robertson and Fear (1995) and Robertson and Wride (1998) is similar in concept but uses a slightly 
different calculation method than that used by Jefferies and Davies (1993) as the latter incorporates pore pressure 
in their technique through the use of the Bq parameter.  The normalized Qtn SBT chart shown in Figure 4 is based 
on the work by Robertson (2009) utilizing a variable stress ratio exponent, n, for normalization based on a slightly 
modified redefinition and iterative approach for Ic.  The boundary curves drawn on the chart are based on the work 
described in Robertson (2010). 
 
Figure 5 shows a revised behavior based chart by Robertson (2016) depicting contractive-dilative zones.  As the zones 
represent material behavior rather than soil gradation ConeTec has chosen a set of zone colors that are less likely to 
be confused with material type colors from previous SBT charts.  These colors differ from those used by Dr. 
Robertson. 
 

 

 

 

 

 

 

 
 

           𝑅𝑓 = (
𝑓𝑠

𝑞𝑡
) ∙ 100% 

Figure 1.  Non-Normalized Soil Behavior Type Classification Chart (SBT) 

 

 

 

 

 

 

 

Figure 2.  Normalized Soil Behavior Type Classification Chart (SBTn) 
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Figure 3.  Alternate Soil Behavior Type Charts 
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Figure 4.   Normalized Soil Behavior Type Chart using Qtn (SBT Qtn) 
 

 

 
Figure 5.   Modified SBTn Behavior Based Chart  

 
 
Details regarding the geotechnical parameter calculations are provided in Tables 1a and 1b.  The appropriate 
references cited are listed in Table 2.  Non-liquefaction specific parameters are detailed in Table 1a and liquefaction 
specific parameters are detailed in Table 1b.  
 
Where methods are based on charts or techniques that are too complex to describe in this summary the user should 
refer to the cited material.  Specific limitations for each method are described in the cited material. 
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Where the results of a calculation/correlation are deemed ‘invalid’ the value will be represented by the text strings 
“-9999”, “-9999.0”, the value 0.0 (Zero) or an empty cell.    Invalid results will occur because of (and not limited to) 
one or a combination of: 
 

1. Invalid or undefined CPT data (e.g. drilled out section or data gap). 
 

2. Where the calculation method is inappropriate, for example, drained parameters in a material behaving 
as an undrained material (and vice versa). 
 

3. Where input values are beyond the range of the referenced charts or specified limitations of the 
correlation method. 
 

4. Where pre-requisite or intermediate parameter calculations are invalid. 
 

The parameters selected for output from the program are often specific to a particular project.  As such, not all of 
the calculated parameters listed in Table 1 may be included in the output files delivered with this report. 
 

The output files are typically provided in Microsoft Excel XLS or XLSX format.  The ConeTec software has several 
options for output depending on the number or types of calculated parameters desired or requested by the client.  
Each output file is named using the original COR file base name followed by a three or four letter indicator of the 
output set selected (e.g. BSC, TBL, NLI, NL2, IFI, IFI2) and possibly followed by an operator selected suffix identifying 
the characteristics of the particular calculation run. 
 

 
 
 

Table 1a.  CPT Parameter Calculation Methods – Non liquefaction Parameters 
 

Calculated 
Parameter 

Description Equation Ref 

Depth 

Mid Layer Depth 
 
(where calculations are done at each point then Mid Layer 
Depth = Recorded Depth) 

[Depth (Layer Top) + Depth (Layer Bottom)]/ 2.0 CK* 

Elevation 
Elevation of Mid Layer based on sounding collar elevation 
supplied by client or through site survey 

Elevation = Collar Elevation - Depth CK* 

Avg qc Averaged recorded tip value (qc) 

=

=
n

i

cq
n

Avgqc
1

1   

n=1 when calculations are done at each point 

CK* 

Avg qt 
Averaged corrected tip (qt) where: 
  

2)1( uaqq ct •−+=  

=

=
n

i

tq
n

Avgqt
1

1  

n=1 when calculations are done at each point 

1 

Avg fs Averaged sleeve friction (fs) 

=

=
n

i

fs
n

Avgfs
1

1  

n=1 when calculations are done at each point 

CK* 

Avg Rf 

Averaged friction ratio (Rf) where friction ratio is defined as:  
  

tq

fs
Rf •= %100

 Avgqt

Avgfs
AvgRf = %100

 

n=1 when calculations are done at each point 

CK* 

Avg u Averaged dynamic pore pressure (u) 

=

=
n

i
iu

n
Avgu

1

1  

n=1 when calculations are done at each point 

CK* 
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Calculated 
Parameter 

Description Equation Ref 

Avg Res 
Averaged Resistivity (this data is not always available since it is a 
specialized test requiring an additional module) 


=

=
n

i
i

yResistivit
n

sAvgR
1

1
e

 

n=1 when calculations are done at each point 

CK* 

Avg UVIF 
Averaged UVIF ultra-violet induced fluorescence  (this data is 
not always available since it is a specialized test requiring an 
additional module) 


=

=
n

i
iUVIF

n
AvgUVIF

1

1  

n=1 when calculations are done at each point 

CK* 

Avg Temp 
Averaged Temperature (this data is not always available since it 
requires specialized calibrations) 


=

=
n

i
i

eTemperatur
n

AvgTemp
1

1  

n=1 when calculations are done at each point 

CK* 

Avg Gamma 
Averaged Gamma Counts (this data is not always available since 
it is a specialized test requiring an additional module) 


=

=
n

i
iGamma

n
AvgGamma

1

1  

n=1 when calculations are done at each point 

CK* 

SBT 
Soil Behavior Type as defined by Robertson et al 1986 
(often referred to as Robertson and Campanella, 1986) 

See Figure 1 1, 5 

SBTn 
Normalized Soil Behavior Type as defined by Robertson 1990 
(linear normalization) 

See Figure 2 2, 5 

SBT-Bq Non-normalized Soil Behavior type based on the Bq parameter See Figure 3 1, 2, 5 

SBT-Bqn Normalized Soil Behavior based on the Bq parameter See Figure 3 2, 5 

SBT-JandD Soil Behavior Type as defined by Jeffries and Davies See Figure 3 7 

SBT Qtn 
Soil Behavior Type as defined by Robertson (2009) using a 
variable stress ratio exponent for normalization based on Ic 

See Figure 4 15 

Modified SBTn 
(contractive 

/dilative) 

Modified SBTn chart as defined by Robertson (2016) indicating 
zones of contractive/dilative behavior. 

See Figure 5 30 

Unit Wt. 

 
Unit Weight of soil determined from one of the following user 
selectable options: 
 
1)  uniform value 
2)  value assigned to each SBT zone 
3)  value assigned to each SBTn zone 
4)  value assigned to SBTn zone as determined from Robertson 
and 
      Wride (1998) based on qc1n 
5)  values assigned to SBT Qtn zones  
6)  Mayne fs (sleeve friction) method 
7)  Robertson 2010 method 
8)  user supplied unit weight profile 
 
The last option may co-exist with any of the other options 
 

See references 
3, 5, 15, 
21, 24, 

29 
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Calculated 
Parameter 

Description Equation Ref 

TStress 
 

v 

 
Total vertical overburden stress at Mid Layer Depth 
 
A layer is defined as the averaging interval specified by the user 
where depths are reported at their respective mid-layer depth. 
 
For data calculated at each point layers are defined using the 
recorded depth as the mid-point of the layer. Thus, a layer starts 
half-way between the previous depth and the current depth 
unless this is the first point in which case the layer start is at zero 
depth.  The layer bottom is half-way from the current depth to 
the next depth unless it is the last data point. 
 
Defining layers affects how stresses are calculated since the unit 
weight attributed to a data point is used throughout the entire 
layer. This means that to calculate the stresses the total stress at 
the top and bottom of a layer are required. The stress at mid 
layer is determined by adding the incremental stress from the 
layer top to the mid-layer depth.  The stress at the layer bottom 
becomes the stress at the top of the subsequent layer.  Stresses 
are NOT calculated from mid-point to mid-point. 
 
For over-water work the total stress due to the column of water 
above the mud line is taken into account where appropriate. 
 

hi

n

i
i

TStress 
=

=
1


 

where   I is layer unit weight 
  hi is layer thickness 
 

CK* 

EStress 

v
’ 

 

Effective vertical overburden stress at mid-layer depth   v’ = v - ueq CK* 

Equil u 
ueq or u0 

 
Equilibrium pore pressure determined from one of the following 
user selectable options: 
 
 1)  hydrostatic below water table 
 2)  user supplied profile 
 3) combination of those above 
 
When a user supplied profile is used/provided a linear 
interpolation is performed between equilibrium pore pressures 
defined at specific depths.  If the profile values start below the 
water table then a linear transition from zero pressure at the 
water table to the first defined pointed is used. 
 
Equilibrium pore pressures may come from dissipation tests, 
adjacent piezometers or other sources.  Occasionally, an extra 
equilibrium point (“assumed value”) will be provided in the 
profile that does not come from a recorded value to smooth out 
any abrupt changes or to deal with material interfaces.  These 
“assumed” values will be indicated on our plots and in tabular 
summaries. 
 

For hydrostatic option: 
 
 ( )wtweq DDu −=   

where ueq is equilibrium pore pressure 

  w is unit weight of water  
  D is the current depth 
  Dwt is the depth to the water table 
 

CK* 

K0 Coefficient of earth pressure at rest, K0 Ko = (1 – sinΦ’) OCR sinΦ’ 17 

Cn 
Overburden stress correction factor 
used for (N1)60 and older CPT parameters 

Cn = (Pa/v’)0.5 
 
where  0.0 < Cn < 2.0 (user adjustable, typically 1.7) 
Pa is atmospheric pressure (100 kPa) 

12 

Cq Overburden stress normalizing factor 
Cq = 1.8 / (0.8 + (v’/Pa)) 
where   0.0 < Cq < 2.0  (user adjustable) 
Pa is atmospheric pressure (100 kPa) 

3, 12 
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Calculated 
Parameter 

Description Equation Ref 

N60 
SPT N value at 60% energy calculated from qt/N ratios assigned 
to each SBT zone.  This method has abrupt N value changes at 
zone boundaries. 

See Figure 1 5 

(N1)60 SPT N60 value corrected for overburden pressure (N1)60 = Cn • N60 4 

N60Ic 
SPT N60 values based on the Ic parameter [as defined by 
Roberston and Wride 1998 (5), or by Robertson 2009 (15)]. 

 
(qt/Pa)/ N60 = 8.5 (1 – Ic/4.6) 
(qt/Pa)/ N60 = 10 (1.1268 – 0.2817Ic) 
Pa being atmospheric pressure 
 

 
5 

15, 31 

(N1)60Ic 
SPT N60 value corrected for overburden pressure (using N60  Ic).   
User has 3 options. 

 
1)  (N1)60Ic= Cn • (N60 Ic) 
2)  qc1n/ (N1)60Ic = 8.5 (1 – Ic/4.6) 
3)  (Qtn)/ (N1)60Ic  = 10 (1.1268 – 0.2817Ic) 

 
4 
5 

15, 31 
 

Su 
or Su (Nkt) 

Undrained shear strength based on qt 
Su factor Nkt is user selectable N

qt
Su

kt

v−
=

 
1, 5 

Su 
or Su (Ndu) 

Undrained shear strength based on pore pressure 
Su factor NΔu is user selectable N

uu
Su

u

eq



−
=

2  
1, 5 

Dr 

Relative Density determined from one of the following user 
selectable options:  
 
a)  Ticino Sand 
b)  Hokksund Sand 
c)  Schmertmann (1978) 
d)  Jamiolkowski (1985) - All Sands 
e)  Jamiolkowski et al (2003) (various compressibilities, Ko) 

 

See reference (methods a through d) 
Jamiolkowski et al (2003) reference 

5 
14 

PHI 

    

Friction Angle determined from one of the following user 
selectable options (methods a through d are for sands and 
method e is for silts and clays): 
 

a)  Campanella and Robertson 
b)  Durgunoglu and Mitchel 
c)  Janbu 
d)  Kulhawy and Mayne 
e)  NTH method (clays and silts) 
 

 
See appropriate reference 

 
5 
5 
5 

11 
23 

Delta U/qt 
Differential pore pressure ratio 
(older parameter used before Bq was established) 

 

qt

u
=

 

 
where: 

equuu −=  

and u = dynamic pore pressure 
 ueq = equilibrium pore pressure 
 

CK* 

Bq Pore pressure parameter 

 vqt

u
Bq

−


=

 

 

equuu −=   :where  

and u = dynamic pore pressure 
 ueq = equilibrium pore pressure 
 

1, 2, 5 

Net qt 
or qtNet 

Net tip resistance 
(used in many subsequent correlations) 

 vqt −  CK* 

qe 
Effective tip resistance 
(using the dynamic pore pressure u2 and not equilibrium pore 
pressure) 

2uqt −  CK* 
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Calculated 
Parameter 

Description Equation Ref 

qeNorm Normalized effective tip resistance 


'

2

v

uqt −  
CK* 

 
Qt 

or Norm: Qt 
 

Normalized qt for Soil Behavior Type classification as defined by 
Robertson (1990) using a linear stress normalization.  Note this 
is different from Qtn. 


'

v

vqt
Qt

−
=

 
2, 5 

Fr 

or Norm: Fr 
Normalized Friction Ratio for Soil Behavior Type classification as 
defined by Robertson (1990)  vqt

fs
Fr

−
= %100

 
2, 5 

Q(1-Bq) 
Q(1-Bq) grouping as suggested by Jefferies and Davies for their 
classification chart and the establishment of their Ic parameter 

 
)1( BqQ −  

 
where Bq is defined as above and Q is the same as 
the normalized tip resistance, Qt, defined above 
 

6, 7 

 
qc1 

Normalized tip resistance, qc1, using a fixed stress ratio 
exponent, n 
(this method has stress units) 

qc1 = qt • (Pa/v’)0.5 

where: Pa = atmospheric pressure 
 

21 

 
qc1 (0.5) 

Normalized tip resistance, qc1, using a fixed stress ratio 
exponent, n 
(this method is unit-less) 

qc1 (0.5)= (qt/Pa) • (Pa/v’)0.5 

where: Pa = atmospheric pressure 
 

5 

qc1 (Cn) 
Normalized tip resistance, qc1, based on Cn 

(this method has stress units) 
qc1(Cn) = Cn * qt   5, 12 

qc1 (Cq) 
Normalized tip resistance, qc1, based on Cq 

(this method has stress units) 
qc1 (Cq)= Cq * qt  (some papers use qc) 5, 12 

qc1n 
normalized tip resistance, qc1n, using a variable stress ratio 
exponent, n  (where n=0.0, 0.70, 1.0) 
(this method is unit-less) 

qc1n = (qt / Pa)(Pa/v’)n 

where: Pa = atm. Pressure and n varies as  
   described below 

3, 5 

Ic 

or 
Ic (RW1998) 

Soil Behavior Type Index as defined by Robertson and Fear 
(1995) and Robertson and Wride (1998) for estimating grain size 
characteristics and providing smooth gradational changes across 
the SBTn chart 

 
Ic = [(3.47 – log10Q)2 + (log10 Fr + 1.22)2 ]0.5 
 

Where: 
n

v

a

a

v P

P

qt
Q 























 −
=

'

  

 

Or                
n

v

a

a

nc

P

P

qt
qQ 
























==

'1


 

 
depending on the iteration in determining Ic 
 
And   Fr is in percent 
  Pa = atmospheric pressure 
 
n varies between 0.5, 0.70 and 1.0 and is selected 
in an iterative manner based on the resulting Ic 

 

3, 5, 21 

Ic (PKR 2009) 

Soil Behavior Type Index, Ic (PKR 2009) based on a variable 
stress ratio exponent n, which itself is based on Ic (PKR 2009).  
An iterative calculation is required to determine Ic (PKR 2009) 
and its corresponding n (PKR 2009). 

Ic (PKR 2009) =  
[(3.47 – log10Qtn)2 + (1.22 + log10Fr)2]0.5 

15 
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Calculated 
Parameter 

Description Equation Ref 

n (PKR 2009) 
Stress ratio exponent n, based on Ic (PKR 2009). 
An iterative calculation is required to determine n (PKR 2009) 
and its corresponding Ic (PKR 2009). 

n (PKR 2009) = 0.381 (Ic) + 0.05 (v’/Pa) – 0.15 15 

Qtn (PKR 2009) 
Normalized tip resistance using a variable stress ratio exponent 
based on Ic (PKR 2009) and n (PKR 2009).  An iterative 
calculation is required to determine Qtn (PKR 2009). 

Qtn = [(qt - v)/Pa](Pa/v’)n
 

where Pa = atmospheric pressure (100 kPa) 
   n = stress ratio exponent described above 

15 

FC Apparent fines content (%) 

FC=1.75(Ic3.25) - 3.7 
FC=100 for Ic > 3.5 
FC=0    for Ic < 1.26 
FC = 5% if 1.64 < Ic < 2.6 AND Fr<0.5 

3 

Ic Zone 
This parameter is the Soil Behavior Type zone based on the Ic 
parameter (valid for zones 2 through 7 on SBTn or SBT Qtn 
charts) 

Ic < 1.31  Zone = 7 
1.31 < Ic < 2.05 Zone = 6 
2.05 < Ic < 2.60 Zone = 5 
2.60 < Ic < 2.95 Zone = 4 
2.95 < Ic < 3.60 Zone = 3 
Ic > 3.60  Zone = 2 

3 

State Param 
or State 

Parameter 
or ψ 

 
The state parameter index, ψ, is defined as the difference 
between the current void ratio, e, and the critical void ratio, ec.   
Positive ψ - contractive soil 
Negative ψ - dilative soil  
 
This is based on the work by Been and Jefferies (1985) and 
Plewes, Davies and Jefferies (1992) 
 
- vertical effective stress is used rather than a mean normal 
stress 
 

See reference 6, 8 

Yield Stress 
σp’ 

 

Yield stress is calculated using the following methods 
 
a) General method  
 
 
 
 
b) 1st order approximation using qtNet  (clays) 
c)  1st order approximation using Δu2   (clays) 

d)  1st order approximation using qe    (clays) 

 

All stresses in kPa 
 
a)  σp’=  0.33·(qt – σv)m’ (σatm/100)1-m’ 

        

 where 
25)65.2/(1

28.0
1'

cI
m

+
−=  

 

b)  σp’ = 0.33·(qt – σv) 

c)  σp’ = 0.54· (Δu2)       Δu2 = u2 – u0  
d)  σp’ = 0.60 · (qt – u2) 
           

 
 

19 
 
 
 
 

20 
20 
20 

 

OCR 
 

OCR(JS1978) 
 

 
OCR(Mayne2014) 

OCR (qtNet) 
OCR (deltaU) 

OCR (qe) 
OCR (Vs) 

OCR (PKR2015) 

 
Over Consolidation Ratio based on 
 
a) Schmertmann (1978) method involving a  plot 

plot of Su/v’ /( Su/v’)NC and OCR 
 
b) based on Yield stresses described above 
c) approximate version based on qtNet 
d) approximate version based on Δu 
e) approximate version based on effective tip, qe 
f) approximate version based on shear wave velocity, Vs 
g) based on Qt 
 

 
 
 
a) requires a user defined value for NC Su/Pc’ ratio  
 
 
b through f)  based on yield stresses 
 
 
 
 
g)  OCR = 0.25·(Qt)1.25 

 
 
 

9 
 
 

19 
20 
20 
20 
18 
32 
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Calculated 
Parameter 

Description Equation Ref 

Es/qt 
Intermediate parameter for calculating Young’s Modulus, E, in 
sands.  It is the Y axis of the reference chart.  

Based on Figure 5.59 in the reference 5 

Es 
Young’s  

Modulus E 

Young’s Modulus based on the work done in Italy.  There are 
three types of sands considered in this technique.  The user 
selects the appropriate type for the site from: 
 
 a) OC Sands 
 b) Aged NC Sands 
 c) Recent NC Sands 
 
Each sand type has a family of curves that depend on mean 
normal stress.  The program calculates mean normal stress and 
linearly interpolates between the two extremes provided in the 
Es/qt chart. Es is evaluated for an axial strain of 0.1%. 

 
Mean normal stress is evaluated from: 
 

 ( )3''''

3

1


hhvm
++=

 

 

where v’= vertical effective stress 

  h’= horizontal effective stress 
 

and h =  Ko • v
’  with Ko assumed to be 0.5 

 
 

5 

Delta U/TStress Differential pore pressure ratio with respect to total stress 
v

u




=

      where: 
equuu −=  

CK* 

Delta U/Estress, 
P Value, 

Excess Pore 
Pressure Ratio 

Differential pore pressure ratio with respect to effective stress. 
Key parameter (P, Normalized Pore Pressure Parameter, Excess 
Pore Pressure Ratio) in the Winckler et. al. static liquefaction 
method. 

'

v

u




=

    where: 
equuu −=  25, 25a, 

CK* 

 
Su/EStress 

 
Undrained shear strength ratio with respect to vertical effective 
overburden stress using the Su (Nkt) method 

 

= Su (Nkt) / v’ 
CK* 

 
Gmax 

 
Gmax determined from SCPT shear wave velocities (not 
estimated values) 

 
Gmax = ρVs

2
 

where ρ is the mass density of the soil determined 
from the estimated unit weights at each test depth 

27 

 
 

qtNet/Gmax 

 
Net tip resistance ratio with respect to the small strain modulus 
Gmax determined from SCPT shear wave velocities (not 
estimated values) 

 

= (qt -  v) / Gmax 
 

where Gmax = ρVs
2

 

and ρ is the mass density of the soil determined 
from the estimated unit weights at each test depth 

15, 28, 
30 

   

 

 

*CK – common knowledge 
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Table 1b.  CPT Parameter Calculation Methods – Liquefaction Parameters 
 

Calculated 
Parameter 

Description Equation Ref 

KSPT Equivalent clean sand factor for (N1)60 KSPT = 1 + ((0.75/30) • (FC – 5)) 10 

KCPT 

or  
KC (RW1998) 

Equivalent clean sand correction for qc1N 

Kcpt = 1.0 for Ic  1.64 
Kcpt = f(Ic) for Ic > 1.64  (see reference) 
Kc = – 0.403 Ic

4 + 5.581 Ic
3 – 21.63Ic

2 + 33.75 Ic – 17.88 
 

3, 10 

Kc (PKR 2010) Clean sand equivalent factor to be applied to Qtn 
Kc = 1.0 for Ic ≤ 1.64 

Kc = – 0.403 Ic
4 + 5.581 Ic

3 – 21.63Ic
2 + 33.75 Ic – 17.88 

for Ic > 1.64 
16 

(N1)60csIc Clean sand equivalent SPT (N1)60Ic.  User has 3 options. 

 
1)  (N1)60csIc = α + β((N1)60Ic) 
2)  (N1)60csIc = KSPT * ((N1)60Ic) 
3)  (qc1ncs)/ (N1)60csIc = 8.5 (1 – Ic/4.6) 
 
FC ≤ 5%:  α = 0,      β=1.0 
FC ≥ 35%  α = 5.0,   β=1.2 
5% < FC < 35% α = exp[1.76 – (190/FC2)] 
   β = [0.99 + (FC1.5/1000)] 
 

 
10 
10 
5 
 

qc1ncs Clean sand equivalent qc1n qc1ncs = qc1n • Kcpt 3 

Qtn,cs (PKR 
2010) 

Clean sand equivalent for Qtn described above 
- Qtn being the normalized tip resistance based on a variable 
stress exponent as defined by Robertson (2009) 

Qtn,cs = Qtn · Kc (PKR 2016) 16 

Su(Liq)/ESv Liquefied shear strength ratio as defined by Olson and Stark 

 
Su(Liq)  = 0.03 + 0.0143(qc1) 

v’ 
 

Note: v’ and sv’ are synonymous 
 

13 

Su(Liq)/ESv 
(PKR 2010) 

Liquefied shear strength ratio as defined by Robertson (2010) 

 
Su(Liq) 

v’ 
Based on a function involving Qtn,cs 

 

16 

Su (Liq) 
(PKR 2010) 

Liquefied shear strength derived from the liquefied shear 
strength ratio and effective overburden stress 

 
 

 

16 

Cont/Dilat Tip Contractive / Dilative qc1 Boundary based on (N1)60 (v’)boundary = 9.58 x 10-4 [(N1)60]4.79 

qc1 is calculated from specified qt(MPa)/N ratio 
13 

CRR Cyclic Resistance Ratio (for Magnitude 7.5) 

qc1ncs < 50: 
CRR7.5 = 0.833 [qc1ncs/1000] + 0.05 
 

50   qc1ncs < 160: 
CRR7.5 =  93 [qc1ncs/1000]3 + 0.08 
 

10 

Kg Small strain Stiffness Ratio Factor, Kg 
[Gmax/qt]/[qc1n-m] 
m = empirical exponent, typically 0.75 

26 
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Calculated 
Parameter 

Description Equation Ref 

SP Distance State Parameter Distance, Winckler static liquefaction method 
Perpendicular distance on Qtn chart from plotted 
point to state parameter Ψ = -0.05 curve 

25 

URS NP Fr 
Normalized friction ratio point on Ψ = -0.05 curve used in SP 
Distance calculation 

 25 

URS NP Qtn 
Normalized tip resistance (Qtn)  point on Ψ = -0.05 curve used in 
SP Distance calculation 

 25 
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